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Abstract:



The technique of comparison and analysis of biological sequences is playing an increasingly important role in the field of Computational Biology and Bioinformatics. One of the key steps in developing the technique is to identify an appropriate manner to represent a biological sequence. In this paper, on the basis of three physical–chemical properties of amino acids, a protein primary sequence is reduced into a six-letter sequence, and then a set of elements which reflect the global and local sequence-order information is extracted. Combining these elements with the frequencies of 20 native amino acids, a [image: there is no content] dimensional vector is constructed to characterize the protein sequence. The utility of the proposed approach is illustrated by phylogenetic analysis and identification of DNA-binding proteins.
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1. Introduction


In the task of comparison and analysis of biological sequences, choosing a type of DNA/protein representation is an important step. The usual representation of the primary structure of DNA is a string of four letters: A (adenine); G (guanine); C (cytosine); and T (thymine). This expression is called a letter sequence representation (LSR) or a DNA primary sequence. Similarly, a protein primary sequence is usually expressed in terms of a series of 20 letters, which denote 20 different amino acids. The sequence encodes information of the corresponding structure and function in a living organism. However, it is difficult to obtain the information from the representation of a primary sequence directly. Therefore, various sequence representation techniques have been developed for encoding bio-sequences and extracting the hidden information.



Graphical representation of DNA is a useful tool for visualizing and analyzing DNA sequences. By using the tool, one can obtain a route to condense the information coded by DNA primary sequences into a set of invariants [1,2]. Early attempts towards graphical representations of DNA were made by Hamori and Ruskin in 1983 [3], Hamori in 1985 [4], and Gates in 1985 [5]. Afterwards, more graphical representations of DNA sequences were well developed by researchers [1,2,6,7,8,9,10,11,12,13,14,15]. In comparison with DNA, graphical representations of proteins emerged only very recently [2,16,17,18,19,20,21,22,23,24,25,26,27]. As a matter of fact, most of the graphical representations of DNA involve some degree of arbitrariness, such as the selection of directions to be assigned to individual bases. For a string like DNA sequence over an alphabet with size 4, there are [image: there is no content] possible ways of assigning 4 directions to 4 nucleic acid bases. If these methods are directly extended to protein sequences, the corresponding figure is [image: there is no content]. It is impracticable to represent one protein sequence by such an enormous number of graphs. This is probably the most important reason why protein graphical representations have not been advanced [19,23]. It is found that reducing the alphabet or fixing the directions assigned to amino acid residues plays an important role in addressing this problem. For details, we refer to some recent publications [2,16,21,23,24,28].



Matrix representation of a biological sequence is another powerful tool for characterization and comparison of sequences. These matrices include: The frequency matrix; Euclidean-distance matrix (ED); graph theoretical distance matrix (GD); line distance matrix (LD); quotient matrix (D/D, M/M, L/L); and their “higher order” matrices [1,2,12,13,20,21,27,29,30]. Among them, ED, GD, L/L, etc., are derived from a graphical representation. For example, L/L is a symmetric matrix whose diagonal entries are zero, while other entries are defined as the quotient of the Euclidean distance between two points of the graph and the sum of geometrical lengths of edges between the two points. Once the matrix is given, some of matrix invariants can be used as descriptors of the sequence. Eigenvalues of a matrix are one of the best-known matrix invariants [31]. In fact, two graphs are isomorphic if and only if their adjacency matrices are similar. It is of interest to note that similar matrices have the same eigenvalues. Among all the eigenvalues, the leading eigenvalue often plays a special role and has been widely used in the field of biological science and chemistry. However, a problem we must face is that the calculation of the eigenvalue will become more and more difficult with the order of the matrix large. ALE-index is an alternative invariant we proposed in 2005 [32]. The ALE-index can be viewed as an Approximation of the Leading Eigenvalue (ALE) of the corresponding matrix (it is just in this sense that it is called ‘ALE’-index), while it is much simpler for calculation than the latter. Therefore, it may be more economical to adopt the ALE-index when one is interested only in the leading eigenvalue.



The third method for formulating a protein sequence is the pseudo amino acid composition (PseAAC), with the advantage of avoiding loss of the sequence-order information. Ever since the concept of PseAAC [33,34] or Chou’s PseAAC [35,36] was proposed, it has rapidly penetrated into nearly all fields of computational proteomics (see a long list papers cited in [36,37]). Stimulated by the great successes of PseAAC in dealing with protein/peptide sequences, the concept of PseAAC has been extended [38,39,40,41,42] to cover DNA/RNA sequences as well via the form of PseKNC (pseudo K-tuple nucleotide composition) [43,44], which has been proven very useful in studying many important genome analysis problems, as summarized in a recent review paper [45]. Also, because the concept of PseAAC has been increasingly and widely used in both computational proteomics and genomics, a very powerful web-server called “Pse-in-One” [46] was established that can be used to generate the pseudo components for both protein/peptide and DNA/RNA sequences.



In this paper, we modify the method of Chou’s PseAAC and propose a novel approach for numerically characterizing a protein sequence. We characterize a protein sequence by a [image: there is no content] dimensional vector, whose first 20 components are the occurrence frequencies of 20 native amino acids, while the last [image: there is no content] components are based on a six-letter sequence derived from the protein primary sequence. The former is used to reflect the effect of the amino acid composition, and the latter is used to reflect the effect of sequence order and property of the residues. It is well known that a sequence naturally contains two pieces of information: the elements of the sequence; and the orders of the elements. Any methodologies based on the amino acid composition alone are worthy of further investigation. However, as pointed out by Chou [33,34], it is not feasible to completely include all sequence order patterns. It was stirring to see that Chou creatively developed an approach as mentioned above to extract the important feature beyond amino acid composition. Our scheme is similar to, but different from, that of Chou. Experiments about phylogenetic analysis on two datasets and identification of DNA-binding proteins illustrate the utility of the proposed method.




2. Methods


A protein sequence can be viewed as a string of 20 amino acids. Without loss of generality, by the numerical indices 1,2,…,20, we represent the 20 native amino acids according to the alphabetical order of their single-letter codes: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W and Y. Then the frequencies of appearance of the 20 amino acids in a protein sequence are often used to construct a vector
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This is the conventional amino acid composition. The advantage of such a vector representation is that it is easy in statistical treatment, but it cannot reflect the effect regarding sequence order and property. In what follows, we will take this effect into account through a set of elements in addition to the 20 components.



Hydrophobicity, isoelectric point (pI), and relative distance (RD) are three important physicochemical properties of the 20 native amino acids. Here RD can be viewed as an integration of the information on three side chain properties: composition; polarity; and molecular volume—where composition is defined as the atomic weight ratio of hetero (noncarbon) elements in end groups or rings to carbons in the side chain (for details, see [47]). Listed in Table 1 are the original numerical values for hydrophobicity, pI and RD. As can be seen from Table 1, the values of [image: there is no content] (Hydrophobicity) is in the range [−2.53~1.38], and the values of [image: there is no content] (isoelectric point) are in the range of 2.97~10.76, while [image: there is no content] (relative distance) varies between 1469 and 3355. Therefore, the normalization of these values is needed. Here we normalize them by the formulary below:
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(1)







Table 1. The original numerical values for the properties of the 20 native amino acids.







	
Amino Acid (AA)

	
Hydrophobicity a ([image: there is no content])

	
pI b ([image: there is no content])

	
RD b ([image: there is no content])






	
A

	
0.62

	
6.02

	
1889




	
C

	
0.29

	
5.02

	
3355




	
D

	
−0.90

	
2.97

	
2209




	
E

	
−0.74

	
3.22

	
1812




	
F

	
1.19

	
5.48

	
1916




	
G

	
0.48

	
5.97

	
2078




	
H

	
−0.40

	
7.59

	
1507




	
I

	
1.38

	
6.02

	
1765




	
K

	
−1.50

	
9.74

	
1797




	
L

	
1.06

	
5.98

	
1822




	
M

	
0.64

	
5.75

	
1689




	
N

	
−0.78

	
5.42

	
1943




	
P

	
0.12

	
6.30

	
1720




	
Q

	
−0.85

	
5.65

	
1538




	
R

	
−2.53

	
10.76

	
1697




	
S

	
−0.18

	
5.68

	
2000




	
T

	
−0.05

	
6.53

	
1469




	
V

	
1.08

	
5.97

	
1680




	
W

	
0.81

	
5.89

	
2317




	
Y

	
0.26

	
5.66

	
1787








a Taken from [41]; b Taken from [47,48,49].








Clearly, the normalized values for properties of the 20 native amino acids are in the interval [0,1]. The corresponding values are listed in Table 2. The last row in this table gives the average values.



Table 2. The normalized values for the properties of the 20 native amino acids.







	
AA

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
A

	
0.8056

	
0.3915

	
0.2227




	
C

	
0.7212

	
0.2632

	
1.0000




	
D

	
0.4169

	
0

	
0.3924




	
E

	
0.4578

	
0.0321

	
0.1819




	
F

	
0.9514

	
0.3222

	
0.2370




	
G

	
0.7698

	
0.3851

	
0.3229




	
H

	
0.5448

	
0.5931

	
0.0201




	
I

	
1.0000

	
0.3915

	
0.1569




	
K

	
0.2634

	
0.8691

	
0.1739




	
L

	
0.9182

	
0.3864

	
0.1872




	
M

	
0.8107

	
0.3569

	
0.1166




	
N

	
0.4476

	
0.3145

	
0.2513




	
P

	
0.6777

	
0.4275

	
0.1331




	
Q

	
0.4297

	
0.3440

	
0.0366




	
R

	
0

	
1.0000

	
0.1209




	
S

	
0.6010

	
0.3479

	
0.2815




	
T

	
0.6343

	
0.4570

	
0




	
V

	
0.9233

	
0.3851

	
0.1119




	
W

	
0.8542

	
0.3748

	
0.4496




	
Y

	
0.7136

	
0.3453

	
0.1686




	
[image: there is no content]

	
0.6471

	
0.3994

	
0.2283










For each amino acid (AA), we associate it with a triple (t(1), t(2), t(3)), where


[image: there is no content]



(2)







All the amino acids with a same triple form a group. In this way, the 20 native amino acids can be classified into 6 groups:

	
GI = {A, Y, V, M, L, I},



	
GII = {C, W, G, F},



	
GIII = {D, S, N},



	
GIV = {E, Q},



	
GV = {H, T, R, K},



	
GVI = {P}.








For each group, the first amino acid is selected to be the representative. That is, A, C, D, E, H and P are used to stand for the six groups, respectively. The value of the property of a group is defined as the average value of the property of amino acids belonging to the group. Listed in Table 3 are the corresponding values of the six groups.



Table 3. The values for properties of the six groups.







	
Group

	
Representative

	
[image: there is no content]
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GI

	
A

	
0.8619

	
0.3761

	
0.1607




	
GII

	
C

	
0.8242

	
0.3363

	
0.5024




	
GIII

	
D

	
0.4885

	
0.2208

	
0.3084




	
GIV

	
E

	
0.4437

	
0.1881

	
0.1092




	
GV

	
H

	
0.3606

	
0.7298

	
0.0787




	
GVI

	
P

	
0.6777

	
0.4275

	
0.1331










At the same time, a protein primary sequence can be reduced into a six-letter sequence by replacing each element in the protein sequence with its representative letter. Suppose [image: there is no content] is a given six-letter sequence, we inspect it by stepping one element at a time. For the step k ([image: there is no content]), a 3-D space point [image: there is no content] can be constructed as follows:


[image: there is no content]



(3)




where [image: there is no content]. When k runs from 1 to L, we get L points [image: there is no content]. Connecting these points one by one sequentially with straight lines, a three-dimensional curve can be drawn. One can further associate the graph with some structural matrices. Here we adopt the L/L matrix and denote it by M, whose (i,j)-entry is defined as follows:


[image: there is no content]



(4)




where [image: there is no content] is the Euclidean distance between points [image: there is no content] and [image: there is no content]. It is not difficult to see that [image: there is no content]tM is a (0,1) matrix; here tM stands for the product of Hadmammard multiplication of the matrix M by itself t-times. In this paper, we call the limit matrix as a generalized adjacency matrix (GAM) generated by points [image: there is no content], and denote it by MG. Obviously, [image: there is no content] if and only if [image: there is no content] and [image: there is no content] lie on a straight line in the graph.



As mentioned above, once a symmetric matrix is given, one can calculate its ALE-index by the following formula:


[image: there is no content]



(5)




where L is the order of the matrix, [image: there is no content] and [image: there is no content] are the m1- and F-norms of a matrix, respectively. In order to reduce variations caused by comparison of matrices with different sizes, we consider instead of [image: there is no content] a normalized ALE-index [image: there is no content].



In addition, following the similar procedures in capturing the sequence-order information of a protein [33,34], for the six-letter sequence [image: there is no content], we extract a set of new order-correlated factors as defined below:


[image: there is no content]



(6)




where [image: there is no content] is called the k-th tier correlation factor, [image: there is no content] represents the coupling mode function as given by


[image: there is no content]



(7)







Factor [image: there is no content] reflects the coupling mode between the most contiguous elements along a six-letter sequence (Figure 1a); [image: there is no content] reflects the coupling mode between the second-most contiguous (Figure 1b); [image: there is no content] reflects the coupling mode between the third-most contiguous (Figure 1c), and so on. [image: there is no content] is the highest rank of the coupling mode.


Figure 1. A schematic diagram to show: (a) the first-tier; (b) the second tier; and (c) the third-tier sequence order correlation mode along a sequence. Where the regular hexagon is used to show that each element of the sequence corresponds to one of the six amino acid groups.
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Consequently, a protein sequence can be characterized by a [image: there is no content] dimensional vector V:


[image: there is no content]



(8)




where


[image: there is no content]



(9)







Here [image: there is no content] and [image: there is no content] are weight factors. It is easy to see that the first 20 components reflect the effect of the amino acid composition, whereas the last [image: there is no content] components reflect the effect of sequence order and property of the residues. For convenience, a set of such [image: there is no content] components as formulated by Equations (8) and (9) is called the generalized pseudoamino acid composition of a protein sequence, and denoted by G-PseAAC.




3. Results


In this section, we will illustrate the use of the new quantitative characterization of protein sequences with two experiments. As we can see from Equations (8) and (9), there are three adjustable parameters for the G-PseAAC: [image: there is no content], [image: there is no content], and [image: there is no content]. It is not known beforehand which [image: there is no content], [image: there is no content], and [image: there is no content] are best for a given problem. Three datasets are considered in this paper. The first one is used for determining these parameters and others for testing purpose.



3.1. Experiment I: Phylogenetic Analysis on Two Datasets


The first dataset used in this paper is composed of [image: there is no content]-globin protein of 17 species (see Table 4). According to the method proposed, we associate each of the 17 protein sequences with a [image: there is no content] dimensional vector. These vectors are then used to define a pair-wise evolutionary distance between any two protein sequences i and j:


[image: there is no content]



(10)




where [image: there is no content] and [image: there is no content] are the corresponding vectors for sequences i and j, respectively. Thus, a [image: there is no content] real symmetric matrix [image: there is no content] is obtained. On the basis of the achieved distance matrix [image: there is no content], a phylogenetic tree can be constructed using a UPGMA (Unweighted Pair Group Method with Arithmetic Mean) program included in the MEGA4 package. It is found that, when [image: there is no content] and [image: there is no content], the non-mammals, including Guttata, Gallus and Muscovy duck, appear to cluster together and stay outside of the mammals, while Opossum is distinguished from the remaining mammals. In addition, Primate group {Human, Chimpanzee, Gorilla}, Cetartiodactyla group {Cattle, Banteng, Sheep, Goat}, Lagomorpha group {Rabbit, European hare}, and Rodentia group {House mouse, Western wild mouse, Spiny mouse, Norway rat} form separate branches, respectively (cf. Figure 2). This result is in accordance with the accepted taxonomy and the literature [1,12,30].


Figure 2. The relationship tree of 17 species.
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Table 4. The β-globin protein of 17 species.







	
No.

	
Species

	
Accession Number

	
Length (aa)






	
1

	
Human

	
ALU64020

	
147




	
2

	
Gorilla

	
P02024

	
147




	
3

	
Chimpanzee

	
P68873

	
147




	
4

	
Cattle

	
CAA25111

	
145




	
5

	
Banteng

	
BAJ05126

	
145




	
6

	
Goat

	
AAA30913

	
145




	
7

	
Sheep

	
ABC86525

	
145




	
8

	
European hare

	
CAA68429

	
147




	
9

	
Rabbit

	
CAA24251

	
147




	
10

	
House mouse

	
ADD52660

	
147




	
11

	
Western wild mouse

	
ACY03394

	
147




	
12

	
Spiny mouse

	
ACY03377

	
147




	
13

	
Norway rat

	
CAA29887

	
147




	
14

	
Opossum

	
AAA30976

	
147




	
15

	
Guttata

	
ACH46399

	
147




	
16

	
Gallus

	
CAA23700

	
147




	
17

	
Muscovy duck

	
CAA33756

	
147










Using the above-determined values for [image: there is no content], [image: there is no content], and [image: there is no content], we infer the relationship of 72 coronavirus spike (S) proteins. The coronavirus, whose name is derived from its crown-like shape, is a positive-sense, single-stranded RNA virus in the family Coronaviridae. It was first identified in the 1960s from the nasal cavities of patients with the common cold. Most coronaviruses are not dangerous, but some strains could cause severe, sometimes fatal, diseases in humans and other animals. The MERS coronavirus (commonly shortened to MERS-CoV) is the virus that causes the Middle East respiratory syndrome (MERS). MERS was first reported in 2012 in Saudi Arabia and then in other countries in the Middle East, Africa, Asia, Europe and America. As of July 2016, 1769 laboratory-confirmed cases of MERS-CoV infection, including at least 630 related deaths (the case fatality rate is >30%), have been reported in over 27 countries (http://www.who.int/emergencies/mers-cov/en/). People also died from a severe acute respiratory syndrome (SARS), which first emerged in 2002 in Guangdong Province, China, and then spread globally. SARS resulted in more than 8000 infections with a case-fatality rate of ~10%. The virus that causes SARS is officially called SARS coronavirus (SARS-CoV). Both MERS-CoV and SARS-CoV are identified as members of the beta group of coronavirus, Betacoronavirus, while they are distinct from each other. The name, accession number, and abbreviation of the 72 sequences are listed in Table 5. According to the existing taxonomic groups, sequences 1–5 belong to group alpha (formerly known as Coronavirus group 1 (CoV-1)), sequences 6–8 are members of group gamma (formerly CoV-3), and the remaining belongs to group beta (formerly CoV-2). Refer to Table 5 for details.



Table 5. The accession number, name and abbreviation for 72 coronavirus spike proteins.







	
NO.

	
Accession Number

	
Virus Name/Strain

	
Abbreviation






	
1

	
CAB91145

	
Transmissible gastroenteritis virus, genomic RNA

	
TGEVG




	
2

	
NP_058424

	
Transmissible gastroenteritis virus

	
TGEV




	
3

	
AAK38656

	
Porcine epidemic diarrhea virus strain CV777

	
PEDVC




	
4

	
NP_598310

	
Porcine epidemic diarrhea virus

	
PEDV




	
5

	
BAL45637

	
Human coronavirus 229E

	
HCoV-229E




	
6

	
AAP92675

	
Avian infectious bronchitis virus isolate BJ

	
IBVBJ




	
7

	
AAS00080

	
Avian infectious bronchitis virus strain Ca199

	
IBVC




	
8

	
NP_040831

	
Avian infectious bronchitis virus

	
IBV




	
9

	
NP_937950

	
Human coronavirus OC43

	
HCoV-OC43




	
10

	
AAK83356

	
Bovine coronavirus isolate BCoV-ENT

	
BCoVE




	
11

	
AAL57308

	
Bovine coronavirus isolate BCoV-LUN

	
BCoVL




	
12

	
AAA66399

	
Bovine coronavirus strain Mebus

	
BCoVM




	
13

	
AAL40400

	
Bovine coronavirus strain Quebec

	
BCoVQ




	
14

	
NP_150077

	
Bovine coronavirus

	
BCoV




	
15

	
AAB86819

	
Mouse hepatitis virus strain MHV-A59C12 mutant

	
MHVA




	
16

	
YP_209233

	
Murine hepatitis virus strain JHM

	
MHVJHM




	
17

	
AAF69334

	
Mouse hepatitis virus strain Penn 97-1

	
MHVP




	
18

	
AAF69344

	
Mouse hepatitis virus strain ML-10

	
MHVM




	
19

	
NP_045300

	
Mouse hepatitis virus

	
MHV




	
20

	
AAU04646

	
SARS coronavirus civet007

	
civet007




	
21

	
AAU04649

	
SARS coronavirus civet010

	
civet010




	
22

	
AAU04664

	
SARS coronavirus civet020

	
civet020




	
23

	
AAV91631

	
SARS coronavirus A022

	
A022




	
24

	
AAV49730

	
SARS coronavirus B039

	
B039




	
25

	
AAP51227

	
SARS coronavirus GD01

	
GD01




	
26

	
AAS00003

	
SARS coronavirus GZ02

	
GZ02




	
27

	
AAP30030

	
SARS coronavirus BJ01

	
BJ01




	
28

	
AAP13567

	
SARS coronavirus CUHK-W1

	
CUHK-W1




	
29

	
AAP37017

	
SARS coronavirus TW1

	
TW1




	
30

	
AAR87523

	
SARS coronavirus TW2

	
TW2




	
31

	
BAC81348

	
SARS coronavirus TWH genomic RNA

	
TWH




	
32

	
BAC81362

	
SARS coronavirus TWJ genomic RNA

	
TWJ




	
33

	
AAQ01597

	
SARS coronavirus Taiwan TC1

	
TaiwanTC1




	
34

	
AAQ01609

	
SARS coronavirus Taiwan TC2

	
TaiwanTC2




	
35

	
AAP97882

	
SARS coronavirus Taiwan TC3

	
TaiwanTC3




	
36

	
AAP13441

	
SARS coronavirus Urbani

	
Urbani




	
37

	
AAP72986

	
SARS coronavirus HSR 1

	
HSR1




	
38

	
AAQ94060

	
SARS coronavirus AS

	
AS




	
39

	
AAP94737

	
SARS coronavirus CUHK-AG01

	
CUHK-AG01




	
40

	
AAP94748

	
SARS coronavirus CUHK-AG02

	
CUHK-AG02




	
41

	
AAP94759

	
SARS coronavirus CUHK-AG03

	
CUHK-AG03




	
42

	
AAP30713

	
SARS coronavirus CUHK-Su10

	
CUHK-Su10




	
43

	
AAP33697

	
SARS coronavirus Frankfurt 1

	
Frankfurt1




	
44

	
AAR14803

	
SARS coronavirus PUMC01

	
PUMC01




	
45

	
AAR14807

	
SARS coronavirus PUMC02

	
PUMC02




	
46

	
AAR14811

	
SARS coronavirus PUMC03

	
PUMC03




	
47

	
AAP41037

	
SARS coronavirus TOR2

	
TOR2




	
48

	
AAP50485

	
SARS coronavirus FRA

	
FRA




	
49

	
AAR23250

	
SARS coronavirus Sin01-11

	
Sino1-11




	
50

	
AHX00731

	
MERS coronavirus

	
KFU-HKU1




	
51

	
AHX00711

	
MERS coronavirus

	
KFU-HKU13




	
52

	
AHX00721

	
MERS coronavirus

	
KFU-HKU19Dam




	
53

	
AIY60578

	
MERS coronavirus

	
Abu-Dhabi_UAE_9




	
54

	
AIY60568

	
MERS coronavirus

	
Abu-Dhabi_UAE_33




	
55

	
AIZ74417

	
MERS coronavirus

	
Hu-France(UAE)-FRA1




	
56

	
AIZ74433

	
MERS coronavirus

	
Hu-France-FRA2




	
57

	
ALJ54502

	
MERS coronavirus

	
Hu/Qunfidhah-KSA-Rs1338




	
58

	
AKN24821

	
MERS coronavirus

	
KFMC-1




	
59

	
AKN24830

	
MERS coronavirus

	
KFMC-7




	
60

	
ALJ76282

	
MERS coronavirus

	
Hu/Taif, KSA-2083




	
61

	
ALJ76281

	
MERS coronavirus

	
Hu/Taif, KSA-5920




	
62

	
ALJ54493

	
MERS coronavirus

	
Hu/Makkah-KSA-728




	
63

	
ALB08267

	
MERS coronavirus

	
KOREA/Seoul/014-1




	
64

	
ALB08278

	
MERS coronavirus

	
KOREA/Seoul/014-2




	
65

	
ALR69641

	
MERS coronavirus

	
D2731.3




	
66

	
AKQ21055

	
MERS coronavirus

	
ADFCA-HKU1




	
67

	
AKQ21064

	
MERS coronavirus

	
ADFCA-HKU2




	
68

	
AKQ21073

	
MERS coronavirus

	
ADFCA-HKU3




	
69

	
ALA50001

	
MERS coronavirus

	
camel/Taif/T68




	
70

	
ALA50012

	
MERS coronavirus

	
camel/Taif/T89




	
71

	
ALT66813

	
MERS coronavirus

	
Jordan_1




	
72

	
ALT66802

	
MERS coronavirus

	
Jordan_10










The corresponding phylogenetic tree constructed by our method is shown in Figure 3. Observing Figure 3, we find that TGEVG, TGEV, PEDVC, PEDV and HCoV-229E, which belong to group alpha, are clearly clustered together, and so do the three gamma coronaviruses IBV, IBVBJ, IBVC. In the subtree of the group beta, MERS-CoVs appear to cluster together, and SARS-CoVs are situated at an independent branch, while BCoV, BCoVM, BCoVQ, BCoVE, BCoVL, HCoV-OC43, MHV, MHVA, MHVM, MHVP and MHVJHM form a separate branch. The resulting cluster agrees well with the established taxonomic groups.


Figure 3. The relationship tree of 72 coronavirus spike proteins.
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3.2. Experiment II: Identification of DNA-Binding Proteins


Numerous biological mechanisms depend on nucleic acid-protein interactions. The first step for understanding these mechanisms is to identify the interacting molecules. There are different strategies for determining DNA sequences that bind specifically to a known protein. However, it is difficult to accurately identify DNA-binding proteins [50]. Existing experimental techniques have low practical value due to time consumption and expensive costs [51]. Therefore, developing an efficient computational approach for identifying DNA-binding proteins is becoming increasingly important. In this section, we explore the application of the G-PseAAC to the identification of DNA-binding proteins. The parameters [image: there is no content], [image: there is no content], and [image: there is no content] used here are the same as those determined in Section 3.1.



The dataset used here is taken from [51]. Itsoriginal version was created in 2009 by Kumar et al. [52], in which the DNA-binding proteins are extracted from the Pfam database [53] with keywords of “DNA-binding domain” and pairwise sequence identity cutoff of 25%, while the non DNA-binding domains are randomly selected from Pfam protein families that are unrelated to the DNA-binding protein family. Xu et al. [51] removed some sequences from the original dataset, and its current version is composed of 1585 protein sequences. This benchmark dataset contains 770 DNA-binding proteins and 815 non DNA-binding proteins, which form the positive sample set and negative sample set, respectively. We randomly divide the 770 DNA-binding proteins into two parts, one has 410 sequences and the other 360 sequences. Also, we randomly select 410 and 405 sequences from the 815 non DNA-binding proteins, respectively. We conduct two sets of data. Set I contains 410 DNA-binding proteins and 410 non DNA-binding proteins. This set serves as a training set. The remaining protein sequences (360 DNA-binding proteins and 405 non DNA-binding proteins) form Set II, which serves as a test set.



Support vector machine (SVM) is employed as the classifier, and its implementation is based on the package LIBSVM (a Library for Support Vector Machines) v3.17 [54], which is open sourced and can be freely downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm. There are four types of kernel functions in LIBSVM: linear kernel; polynomial kernel; radial basis function (RBF) kernel; and sigmoid kernel. Among them, the RBF kernel is deemed a reasonable first choice [55]. The main reason is that, taking the form [image: there is no content], the RBF kernel can non-linearly map samples into a higher dimensional space so it can handle the non-linearly separable data. Accordingly, the RBF kernel is also adopted in this paper. The model selection of this kernel involves two parameters to be decided: the penalty parameter C and the kernel parameter [image: there is no content]. We first convert each of the 1585 protein sequences into a 28-D vector, and then the vectors belonging to Set I are scaled and fed to the SVM. With an optimization procedure using a grid search strategy in LIBSVM, the parameter pair (C, [image: there is no content]) is determined as (8, 0.5) (It should be pointed out that the optimal values for one round of cross-validation may not be the same for another.). In literature, a set of metrics are often used to measure the prediction quality. To make it intuitive and easy to understand for readers, here we adopt the definition and notations used in [40,41,56,57,58,59,60] to describe the corresponding evaluation metrics:
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where [image: there is no content] is the total number of DNA-binding proteins investigated, while [image: there is no content] the number of DNA-binding proteins incorrectly predicted to be of non DNA-binding proteins; [image: there is no content] the total number of non DNA-binding proteins investigated, while [image: there is no content] the number of non DNA-binding proteins incorrectly predicted as DNA-binding proteins. [image: there is no content], [image: there is no content]. It should be pointed out that the set of metrics above is valid only for the single-label system (such as the case at hand). For the multi-label systems whose existence has become more frequent in system biology [61,62,63,64] and system medicine [65], a completely different set of metrics as defined in [66] is needed.



With the best pair (C, [image: there is no content]) obtained in the training stage, Set II is fed to the SVM. We find that [image: there is no content] and [image: there is no content]. We thus have


Sn = 95.28%, Sp = 94.57%, Acc = 94.90%, MCC = 0.8978, F1_M = 94.62%.











Repeating the above random division procedure three times, we perform three cross-validation tests and list the results in Table 6. As can be seen, the accuracy (Acc), Matthew’s correlation coefficient (MCC), and F1-measure (F1_M) in each cross-validation test are greater than 94.90%, 0.8977, and 94.59%, respectively. This result indicates that our method is promising in identifying DNA-binding proteins.



Table 6. The results of three different cross-validation tests.







	
Test

	
1

	
2

	
3

	
Average






	
Sn (%)

	
95.28

	
94.72

	
95.00

	
95.00




	
Sp (%)

	
94.57

	
95.06

	
95.06

	
94.90




	
Acc (%)

	
94.90

	
94.90

	
95.03

	
94.94




	
MCC

	
0.8978

	
0.8977

	
0.9004

	
0.8986




	
F1_M (%)

	
94.62

	
94.59

	
94.73

	
94.65












4. Discussion


4.1. Selection of Properties for Amino Acids


In addition to the three physical–chemical properties mentioned above, both hydrophilicity and molecular weight of amino acids can play important roles for characterization of proteins. Therefore, one can consider r-combinations of the five properties to describe a protein sequence. The purpose of this paper is to find an appropriate way for converting a protein sequence of 20 kinds of amino acids into a string over a “small” alphabet. If we take r to be 3, by the scheme described in Section 2, the triple [image: there is no content] has at most [image: there is no content] different forms. This means that the 20 native amino acids can thus be classified into no more than eight groups, whereas if the 5-combination or 4-combination is selected, by the similar scheme, [image: there is no content] will have [image: there is no content] or [image: there is no content] possible forms. Compared with “20,” the figure is not “small.” Therefore, r is taken to be 3 in this paper. By means of each of the 3-combinations of the five properties, the same experiments are performed. As a result, we find that hydrophobicity, isoelectric point, and relative distance form the best 3-combination.




4.2. Feature Analysis


As we see from Equations (8) and (9), the 28-D feature vector consists of three parts: 20 amino acid compositions; 7 correlation factors; and 1 ALE-index. One may be interested in knowing whether or not the last two parts are significant. First and foremost, let us see what would happen if only the first part was used? Without loss of generality, suppose S is a protein sequence and the counts of 20 native amino acids are [image: there is no content], respectively. Then we have a multi-set [image: there is no content]. Based on the knowledge of combinatorics, it is not difficult to see that there are a total of [image: there is no content] different sequence/strings possessing the same amino acid compostion. This suggests that the amino acid composition alone is not sufficient to represent and compare protein sequences. What would happen if only the first two parts were used (i.e., without using the ALE-index)? By using the vector with the first 27 components, experiments I and II are performed. For the first dataset, there is no significant difference between the tree constructed with the 27-D vector and that with the 28-D vector. For the second dataset, the corresponding relationship tree of coronavirus spike proteins is shown in Figure 4. From Figure 4, it is easy to see that MERS-CoVs belonging to Betacoronavirus appear to cluster together with the three Gammacoronaviruses, instead of the other Betacoronaviruses. This phenomenon is disappointing. For the third dataset, we repeat the three cross-validation tests with the 27-D vector and list the corresponding results in Table 7. By comparing Table 7 with Table 6, we can find that the prediction quality diminished slightly. These results indicate that the ALE-index can make a very positive contribution to the performance of experiments.


Figure 4. The relationship tree of the coronavirus spike proteins with the 27-D vector.
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Table 7. Results of the three cross-validation tests with the 27-D vector.







	
Test

	
1

	
2

	
3

	
Average






	
Sn (%)

	
95.00

	
93.61

	
94.44

	
94.35




	
Sp (%)

	
94.32

	
94.32

	
95.06

	
94.57




	
Acc (%)

	
94.64

	
93.99

	
94.78

	
94.47












5. Conclusions


By means of three important physicochemical properties of amino acids, we first classify the 20 native amino acids into six groups, and assign to each group a representative symbol. Then, by substituting each letter with its representative letter, we convert a protein primary sequence into a six-letter sequence, which can be regarded as a coarse-grained description of the protein primary sequence. In comparison with the string composed of 20 kinds of amino acids, the reduced sequence not only makes the generalization from representations of DNA sequences to those of proteins easier, but also enables us to focus more on the information of our interest. On the basis of the six-letter sequence, we obtain a generalized adjacency matrix (GAM) and then its normalized ALE-index. Also, we extract [image: there is no content] order-correlated factors via the reduced sequence. Combining these elements with the frequencies of occurrenceof 20 native amino acids, we constructa [image: there is no content] dimensional vector to characterize a protein sequence. Our method is tested byphylogenetic analysis and identification of DNA-binding proteins. The feature analysis implies that the λ + 1 components beyond the amino acid composition play very important roles in the performance of the experiment. As shown in a series of recent publications (see, e.g., [58,67,68,69,70,71,72]) in demonstrating new methods or approaches, user-friendly and publicly accessible web-servers will significantly enhance their impacts [73]. We will make efforts in our future work to further improve our method and provide a web-server for the new method presented.
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