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Abstract:



A mathematical model for the treatment of chronic myeloid leukemia (CML) through a combination of tyrosine kinase inhibitors and immunomodulatory therapies is analyzed as a dynamical system for the case of constant drug concentrations. Equilibria and their stability are determined and it is shown that, depending on the parameter values, the model exhibits a variety of behaviors which resemble the chronic, accelerated and blast phases typical of the disease. This work provides qualitative insights into the system which should be useful for understanding the interaction between CML and the therapies considered here.
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1. Introduction


Chronic myeloid leukemia (CML) is a hematologic cancer that accounts for about 15% of all leukemias in adults and is characterized by uncontrolled expansion of myeloid cells in the bone marrow and their accumulation in the blood [1]. The progression of the disease can be divided into three phases denoted chronic, accelerated and blast [1]. The chronic phase can last several years with levels of immature white blood cells (blasts) growing steadily but at a low rate. Once the disease enters the accelerated or blast phase, cells proliferate rapidly and the disease can be lethal within a few months if not treated. Current standard of care includes targeted tyrosine kinase inhibitors (TKIs), which have significantly improved long-term survival rates [2].



Responses to certain treatments have offered evidence of an immune component in the disease [3]. Early indications were provided by a correlation between incidence of graft-vs-host disease and improved leukemia-free survival in CML patients who had received allogeneic stem cell transplants [4]. Additionally, treatment with interferons (which are known to be immunomodulatory) has led to complete or partial responses in some fraction of CML patients [5]. More recently, studies that include immunomodulatory therapies such as nivolumab have been initiated [6].



Mathematical modeling of CML dynamics has a history dating back to the late 1960s with early work of Rubinow and Lebowitz [7,8]. Models by Fokas et al. [9] in the 1990s focused on maturation and proliferation of T-cell precursors. In 2004, Moore and Li [10] published a model of CML dynamics, which accounts for the actions of naive and effector T-cells separately. In [11], this model was analyzed as an optimal control problem. The model presented here first appeared in [12] and models the immune system effects with one compartment, and separates the CML cells into quiescent and proliferating classes. The rationale behind this new model is the ability to represent certain types of therapies for use in combination treatment. These therapies are: a BCR-ABL1 tyrosine kinase inhibitor (e.g., a therapy such as imatinib), an immunomodulatory therapy (e.g., a therapy such as nivolumab), and a therapy that combines both actions (e.g., a therapy such as dasatinib).



The model introduced in [12] is reviewed in Section 2 and then analyzed as a dynamical system with constant drug concentrations in Section 3. The analysis is carried out theoretically for values of parameters covering a range of dynamic possibilities. As will be seen, there are parameter values for which the model can have an asymptotically stable equilibrium point in which all the state variables are positive. This could be interpreted as disease control through continuous therapy. As parameters change, the system can become unstable and undergo exponential growth, representing the accelerated or blast phases of the disease. Our analysis incorporates constant drug concentrations, and thus provide insights into the dynamics both without and with treatment. In particular, we analyze how an increase in the levels of each of the three treatments affects the values of all three populations, the two types of leukemia cells and the strength of the immune effect. The combination of theoretical analysis and simulations is intended to shed some light on understanding the long-term dynamics of this disease under treatment.




2. A Mathematical Model for the Treatment of CML with BCR-ABL1-Targeted and Immunomodulatory Drugs


The mathematical model below was originally published in [12] in 2015.



2.1. A Brief Review of the Mathematical Model


Let Q be the concentration of quiescent leukemic cells, P the concentration of proliferating leukemic cells, and E the strength of immune system effects. We will consider E to represent effector T cell concentration levels, and will refer to E in the remainder as a concentration of effector T cells. The model contains three controls [image: there is no content], [image: there is no content] and [image: there is no content] that all denote normalized levels of different therapies. The roles of the specific drugs are illustrated in Figure 1 taken from [12] with arrows indicating amplification of effects and vertical bars indicating inhibition. The control [image: there is no content] represents the normalized concentration of a BCR-ABL1 inhibitor (such as imatinib) that mainly has an inhibitory effect on the highly-proliferating leukemic cells; [image: there is no content] is a BCR-ABL1 inhibitor that inhibits BCR-ABL1 that also has immune effects (such as dasatinib); while [image: there is no content] represents an immunomodulatory compound (such as nivolumab).


Figure 1. Diagram of the dynamical system. The green circular areas represent the “populations" included in the model. Solid arrows extending from or to the populations represent changes in numbers, with inward-pointing arrows representing increases and outward-pointing arrows decreases. Dashed arrows indicate indirect effects on those increases or decreases. Bars represent inhibition of a production or an indirect effect, due to the represented treatment; arrows represent amplification of a rate or an indirect effect. The effects of the general BCR-ABL1 inhibitor [image: there is no content] are shown using orange dashed bars and arrows, the effects of the BCR-ABL1 inhibitor [image: there is no content] which also has immune effects are shown using wide red solid bars and arrows and the effects of the immunomodulatory compound [image: there is no content] are shown using blue solid bars and arrows.



[image: Applsci 06 00291 g001]






Representing the pharmacodynamic effects of the drugs using Michaelis-Menten terms results in the following equations:


[image: there is no content]



(1)






dPdt=1−U1max,1u1U1C50+u11−U2max,2u2U2C50+u2kPQ+rPPlnPssP−δP1+U1max,2u1U1C50+u11+U2max,3u2U2C50+u2P−δP1+U2max,1u2U2C50+u21+U3max,1u3U3C50+u3Emax,2EEC50+EP,



(2)






dEdt=sE1+1+U2max,4u2U2C50+u21+U3max,2u3U3C50+u3Pmax,1PPC50+PElnEssE−δE1+1−U2max,5u2U2C50+u21-U3max,3u3U3C50+u3Pmax,2PPC50+PE.



(3)







In this system, all parameters are non-negative. For [image: there is no content] or [image: there is no content], we extend the system by defining it using the limits as [image: there is no content] or [image: there is no content], respectively. The cell count numbers for Q are relatively small and are therefore modeled by an exponential function with growth coefficient [image: there is no content]. For the proliferating cells P we model growth with a Gompertz function, as Afenya and Calderón state that this is best for describing CML growth [13]. The immune effect E (effector T cells) also has its rate of increase modeled by a Gompertz function, so as to have approximately exponential growth when numbers are very small, but still be bounded above. In the populations P and E, replication rate constants are represented by [image: there is no content] and [image: there is no content], and carrying capacities (or steady states) by [image: there is no content] and [image: there is no content], respectively. The natural death rate constants of the respective populations are denoted by [image: there is no content], [image: there is no content] and [image: there is no content]. The population Q consists of leukemic cells that are quiescent. Some or all of quiescent leukemic cells may be stem cells [14]. When quiescent cells divide, one copy is assumed to be the same kind as the original cell while the second copy may differentiate further into a proliferating type. For this reason, the transition term [image: there is no content] is not subtracted from the quiescent cell population in (1). This term represents the rate at which quiescent cells produce differentiated proliferating cancer cells, with the population Q the source for the population P.



The control variables represent the concentrations of the respective drugs, and their effects (pharmacodynamics) are modeled by Michaelis-Menten terms with different maximum effectiveness on the various populations. In modeling the combined drug actions it is assumed that any two drugs act independently of each other. Thus the term


[image: there is no content]








represents the effects that drugs 1 and 2 have on decreasing the proliferation of the population P. A term of the type


−δQ1+U2max,1u2U2C50+u21+U3max,1u3U3C50+u3Emax,1EEC50+EQ








represents the enhancement of the actions of the effector T cells E on the quiescent cells Q as a consequence of the activities of drugs 2 and 3. In each of the equations, the enhancement and inhibition effects of the drugs by means of the immune system are modeled additively.



The “[image: there is no content]” parameters [image: there is no content], [image: there is no content], and [image: there is no content] represent the concentrations required to achieve half of the maximal effects of [image: there is no content], [image: there is no content], and [image: there is no content], respectively. These and [image: there is no content] and [image: there is no content] are assumed to be fixed across effects being modeled. These represent “potency” levels depending intrinsically on the particular therapy or population, and not on the setting of the effect. The maximum possible effect size is allowed to depend on the setting.



The equations above represent a semi-mechanistic, fit-for-purpose, minimal model. It is minimal in the sense that it only includes the levels of cell interactions needed to allow the controls to have their expected effects. Some of the terms are based on models validated with data, but other terms take forms that are more heuristic. For example, all of the control effect terms take a Michaelis-Menten or “Emax” form. This is because we wish to model very small effect at low levels of drug, as well as a limiting or asymptotic maximal effect at high levels of drugs. We chose the simplest among the models with this behavior that are typically used in drug development [15].



The states, controls, and related parameters are listed in Table 1 and Table 2. Table 1 gives those parameters that are unrelated to the drug actions and make up the untreated, or uncontrolled, system; Table 2 lists the treatment-specific parameters in the model. In this paper, we do not fit or fix specific parameter values, and instead analyze the dynamic properties of the system (1)–(3) for large ranges of possible values. We include in the tables below two different sets of numerical values that we use to illustrate the dynamic properties of the system. These parameter values are purely for numerical illustration and do not reflect specific model fits or therapies. The focus of this paper is the mathematical analysis of the entire system rather than an analysis for particular parameter values.



Table 1. States and parameters for the dynamical system.







	
Symbol

	
Interpretation

	
Units

	
Values Used in Figure 2

	
Values Used in Figure 3 and Figure 4






	
Q

	
concentration of quiescent leukemic cells

	
[image: there is no content] cells/mL

	

	




	
P

	
concentration of proliferating leukemic cells

	
[image: there is no content] cells/mL

	

	




	
[image: there is no content]

	
carrying capacity of proliferating

	
[image: there is no content] cells/mL

	
10

	
15




	
leukemic cells




	
E

	
effector T cells

	
[image: there is no content] cells/mL

	

	




	
[image: there is no content]

	
carrying capacity of effector T cells

	
[image: there is no content] cells/mL

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
replication rate constant of quiescent cells

	
1/day

	

	
[image: there is no content]




	
[image: there is no content]

	
natural death rate constant of quiescent cells

	
1/day

	

	
[image: there is no content]




	
[image: there is no content]

	
rate constant for quiescent cells Q

	
1/day

	

	
[image: there is no content]




	
differentiating into proliferating cells P

	




	
[image: there is no content]

	
replication rate constant of proliferating

	
1/day

	
8

	
[image: there is no content]




	
leukemic cells




	
[image: there is no content]

	
natural death rate constant of proliferating

	
1/day

	
[image: there is no content]

	
[image: there is no content]




	
leukemic cells




	
[image: there is no content]

	
growth rate constant for effector T cells

	
1/day

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
natural death rate constant of effector T cells

	
1/day

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
maximum stimulation effect of proliferating

	

	
2

	
[image: there is no content]




	
leukemic cells P on effector T cells E

	




	
[image: there is no content]

	
maximum inhibition effect of proliferating

	

	
5

	
[image: there is no content]




	
leukemic cells P on effector T cells E

	




	
[image: there is no content]

	
size of P with half the maximum effect

	
1/mL

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
maximum effect of effector T cells E on

	

	

	
5




	
quiescent leukemic cells Q

	

	




	
[image: there is no content]

	
maximum effect of effector T cells E on

	

	
1

	
5




	
proliferating leukemic cells P

	




	
[image: there is no content]

	
size of E with half the maximum effect

	
1/mL

	
2000

	
2000










Table 2. Controls and pharmacodynamic parameters.







	
Symbol

	
Interpretation

	
Values Used in Figure 2

	
Values Used in Figure 3 and Figure 4






	
[image: there is no content]

	
normalized concentration of a general BCR-ABL1

	

	




	
inhibitor (e.g., imatinib)

	

	




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] on slowing

	
[image: there is no content]

	
[image: there is no content]




	
transfer of quiescent cells Q into P and

	

	




	
inhibiting growth of proliferating cells P

	

	




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] on death of

	
10

	
2




	
proliferating cells P

	

	




	
[image: there is no content]

	
concentration of [image: there is no content] that gives half the maximum effect

	
1

	
1




	
[image: there is no content]

	
normalized concentration of a BCR-ABL1 inhibitor

	

	




	
which also has immunomodulatory effects

	

	




	
(e.g., dasatinib)

	

	




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] on death of leukemic

	
2

	
[image: there is no content]




	
cells (the same for P and Q)




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] slowing new P from

	
[image: there is no content]

	
[image: there is no content]




	
Q and inhibiting growth of proliferating cells P




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] on

	
10

	
[image: there is no content]




	
death of proliferating cells P




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] on

	
10

	
[image: there is no content]




	
stimulating proliferation of effector T cells




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] on

	
[image: there is no content]

	
[image: there is no content]




	
prevention of the death of effector T cells




	
[image: there is no content]

	
concentration of [image: there is no content] that gives half the maximum effect

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
normalized concentration of an immunomodulatory

	

	




	
d agent (e.g., nivolumab)

	

	




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] on death of leukemic

	
5

	
[image: there is no content]




	
cells (the same for P and Q)




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] on

	
5

	
[image: there is no content]




	
stimulating proliferation of effector T cells




	
[image: there is no content]

	
maximum possible effect of [image: there is no content] on

	
[image: there is no content]

	
[image: there is no content]




	
prevention of the death of effector T cells




	
[image: there is no content]

	
concentration of [image: there is no content] that gives half the maximum effect

	
[image: there is no content]

	
[image: there is no content]











2.2. Scaling of Parameters


We note that the dynamical system has various groups of symmetries that can be used to scale the variables and controls. Here we normalize all the “[image: there is no content]” parameter values to 1 by rescaling the corresponding variables in terms of these quantities. This simply minimizes the number of parameters to be considered in the analysis of the system. For example, let [image: there is no content] be a constant to be determined later, and define


Q˜=QQref,P˜=PPC50,E˜=EEC50,








and


u˜1=u1U1C50,u˜2=u2U2C50,u˜3=u3U3C50.











Then we have that


[image: there is no content]








and analogously for the other terms.



For the differential equations, we obtain


dQ˜dt=1QrefdQdt=1QrefrQQ−δQ1+1+U2max,1u˜21+u˜21+U3max,1u˜31+u˜3Emax,1E˜1+E˜Q=rQQ˜−δQ1+1+U2max,1u˜21+u˜21+U3max,1u˜31+u˜3Emax,1E˜1+E˜Q˜.











Under this scaling all remaining parameters in this equation are invariant and need not be changed. Similarly,


dP˜dt=1PC50dPdt=1PC501−U1max,1u˜11+u˜11−U2max,2u˜21+u˜2kPQ+rPPlnPssP−δP1+U1max,2u˜11+u˜11+U2max,3u˜21+u˜2P−δP1+U2max,1u˜21+u˜21+U3max,1u˜31+u˜3Emax,2E˜1+E˜P=1−U1max,1u˜11+u˜11−U2max,2u˜21+u˜2kPQrefPC50Q˜+rPP˜lnPssP˜·PC50−δP1+U1max,2u˜11+u˜11+U2max,3u˜21+u˜2P˜−δP1+U2max,1u˜21+u˜21+U3max,1u˜31+u˜3Emax,2E˜1+E˜P˜,








and


dE˜dt=1EC50dEdt=sE1+1+U2max,4u˜21+u˜21+U3max,2u˜31+u˜3Pmax,1P˜1+P˜E˜lnEssE˜·EC50−δE1+1−U2max,5u˜21+u˜21−U3max,3u˜31+u˜3Pmax,2P˜1+P˜E˜.











Thus, if we re-scale [image: there is no content] as


[image: there is no content]



(4)




and the steady-state values as


P˜ss=PssPC50andE˜ss=EssEC50,



(5)




then formally the equations are the same as before with all “[image: there is no content]” values in the Michaelis-Menten expressions normalized to 1. All other parameters remain unchanged and even their interpretation is the same as before. For the theoretical analysis and numerical computations this eliminates five parameters and introduces a favorable scaling to the variables. Naturally, the original parameters are still calculated for an interpretation of the results.





3. System Properties for Constant Concentrations


CML has three distinct phases, a chronic one that can last from three to five years, during which leukemic cell counts are low but may grow steadily, and accelerated and blast phases that may last for a only a few months and are characterized by higher cell counts or a rapid increase in cell counts followed by death of the patient [10]. Here we analyze the dynamical system to determine if it can capture such features.



3.1. Reduction to the Uncontrolled System and Basic Dynamical System Properties


We carry out the dynamical systems analysis for constant controls, i.e., concentrations. We do not explicitly include pharmacokinetics (fluctuations in concentrations that depend on doses). The treatments considered are either administered daily or have long half-lives, and such pharmacokinetics are not expected to be significant for the treatment periods we consider here (five years or longer). We also mention the 2009 paper by Shudo et al. [16] that supports this assumption in the setting of hepatitis C.



Keeping the “[image: there is no content]” parameters in their original formulation in the controls, we define new drug-dependent parameters as


k^P=1−U1max,1u1U1C50+u11−U2max,2u2U2C50+u2kP,r^P=1−U1max,1u1U1C50+u11−U2max,2u2U2C50+u2rP,δ^P=1+U1max,2u1U1C50+u11+U2max,3u2U2C50+u2δP,E^max,1=1+U2max,1u2U2C50+u21+U3max,1u3U3C50+u3Emax,1,E^max,2=1+U2max,1u2U2C50+u21+U3max,1u3U3C50+u31+U1max,2u1U1C50+u11+U2max,3u2U2C50+u2Emax,2,P^max,1=1+U2max,4u2U2C50+u21+U3max,2u3U3C50+u3Pmax,1,P^max,2=1−U2max,5u2U2C50+u21−U3max,3u3U3C50+u3Pmax,2.











With these identifications, the dynamical system with constant controls is identical with the uncontrolled system and therefore, without loss of generality, the analysis can be done on the uncontrolled system. Returning to the original notation without the carets, we thus consider the following equations:


[image: there is no content]



(6)






[image: there is no content]



(7)






[image: there is no content]



(8)







The model with an exponential growth term on Q has various long-term behaviors. These include the extremes in which Q decays exponentially to zero or grows exponentially beyond limits, but there also is the possibility that nontrivial equilibrium points [image: there is no content] exist for which all three populations are positive. The first case corresponds to a scenario in which the patient goes into a stable deep molecular response. For the uncontrolled system, this may not seem to be of interest, but since the model includes the case with controls, this gives us information about which combinations of constant concentrations of the drugs would lead to an eradication of Q. The case of exponential growth may characterize the accelerated or blast phase as these phases have short doubling times [17]. The conditions under which this is the long-term behavior of the system give information about what controls are needed for successful treatment. An asymptotically stable equilibrium point [image: there is no content] with positive values could be interpreted as describing a subset of the chronic phase where net growth rate is zero, controlled by therapy or immune effects. Depending on the values of the parameters, this equilibrium point may be stable or unstable. Since in real life parameters may not be constant, bifurcation phenomena would be a mathematical description of the transition from chronic to the accelerated or blast phases. Knowing the parameter values when this may occur would be of interest. Our aim in the following is thus to determine the asymptotic behavior of the trajectories of the system.



We start with some basic properties. The positive orthant


[image: there is no content]








is positively invariant for the dynamics. This is because the planes [image: there is no content] and [image: there is no content] are invariant under Equations (6) and (8) and [image: there is no content] whenever [image: there is no content]. Thus, starting at a positive initial condition [image: there is no content], it follows that the solutions remain positive for all times. For the long-term behavior of the system, the equilibrium solutions in the closure of [image: there is no content], [image: there is no content], also matter. Recall that the system is defined and continuous on [image: there is no content] due to the use of the limits as [image: there is no content] and [image: there is no content] in place of [image: there is no content] and [image: there is no content], respectively. The vector field defining the P and E dynamics is not continuously differentiable at [image: there is no content] or [image: there is no content], but these values are repelling and thus this does not become an issue.



Lemma 1.

The equilibrium solution [image: there is no content] is repelling: there exists a positive threshold [image: there is no content] such that [image: there is no content] is positive on [image: there is no content]. In particular, once [image: there is no content], then [image: there is no content] for all [image: there is no content]. Furthermore, for [image: there is no content], E will remain below [image: there is no content].





Proof. 

The terms in the last parentheses in Equation (8) are bounded between 1 and [image: there is no content] and thus, as [image: there is no content], the Gompertzian growth dominates the dynamics. Specifically, let


[image: there is no content]








then [image: there is no content] and for [image: there is no content] we have that [image: there is no content]. Furthermore, for [image: there is no content], Equation (8) reduces to [image: there is no content] and thus the values of E cannot reach the value [image: there is no content] if they start below [image: there is no content].





Lemma 2.

The equilibrium solution [image: there is no content] is repelling: there exists a positive threshold [image: there is no content] such that [image: there is no content] is positive on [image: there is no content]. In particular, once [image: there is no content], we have [image: there is no content] for all [image: there is no content].





Proof. 

For values of E less than [image: there is no content], we have that


[image: there is no content]








for all times. Choosing [image: there is no content] as


[image: there is no content]








the result follows: for [image: there is no content] we have that


[image: there is no content]













This proves the result.



Corollary 1.

The equilibrium solutions [image: there is no content] and [image: there is no content] are unstable.





Note, however, that P is not necessarily bounded. For, with [image: there is no content], Equation (7) becomes


[image: there is no content]








and thus, if Q is large enough, this term will be positive. Hence, if Q grows exponentially, P will diverge to [image: there is no content].



Lemma 3.

If Q increases exponentially with time, then [image: there is no content].





Proof. 

We need to show that for every positive value [image: there is no content] there exists a time [image: there is no content] so that [image: there is no content] for all [image: there is no content].





We first remark that P is unbounded. For, if there exists a value [image: there is no content] with [image: there is no content] so that [image: there is no content] for all times t, then the term [image: there is no content] is bounded below. By assumption, there exist positive constants α and β so that [image: there is no content] for all t. Hence, for t sufficiently large we have that


[image: there is no content]











Contradiction.



Given [image: there is no content], choose [image: there is no content] so that


[image: there is no content]











Since P is not bounded, there exists a first time [image: there is no content] so that [image: there is no content]. We claim that [image: there is no content] for all [image: there is no content]. For, if there exists a time [image: there is no content] such that [image: there is no content], then


dPdt(τ)=rPlnPssP^−δP1+Emax,2E(τ)1+E(τ)P^+kPQ(τ)>rPlnPssP^−δP1+Emax,2Ess1+EssP^+kPQ(τ)≥kPαeβτ−eβTˇ>0.











Contradiction. Thus P diverges to [image: there is no content].




3.2. Dynamics on the Plane [image: there is no content]


The plane [image: there is no content] is invariant under the dynamics and can have regions that are repelling or attractive. We first analyze the reduced dynamical system in this boundary stratum of [image: there is no content], i.e., consider the equations


[image: there is no content]



(9)






[image: there is no content]



(10)






=sElnEssE−δE1+P+Pmax,2P1+P+Pmax,1P1+Pmax,1P1+PE.



(11)







Let [image: there is no content] denote the open rectangle


P0=(P,E):0<P<Pss,0<E<Ess








and denote by [image: there is no content] its closure, P¯0=(P,E):0≤P≤Pss,0≤E≤Ess. For [image: there is no content] the variable P is bounded above by [image: there is no content] and therefore the compact set [image: there is no content] is positively invariant under Equations (9) and (11). The dynamical system has the following trivial equilibrium solutions in the boundary of [image: there is no content]: [image: there is no content], [image: there is no content] with


[image: there is no content]








and [image: there is no content] with [image: there is no content] given by


[image: there is no content]











In view of Lemmas 1 and 2 these solutions are unstable. While the origin has two unstable modes, the equilibrium points [image: there is no content] and [image: there is no content] are saddles with the respective axes forming the stable manifolds and the unstable modes entering the interior of [image: there is no content]. It is clear from this that there needs to exist at least one more equilibrium point [image: there is no content] in [image: there is no content].



Lemma 4.

There are no periodic orbits in [image: there is no content].





Proof. 

Changing variables to [image: there is no content] and [image: there is no content], the dynamics transforms into


[image: there is no content]













The divergence of this vector field is given by


[image: there is no content]








and thus the result follows from Bendixson’s negative criterion because of the monotonicity of the logarithm function.



The relations defining equilibrium points inside [image: there is no content] are


[image: there is no content]



(12)




and


[image: there is no content]








or, equivalently,


[image: there is no content]



(13)







Define


Ξ(P)=1+P+Pmax,2P1+P+Pmax,1P,Ψ(Ξ)=Essexp−δEsEΞ1+Essexp−δEsEΞ,








and


[image: there is no content]











Then equilibrium values [image: there is no content] are fixed points of the function Φ, [image: there is no content], in the interval [image: there is no content]. Since [image: there is no content], [image: there is no content], and Φ is continuous in P, it follows that there exists at least one solution. The derivative [image: there is no content] of Φ is given by


[image: there is no content]








and thus has the same sign as [image: there is no content]. Now


[image: there is no content]











Thus Φ is strictly increasing for [image: there is no content] and strictly decreasing for [image: there is no content]. If [image: there is no content], then


[image: there is no content]











Equilibria are intersections of the graph of Φ with the diagonal and thus there exists a unique equilibrium point [image: there is no content] if [image: there is no content], but multiple solutions are possible if [image: there is no content].



We determine the stability of [image: there is no content] for the reduced system, i.e., within the invariant plane [image: there is no content]. The Jacobian matrix at the equilibrium point is given by


[image: there is no content]











Using the equilibrium relations we can write the [image: there is no content]-term as


∂∂P|(P*,E*)dEdt=δEPmax,1E*1+P*2sEδElnEssE*−Pmax,2Pmax,1=δEPmax,1E*1+P*21+P*+Pmax,2P*1+P*+Pmax,1P*−Pmax,2Pmax,1=δEE*Pmax,1−Pmax,21+P*1+P*+Pmax,1P*.











The characteristic polynomial of this [image: there is no content] matrix is given by


χ(t)=t+rPδPEmax,21+E*2P*−Pmax,1−Pmax,2δEE*1+P*1+P*+Pmax,1P*t+sE1+Pmax,1P*1+P*=t2+rP+sE1+Pmax,1P*1+P*t+rPsE1+Pmax,1P*1+P*+δEδPEmax,2E*1+E*2Pmax,1−Pmax,2P*1+P*1+P*+Pmax,1P*.











If we write [image: there is no content], then [image: there is no content] is positive and thus the equilibrium point is locally asymptotically stable if [image: there is no content] is positive while it is unstable if [image: there is no content] is negative. A saddle node bifurcation occurs as [image: there is no content]. It immediately follows that [image: there is no content] is locally asymptotically stable if [image: there is no content], i.e., if the stimulating effect of the tumor on the effector cells is larger than the inhibiting effect of the tumor on the effector cells. We have the following result:



Proposition 1.

If [image: there is no content], then there exists a unique equilibrium point [image: there is no content] in [image: there is no content] and it is globally asymptotically stable in the sense that its region of attraction is the full rectangle [image: there is no content].





Proof. 

The set [image: there is no content] is positively invariant and every trajectory γ starting in [image: there is no content] has a non-empty ω-limit set [image: there is no content]. Because of the stability properties of the equilibria in the boundary of [image: there is no content], this ω-limit set [image: there is no content] lies in [image: there is no content]. Since there exist no periodic orbits and since [image: there is no content] is the only equilibrium point, it follows from Poincaré-Bendixson theory that [image: there is no content], i.e., all trajectories starting in [image: there is no content] converge to [image: there is no content] as [image: there is no content]. ☐





It is clear from Poincaré-Bendixson theory that even if [image: there is no content], the equilibrium point [image: there is no content] is globally asymptotically stable (in the sense that its region of attraction contains the set [image: there is no content], and only this region is relevant for the problem) as long as it is the only equilibrium point in [image: there is no content]. This is shown in the phase portraits for the uncontrolled system in Figure 2; Figure 3 shows a case where [image: there is no content]. (The values of the parameters are given in Table 1 and Table 2.) We also show the phase-portraits for the systems when one of the controls is set to be equal to 1 and all others are zero. The two sets of figures illustrate two different scenarios, one where the control parameters are such that the equilibrium can be effectively controlled by all the drugs (Figure 2), the other where it is essentially only the control [image: there is no content] that is able to move the equilibrium point. However, this behavior depends on the fact that [image: there is no content].


Figure 2. Phase portraits of the reduced dynamics for [image: there is no content] and [image: there is no content] for the uncontrolled system (top, left) and for constant controls [image: there is no content] (top, right), [image: there is no content] (bottom, left) and [image: there is no content] (bottom, right). The numerical values for these phase portraits are given in Table 1 and Table 2.



[image: Applsci 06 00291 g002a][image: Applsci 06 00291 g002b]





Figure 3. Phase portraits of the reduced dynamics for [image: there is no content] and [image: there is no content] for the uncontrolled system (top, left) and for constant controls [image: there is no content] (top, right), [image: there is no content] (bottom, left) and [image: there is no content] (bottom, right). The numerical values for these phase portraits are given in Table 1 and Table 2.
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Since the coefficient [image: there is no content] is always positive, as [image: there is no content] vanishes the Jacobian matrix has the eigenvalue 0 and the other eigenvalue is negative. At such a point saddle-node bifurcations arise and two new equilibria, one stable, the other unstable, are born.



Proposition 2.

If [image: there is no content], then multiple equilibria [image: there is no content] inside [image: there is no content] can exist. At points [image: there is no content] where


[image: there is no content]



(14)




saddle-node bifurcations occur in which a stable and an unstable equilibrium point merge.





Proof. 

The coefficient [image: there is no content] vanishes if and only if


[image: there is no content]













This condition is equivalent to (14).



For the underlying biological problem it is natural that an inhibition effect would be smaller than a stimulation effect. Also, the denominators are quadratic in the respective variables E and P, but these variables are scaled. In principle it is possible to satisfy (14), but we did not come across this in our simulations.




3.3. Dynamic Behavior for Positive Q-Values


For the behavior of the overall system, the Q dynamics are essential. If one considers the above equilibria in the plane [image: there is no content] now in the full three-dimensional space, then the first row of the Jacobian matrix at [image: there is no content] takes the form


[image: there is no content]








and thus [image: there is no content] is unstable if [image: there is no content] while the local stability properties for the overall system are the same as in the [image: there is no content]-plane if [image: there is no content]. If [image: there is no content], then there exists a 1-dimensional center manifold (corresponding to the 0 eigenvalue). In this case we have [image: there is no content] and there exists a curve of equilibria emerging from [image: there is no content] parameterized by Q or P (also see below).



Generally, (1)–(3) is a time-varying linear system dominated by exponential growth and decay, depending on the parameter values. If


[image: there is no content]








then Q grows exponentially and no steady state exists. In this case, the influx [image: there is no content] eventually becomes the dominant term in Equation (2) and P also grows beyond limits (Lemma 3). This represents the malignant scenario in the model which corresponds to a highly-aggressive form of the disease or the accelerated or blast phase. The other extreme arises if [image: there is no content]. In this case Q exponentially decays to 0 for the uncontrolled system and overall trajectories converge to one of the equilibria [image: there is no content] in the plane [image: there is no content]. If there exist multiple such equilibria, there exists a stable manifold for the unstable one that separates the regions of attraction for the stable equilibria. This would reflect a scenario when Q initiates the disease, but eventually dies off and the remaining P population determines the outcome of the disease. This could be benign if [image: there is no content] is small (a form of successful immune surveillance) or malignant if this value is larger. In such a case, however, one only needs to deal with the proliferating cells as far as treatment is concerned. This appears less likely (unless it could be induced by the drugs) and in the uncontrolled case of the disease we would have [image: there is no content].



The interesting and most difficult case arises when the uncontrolled system has a chronic steady state or undergoes exponential growth without treatment, but has a negative net growth rate for Q with treatment. This is the case if the parameters satisfy the following condition (A):


[image: there is no content]



(15)




or, with the controls in the original form,


[image: there is no content]











Thus the replication rate constant [image: there is no content] needs to be greater than the death rate constant [image: there is no content] (this naturally will be satisfied for parameters in a disease state), but at the same time, the drugs need to be able to raise the maximum effectiveness [image: there is no content] high enough that the magnitude of the immune system effect can overcome the difference. These appear to be natural conditions. Assuming that (15) holds, there exists a unique value [image: there is no content] for which [image: there is no content], namely


rQ=δQ1+Emax,1E*1+E*⟺E*=rQδQ−1Emax,1−rQδQ−1



(16)




with Q increasing for [image: there is no content] and decreasing for [image: there is no content]. In this case, the interplay between the variables allows for a steady state [image: there is no content] to exist with all values positive. We call such an equilibrium point [image: there is no content]positive.




3.4. Special Case: [image: there is no content]


We first discuss the dynamical behavior of the system for the case [image: there is no content] which is quite different from the cases [image: there is no content]. If these effective rates are equal, we have that


[image: there is no content]








and it follows that E is strictly increasing for [image: there is no content] and strictly decreasing for [image: there is no content]. Therefore, as [image: there is no content], the E-dynamics approach [image: there is no content], monotonically increasing if the initial condition is smaller, monotonically decreasing if it is higher. Consequently also the Q-dynamics approach the steady-state behavior


[image: there is no content]








and Q will increase exponentially if


[image: there is no content]








and decrease exponentially if


[image: there is no content]











In the first case this also generates unbounded growth in P (Lemma 3) leading to behavior consistent with the blast phase of the system. In the second case, Q decays exponentially to 0 and P converges to the unique and asymptotically stable equilibrium point [image: there is no content] on [image: there is no content]. Overall, and writing in the constant controls (the respective concentrations [image: there is no content]) we have the following result:



Proposition 3.

Suppose [image: there is no content] and let


[image: there is no content]








and


[image: there is no content]











If


[image: there is no content]








then all trajectories [image: there is no content] converge to the unique and asymptotically stable equilibrium point [image: there is no content] in the boundary of [image: there is no content], whereas if


[image: there is no content]








then Q grows exponentially and [image: there is no content] and [image: there is no content].



If


[image: there is no content]








then a positive equilibrium point [image: there is no content] exists, but this relation is non-generic and generally will not be satisfied for a given set of parameters.






3.5. Existence and Stability of a Positive Equilibrium Point [image: there is no content] for [image: there is no content]


We analyze whether positive equilibrium points [image: there is no content] exist. Throughout this section we assume that condition (15) is satisfied, i.e., that


[image: there is no content]








since otherwise Q grows exponentially.



Lemma 5.

For [image: there is no content], there exists at most one positive equilibrium point [image: there is no content].





Proof. 

The equilibrium relation for Equation (6) uniquely determines [image: there is no content]:


rQ=δQ1+Emax,1E*1+E*⟺E*=rQδQ−1Emax,1−rQδQ−1>0.













Given [image: there is no content], the equilibrium condition on the effector cells, [image: there is no content], is equivalent to


[image: there is no content]



(17)







The quantity [image: there is no content] is already determined. If [image: there is no content], then (17) only has the solution [image: there is no content]; otherwise there exists a unique solution [image: there is no content] given by


[image: there is no content]



(18)







If [image: there is no content], this solution is positive if and only if


[image: there is no content]








and if [image: there is no content], the solution is positive if and only if


[image: there is no content]











If one of these inequalities is violated, no positive equilibrium solution [image: there is no content] exists and the overall dynamics are determined either by exponential growth or decay of Q. If [image: there is no content] exists and is positive, then Equation (7) defines [image: there is no content] as


[image: there is no content]



(19)







Using the equilibrium relation for [image: there is no content], this can equivalently be expressed in the form


[image: there is no content]



(20)







Note that [image: there is no content] is positive if [image: there is no content] while otherwise this becomes a requirement on the equilibrium value [image: there is no content], namely


[image: there is no content]











If [image: there is no content], then this simply becomes [image: there is no content]. In either case, there exists at most one positive equilibrium point given by Equations (16), (18) and (20).



Remark 1.

As [image: there is no content], condition (15) implies that along a positive solution [image: there is no content] we must have


[image: there is no content]








and thus the limit taken along these positive solutions only exists if [image: there is no content] and if


[image: there is no content]











In this degenerate case, the equilibrium conditions [image: there is no content] and [image: there is no content] are automatically satisfied and there exists a one-dimensional equilibrium manifold, namely [image: there is no content] with the P value arbitrary and [image: there is no content] given by


[image: there is no content]













We now investigate the stability of the positive equilibrium point. The partial derivatives of the equations defining the dynamics at the equilibrium point are given by


∂f1∂Q|(Q*,P*,E*)=0,∂f1∂P|(Q*,P*,E*)=0,∂f1∂E|(Q*,P*,E*)=−δQQ*Emax,11+E*2,∂f2∂Q|(Q*,P*,E*)=kP,∂f2∂P|(Q*,P*,E*)=−kPQ*P*−rP,∂f2∂E|(Q*,P*,E*)=−δPP*Emax,21+E*2,∂f3∂Q|(Q*,P*,E*)=0,∂f2∂E|(Q*,P*,E*)=−sE1+Pmax,1P*1+P*∂f3∂P|(Q*,P*,E*)=sEPmax,1lnEssE*−δEPmax,21+P*2E*=δEE*Pmax,1−Pmax,21+P*1+P*+Pmax,1P*.











Note that the equilibrium condition for P brings in [image: there is no content] in [image: there is no content]. The characteristic polynomial for the Jacobian matrix is given by


χ(t)=t0δQQ*Emax,11+E*2−kPt+kPQ*P*+rPδPP*Emax,21+E*20δEE*Pmax,2−Pmax,11+P*1+P*+Pmax,1P*t+sE1+Pmax,1P*1+P*=t3+a2t2+a1t+a0.











By the Routh-Hurwitz criterion, all eigenvalues have negative real parts if and only if [image: there is no content], [image: there is no content] and [image: there is no content]. These coefficients are given by


[image: there is no content]











If [image: there is no content], then [image: there is no content] is negative and the positive equilibrium point is unstable, i.e., once the maximal inhibiting effect of the tumor on the effector cells is larger than the maximal stimulating effect, no steady-state positive solution exists. Note further that for [image: there is no content] the characteristic polynomial [image: there is no content] has exactly one change of sign in its coefficients and thus there exists a unique positive root. So the equilibrium point has a two-dimensional stable manifold that separates the regions where Q and P diverge to infinity from the region where Q converges to 0. Thus we have the following result:



Theorem 1.

If [image: there is no content], then the positive equilibrium point [image: there is no content] is unstable with a two-dimensional stable manifold in parameter space.





If [image: there is no content], then the equilibrium point has the eigenvalue 0 and two negative eigenvalues. Thus there exists a one-dimensional center manifold which in this case consists of all equilibria, namely the equilibrium manifold M defined earlier.



For [image: there is no content], the coefficients [image: there is no content], [image: there is no content] and [image: there is no content] are all positive. Furthermore


a1a2−a0=kPQ*P*+rP+sE1+Pmax,1P*1+P*××kPQ*P*+rPsE1+Pmax,1P*1+P*+Emax,2δEE*1+E*2Pmax,1−Pmax,2δPP*1+P*1+P*+Pmax,1P*−δQQ*Emax,1δEE*1+E*2kPPmax,1−Pmax,21+P*1+P*+Pmax,1P*>δEE*1+E*2Pmax,1−Pmax,21+P*1+P*+Pmax,1P*kPQ*δPEmax,2−δQEmax,1.











This expression is positive if we make the following assumption (B):


[image: there is no content]



(21)







Note from Equations (2) and (3) that [image: there is no content] represents the maximal size of the immune effect E on P while [image: there is no content] represents the maximal size of the immune effect E on Q. This effect is assumed to be stronger on the proliferating class of cells than on the quiescent class of cells. Thus assumption (21) is a natural one to make. This assumption is invariant under the actions of the drugs:


δ^PE^max,2=1+U1max,2u1U1C50+u11+U2max,3u2U2C50+u2δP·1+U2max,1u2U2C50+u21+U3max,1u3U3C50+u31+U1max,2u1U1C50+u11+U2max,3u2U2C50+u2Emax,2=1+U2max,1u2U2C50+u21+U3max,1u3U3C50+u3δPEmax,2








while, letting [image: there is no content],


δ^QE^max,1=δQ·1+U2max,1u2U2C50+u21+U3max,1u3U3C50+u3Emax,1=1+U2max,1u2U2C50+u21+U3max,1u3U3C50+u3δQEmax,1








so that these terms are multiplied by the same coefficients. Hence we also have the following result:



Theorem 2.

If [image: there is no content] and [image: there is no content], then the positive equilibrium point [image: there is no content] is locally asymptotically stable.





The limiting case [image: there is no content] represents a degenerate scenario. In many cases no positive equilibrium exists. For example, if [image: there is no content], then it follows from (18) that


[image: there is no content]











In such a case equilibria will cease to exist, as [image: there is no content], once the parameter values satisfy


1>sEδElnEssE*=1+Pmax,21+Pmax,1,E*=rQδQ−1Emax,1−rQδQ−1.











Also, although the positive equilibrium point in Theorem 2 is stable, the value can be very high. In fact, [image: there is no content] diverges to [image: there is no content] as these parameter relations are reached (c.f. (18)):


[image: there is no content]











For the equilibrium values to be relatively small (‘chronic’), we see that [image: there is no content] must be significantly larger than [image: there is no content]. In terms of the parameter values with drug actions, this can be achieved using the drugs [image: there is no content] and [image: there is no content] which increase [image: there is no content] and decrease [image: there is no content], c.f.,


[image: there is no content]











So drug administration shifts the balance towards [image: there is no content] and this creates an asymptotically stable positive equilibrium point [image: there is no content], hopefully with low values for [image: there is no content] and [image: there is no content].



Figure 4 shows how the positive equilibrium values change as (only) one of the controls is varied. Note that the equilibrium values for Q and E do not change if only the control [image: there is no content] is varied. Also for changes in the controls [image: there is no content] and [image: there is no content] these equilibrium values change little and in the graphs the corresponding curves are almost constant. However, in these cases the equilibrium values for Q and P are well-controlled by the therapies. Contrary to the case when [image: there is no content], the [image: there is no content] and [image: there is no content] controls have strong effects by cutting down the influx of cells from the Q into the P compartment. All equilibria shown in these graphs satisfy the conditions of Theorem 2 and are locally asymptotically stable.


Figure 4. The values of the positive equilibrium point [image: there is no content] as the values for a single control are varied from 0 to 1. The parameter values used in the computations are given in Table 1 and Table 2.



[image: Applsci 06 00291 g004]








4. Discussion and Conclusions


We considered the dynamical behavior of a mathematical model for CML that incorporated three types of therapies defined by targeted effects on proliferating cells and immunomodulatory properties. We analyzed the long-term dynamical behavior of quiescent and proliferating leukemic cells and immune effects (represented by effector T cells). General parameter values were considered to capture a range of possible scenarios. Some thresholds in the parameter space have been determined analytically that separate different types of dynamical behavior that may correspond to the chronic and the accelerated/blast phases of the disease. It has been illustrated how increasing levels of the therapies affect the equilibrium solutions and their stability. As Q becomes small, the analysis of the dynamics in the plane [image: there is no content] indicates that a tyrosine kinase inhibitor can effectively control the disease. However, for larger values of Q, the behavior of the equilibrium solutions shown in Figure 4 suggests that the immunomodulatory properties of the controls [image: there is no content] and/or [image: there is no content] are essential in controlling the disease, since [image: there is no content] alone cannot move the equilibrium value [image: there is no content] if [image: there is no content] slowly increases. Thus this analysis for constant controls already gives some interesting insights into the roles of the various therapies. Indeed, this analysis for constant parameters and controls is a natural first step towards formulating the model as an optimal control problem where treatment constraints and an objective functional incorporating leukemic cell populations and toxicity for the therapeutic agents will be introduced. Although optimal control solutions such as those computed in [11] can provide insight, optimization of the system under clinical dosing constraints (such as only allowing certain dose levels, and only allowing them to change at certain intervals) would be useful [18].
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