Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Stearate Modified NiMgAl–LDHs with Transition Metal
2.3. Preparation of LDHs/EVA Composites
2.4. Measurements
3. Results and Discussion
3.1. XRD, FTIR and Morphology Analysis of LDHs
3.2. Morphology and Contact Angle Analysis of the LDHs
3.3. Thermal Analysis of the LDHs
3.4. Thermal Analysis and Flame Retardancy of EVA and its Composites
3.5. Flame Retardant Mechanism
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thuo, M.M.; Martinez, R.V.; Lan, W.J.; Liu, X.; Barber, J.; Atkinson, M.B.J.; Bandarage, D.; Bloch, J.F.; Whitesides, G.M. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem. Mater. 2014, 26, 4230–4237. [Google Scholar]
- Sabet, M.; Hassan, A.; Ratnam, C.T. Electron beam irradiation of low density polyethylene/ethylene vinyl acetate filled with metal hydroxides for wire and cable applications. Polym. Degrad. Stab. 2012, 97, 1432–1437. [Google Scholar] [CrossRef]
- Hintersteiner, I.; Sternbauer, L.; Beissmann, S.; Buchberger, W.W.; Wallner, G.M. Determination of stabilisers in polymeric materials used as encapsulants in photovoltaic modules. Polym. Test. 2014, 33, 172–178. [Google Scholar] [CrossRef]
- Goldshtein, J.; Bretler, U.; Lublin-Tennenbaum, T.; Gluz, E.; Margel, S. Solidification of non-halogen fire-retardant liquids by encapsulation within porous uniform PDVB microspheres for preparation of fire-retardant polymeric blends. Colloid Polym. Sci. 2014, 292, 2241–2248. [Google Scholar] [CrossRef]
- He, X.; Zhang, R.; Chen, Q.; Rong, Y.; Yang, Z. Different surface functionalized nano-Fe3O4 particles for EVA composite adhesives. Int. J. Adhes. 2014, 50, 128–135. [Google Scholar] [CrossRef]
- Guo, Q.; Guo, S.; Wang, Z. A type of esophageal stent coating composed of one 5–fluorouracil–containing EVA layer and one drug–free protective layer: In vitro release, permeation and mechanical properties. J. Controlled Release 2007, 118, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Jiao, C.; Chen, X. Synergistic effects of zinc oxide with layered double hydroxides in EVA/LDH composites. J. Therm. Anal. Calorim. 2009, 98, 813–818. [Google Scholar] [CrossRef]
- Wang, X.; Pang, H.; Chen, W.; Lin, Y.; Zong, L.; Ning, G. Controllable fabrication of zinc borate hierarchical nanostructure on brucite surface for enhanced mechanical properties and flame retardant behaviors. Acs. Appl. Mater Inter. 2014, 6, 7223–7235. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Cao, X.; Liang, Q.; Wang, H.; Cui, X.; Li, Y. Formation of a compact protective layer by magnesium hydroxide incorporated with a small amount of intumescent flame retardant: new route to high performance nonhalogen flame retardant TPV. Ind. Eng. Chem. Res. 2014, 53, 8784–8792. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Shi, Y.; Tang, G.; Tang, Q.; Song, L.; Hu, Y. Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene–vinyl acetate copolymer. Radiat. Phys. Chem. 2012, 81, 308–315. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Thermogravimetric analysis of selected layered double hydroxides. J. Therm. Anal. Calorim. 2013, 112, 649–657. [Google Scholar] [CrossRef]
- Xue, X.; Gu, Q.; Pan, G.; Liang, J.; Huang, G.; Sun, G.; Ma, S.; Yang, X. Nanocage structure derived from sulfonated β-cyclodextrin intercalated layered double hydroxides and selective adsorption for phenol compounds. Inorg. Chem. 2014, 53, 1521–1529. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Rao, D.; Li, K.; Lin, Y. UV Blocking by Mg–Zn–Al layered double hydroxides for the protection of asphalt road surfaces. Ind. Eng. Chem. Res. 2014, 53, 4165–4172. [Google Scholar] [CrossRef]
- Özgümüş, S.; Gök, M.K.; Bal, A.; Güçlü, G. Study on novel exfoliated polyampholyte nanocomposite hydrogels based on acrylic monomers and Mg–Al–Cl layered double hydroxide: Synthesis and characterization. Chem. Eng. J. 2013, 223, 277–286. [Google Scholar] [CrossRef]
- Li, L.; Qian, Y.; Jiao, C. Synergistic flame retardant effects of ammonium polyphosphate in ethylene-vinyl acetate/layered double hydroxides composites. Polym. Eng. Sci. 2014, 54, 766–776. [Google Scholar] [CrossRef]
- Goodarzi, V.; Jafari, S.H.; Khonakdar, H.A.; Monemian, S.A.; Mortazavi, M. An assessment of the role of morphology in thermal/thermo–oxidative degradation mechanism of PP/EVA/clay nanocomposites. Polym. Degrad. Stab. 2010, 95, 859–869. [Google Scholar] [CrossRef]
- Nyambo, C.; Kandare, E.; Wilkie, C.A. Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid. Polym. Degrad. Stab. 2009, 94, 513–520. [Google Scholar] [CrossRef]
- Matusinovic, Z.; Lu, H.; Wilkie, C.A. The role of dispersion of LDH in fire retardancy: The effect of dispersion on fire retardant properties of polystyrene/Ca−Al layered double hydroxide nanocomposites. Polym. Degrad. Stab. 2012, 97, 1563–1568. [Google Scholar] [CrossRef]
- Manzi-Nshuti, C.; Songtipya, P.; Manias, E.; Jimenez-Gasco, M.M.; Hossenlopp, J.M.; Wilkie, C.A. Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: Effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer. 2009, 50, 3564–3574. [Google Scholar] [CrossRef]
- Ardanuy, M.; Velasco, J.I. Mg–Al layered double hydroxide nanoparticles. Appl. Clay Sci. 2011, 51, 341–347. [Google Scholar] [CrossRef]
- Wang, D.Y.; Leuteritz, A.; Kutlu, B.; Landwehr, M.; Jehnichen, D.; Wagenknecht, U.; Heinrich, G. Preparation and investigation of the combustion behavior of polypropylene/organomodified MgAl–LDH micro–nanocomposite. J. Alloys Compd. 2011, 509, 3497–3501. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Yang, M.; Chen, C.; Liu, Y. Effect of Ni cations and microwave hydrothermal treatment on the related properties of layered double hydroxide–ethylene vinyl acetate copolymer composites. J. Colloid Interface Sci. 2011, 356, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, B.; Hu, Z.; Cao, J. Effect of nickel on the properties of composites composed of layered double hydroxides and ethylene vinyl acetate copolymer. Appl. Clay Sci. 2013, 72, 138–146. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Zhao, X.; Chen, C.; Cao, J. Effect of rare earth ions on the properties of composites composed of ethylene vinyl acetate copolymer and layered double hydroxides. PLoS ONE 2012, 7, e37781. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.J.; Frost, R.L. Determination of the mechanism(s) for the inclusion of arsenate, vanadate, or molybdate anions into hydrotalcites with variable cationic ratio. J. Colloid Interface Sci. 2009, 329, 404–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Moreno, M.J.; Romero-Ibarra, I.C.; Hernández-Pérez, M.A.; Pfeiffer, H. CO2 adsorption at elevated pressure and temperature on Mg–Al layered double hydroxide. Ind. Eng. Chem. Res. 2014, 53, 8087–8094. [Google Scholar] [CrossRef]
- Jabłońska, M.; Chmielarz, L.; Węgrzyn, A.; Guzik, K.; Piwowarska, Z.; Witkowski, S.; Walton, R.I.; Dunne, P.W.; Kovanda, F. Thermal transformations of Cu–Mg (Zn)–Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogen. J. Therm. Anal. Calorim. 2013, 114, 731–747. [Google Scholar] [CrossRef]
- Benito, P.; Herrero, M.; Labajos, F.M.; Rives, V.; Royo, C.; Latorre, N.; Monzon, A. Production of carbon nanotubes from methane use of Co–Zn–Al catalysts prepared by microwave–assisted synthesis. Chem. Eng. J. 2009, 149, 455–462. [Google Scholar] [CrossRef]
- Benito, P.; Guinea, I.; Labajos, F.M.; Rocha, J.; Rives, V. Microwave–hydrothermally aged Zn, Alhydrotalcite–like compounds: Influence of the composition and the irradiation conditions. Microporous Mesoporous Mater. 2008, 110, 292–302. [Google Scholar] [CrossRef]
- Ishihara, S.; Sahoo, P.; Deguchi, K.; Ohki, S.; Tansho, M.; Shimizu, T.; Labuta, J.; Hill, J.P.; Ariga, K.; Watanabe, K.; et al. Dynamic breathing of CO2 by hydrotalcite. J. Am. Chem. Soc. 2013, 135, 18040–18043. [Google Scholar] [CrossRef] [PubMed]
- Otero, R.; Fernández, J.M.; González, M.A.; Pavlovic, I.; Ulibarri, M.A. Pesticides adsorption–desorption on Mg–Al mixed oxides. Kinetic modeling, competing factors and recyclability. Chem. Eng. J. 2013, 221, 214–221. [Google Scholar] [CrossRef]
- Xue, T.; Gao, Y.; Zhang, Z.; Umar, A.; Yan, X.; Zhang, X.; Guo, Z.; Wang, Q. Adsorption of acid red from dye wastewater by Zn2Al-NO3 LDHs and the resource of adsorbent sludge as nanofiller for polypropylene. J. Alloy. Compd. 2014, 587, 99–104. [Google Scholar] [CrossRef]
- Bouariu, S.; Dartu, L.; Carja, G. Silver-layered double hydroxides self-assemblies. J. Therm. Anal. Calorim. 2012, 111, 1263–1271. [Google Scholar] [CrossRef]
- Ma, S.; Shim, Y.; Islam, S.M.; Subrahmanyam, K.S.; Wang, P.; Li, H.; Wang, S.; Yang, X.; Kanatzidis, M.G. Efficient Hg vapor capture with polysulfide intercalated layered double hydroxides. Chem. Mater. 2014, 26, 5004–5011. [Google Scholar] [CrossRef]
- Violante, A.; Pucci, M.; Cozzolino, V.; Zhu, J.; Pigna, M. Sorption/desorption of arsenate on/from Mg–Al layered double hydroxides: Influence of phosphate. J. Colloid Interface Sci. 2009, 333, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Millange, F.; Walton, R.I.; O’Hare, D. Time–resolved in situ X–ray diffraction study of the liquid–phase reconstruction of Mg–Al–carbonate hydrotalcite–like compounds. J. Mater Chem. 2000, 10, 1713–1720. [Google Scholar] [CrossRef]
- Nethravathi, C.; Viswanath, B.; Sebastian, M.; Rajamathi, M. Exfoliation of α–hydroxides of nickel and cobalt in water. J. Colloid Interface Sci. 2010, 345, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Benito, P.; Labajos, F.M.; Rives, V. Nanosize cobalt oxide–containing catalysts obtained through microwave–assisted methods. Catal. Today 2007, 128, 129–137. [Google Scholar] [CrossRef]
- Panda, H.S.; Srivastava, R.; Bahadur, D. Stacking of lamellae in Mg/Al hydrotalcites: effect of metal ion concentrations on morphology. Mater Res. Bull. 2008, 43, 1448–1455. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, Y.; Wang, S.; Gao, G.; Liu, J.; Zhou, Y.; Liu, H. Synergistic effects and mechanism of ZnCl2 on intumescent flame-retardant polypropylene. J. Therm. Anal. Calorim. 2013, 115, 1065–1071. [Google Scholar] [CrossRef]
- Lee, J.H.; Rhee, S.W.; Jung, D.Y. Ion-exchange reactions and photothermal patterning of monolayer assembled polyacrylate-layered double hydroxide nanocomposites on solid substrates. Chem. Mater. 2006, 18, 4740–4746. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Chen, C.; Jia, L. Structural characterization and related properties of the stearate anions intercalated Ni–Al hydrotalcite-like compound prepared by the microwave crystallization. J. Alloys Compd. 2010, 508, 426–432. [Google Scholar] [CrossRef]
- Costache, M.C.; Jiang, D.D.; Wilkie, C.A. Thermal degradation of ethylene–vinyl acetate copolymer nanocomposites. Polymer. 2005, 46, 6947–6958. [Google Scholar] [CrossRef]
- Wang, L.; Sánchez-Soto, M.; Maspoch, M.L. Polymer/clay aerogel composites with flame retardant agents:Mechanical, thermal and fire behavior. Mater. Des. 2013, 52, 609–114. [Google Scholar] [CrossRef]
Samples | pk-HRR (kW/m2) | Reduction (%) | Tign (s) | FPI (kW/m2s) | THR (MJ/m2) | pk-SPR (m2/s) | pk-COP (g/s) |
---|---|---|---|---|---|---|---|
EVA | 1247 | - | 62 | 20 | 164 | 0.146 | 0.0147 |
S-NiMgAl-Mn/EVA | 445 | 64.3 | 74 | 6 | 151 | 0.100 | 0.0044 |
S-NiMgAl-Co/EVA | 467 | 62.6 | 58 | 8 | 150 | 0.107 | 0.0049 |
S-NiMgAl-Cu/EVA | 451 | 63.8 | 82 | 6 | 151 | 0.0997 | 0.0045 |
S-NiMgAl-Zn/EVA | 485 | 61.1 | 66 | 7 | 155 | 0.102 | 0.0044 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, M.; Li, B. Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn). Appl. Sci. 2016, 6, 131. https://doi.org/10.3390/app6050131
Wang L, Zhang M, Li B. Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn). Applied Sciences. 2016; 6(5):131. https://doi.org/10.3390/app6050131
Chicago/Turabian StyleWang, Lili, Milin Zhang, and Bin Li. 2016. "Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn)" Applied Sciences 6, no. 5: 131. https://doi.org/10.3390/app6050131
APA StyleWang, L., Zhang, M., & Li, B. (2016). Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn). Applied Sciences, 6(5), 131. https://doi.org/10.3390/app6050131