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Abstract:



Bottom-fixed vertical rotating devices are widely used in industrial and civilian fields. The free upside of the rotor will cause vibration and lead to noise and damage during operation. Meanwhile, parameter uncertainties, nonlinearities and external disturbances will further deteriorate the performance of the rotor. Therefore, in this paper, we present a rotor orientation control system based on an active magnetic bearing with [image: there is no content] adaptive control to restrain the influence of the nonlinearity and uncertainty and reduce the vibration amplitude of the vertical rotor. The boundedness and stability of the adaptive system are analyzed via a theoretical derivation. The impact of the adaptive gain is discussed through simulation. An experimental rig based on dSPACE is designed to test the validity of the rotor orientation system. The experimental results show that the relative vibration amplitude of the rotor using the [image: there is no content] adaptive controller will be reduced to ∼50% of that in the initial state, which is a 10% greater reduction than can be achieved with the nonadaptive controller. The control approach in this paper is of some significance to solve the orientation control problem in a low-speed vertical rotor with uncertainties and nonlinearities.
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1. Introduction


Vertical rotation devices are widely applied in industrial, scientific and civilian fields, e.g., flywheels, centrifuges and washing machines. Many of these applications have a fixed bottom bearing with a free upper side. The one-side bearing structure will lead to vibration during operation and, consequently, cause collision, noise and failure. One of the traditional methods to solve this problem in washing machines is through the addition of a passive balancer [1,2,3]. However, passive control approaches, although having the advantages of simplicity and low cost, are unsatisfactory in vibration reduction because of their open-loop property. For the vertical rotation devices, an active non-contacted vibration reduction system, such as an active magnetic bearing (AMB), placed at the upper side to control the attitude of the rotor, offers a better solution to the vibration problem.



The Active Magnetic Bearing (AMB) system is a nonlinear system, with many uncertainties during its operation, such as parameter uncertainty and external random disturbances. Therefore, the control of the AMB system has been an active research topic. For example, [4] presented a feedback linearization approach to control the position of a horizontal rotor; [5], aiming at a 1-kWh flywheel energy storage device, analyzed the advantages and disadvantages of different approaches, such as decentralized control, Linear Quadratic Regulator (LQR) control and cross-feedback control; [6] proposed an on-line parameter identification method to solve the situation in which the rotor mass is unbalanced; [7], based on an AMB test rig, used radial basis function networks to identify the uncertainties and to synthesize an [image: there is no content] controller with the rotor setpoint; [8] presented an adaptive back-stepped controller for a flywheel energy storage system; [9] designed a test rig consisting of a flexible rotor supported by AMBs with a [image: there is no content]synthesis controller.



The research above mostly focused on AMBs for horizontal rotors. Research on a vertical rotor has been rather limited. For example, [10] presented an H∞ controller to regulate the rotor position for vertical AMB systems under 10K rpm. This research, for either horizontal or vertical rotors, has focused on high-speed rotors. However, as mentioned above, vertical low-speed rotating devices are widely used, and their dynamic behaviors will be rather complicated [11]. Therefore, it is necessary to propose a control approach for low-speed vertical rotor position control. Meanwhile, under a lower spinning rate, the influences from parameter uncertainties and external disturbances will be more severe.



The [image: there is no content] adaptive control theory [12] provides a powerful tool to overcome the problems of uncertainties and nonlinearities. This theory has been utilized in many applications, e.g., [13] presented a one-output drilling direction adaptive control system in the presence of time-delay, unexpected disturbance and other uncertainties; [14] proposed an underactuated robots control system with unmodeled dynamics. These studies have provided significant theoretical and simulation results for [image: there is no content] adaptive controllers. Based on these studies, in this paper, the authors propose an [image: there is no content] adaptive controller for a two-input-two-output vertical rotor orientation control system and design an experimental rig based on dSPACE to test the performance of the rotor orientation control system. The work in this paper may also be applied to twin-rotor mechanical system control [15,16,17,18].



This paper is organized as follows. Section 2 establishes the mathematical model of the rotor and presents the control aim of the system. Section 3 proposes the architecture of the adaptive control system. Section 4 analyzes the stability and performance of the adaptive control system. Section 5 gives the simulation of the adaptive control system. Section 6 presents an experimental validation of the performance of the rotor orientation control system. Section 7 provides a summary of the work.




2. Problem Statement


The vertical rotor is shown in Figure 1. α and β are the attitude angles of the rotor from [image: there is no content] and [image: there is no content], respectively. γ is the included angle between the rotor axis and [image: there is no content].


Figure 1. Rotor scheme.
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According to the theorem of angular momentum, the motion of the rotor satisfies:


[image: there is no content]








where [image: there is no content] is the angular momentum of the rotor and [image: there is no content] is the external torque.



The torque induced by the gravity is given by:


[image: there is no content]



(1)




where [image: there is no content] is the gravitational force on the rotor; [image: there is no content]. Then, the state equation of a spinning vertical rotor can be written as:


[image: there is no content]



(2)




where [image: there is no content] and [image: there is no content]; [image: there is no content] is the rotor angular momentum; [image: there is no content] and [image: there is no content] are the rotational inertia about the [image: there is no content] axis and the [image: there is no content] axis, respectively; [image: there is no content] is the spinning rate of the rotor; [image: there is no content] and [image: there is no content] are the external control torques in the [image: there is no content] and [image: there is no content] directions, respectively.



If we define the following variables:


[image: there is no content]



(3)




and h(x)=h1h2h3h4⊤, then Equation (2) can be rewritten as:


[image: there is no content]



(4)




where x=x1x2x3x4⊤ is the state vector, u=TxeTye⊤ is the system input and:


[image: there is no content]











Obviously, [image: there is no content].



Equation (4) is a nonlinear equation. Meanwhile, parameter uncertainties also exist, e.g., the rotational inertia about the [image: there is no content] axis, [image: there is no content], is difficult to calculate accurately, and [image: there is no content] in [image: there is no content], as well.



Without loss of generality, we suppose that [image: there is no content], [image: there is no content], where [image: there is no content] and [image: there is no content] are nominal moments of inertia of the rotor and [image: there is no content] and [image: there is no content] are unknown constants referred to the inertia errors. These errors include the manufacturing error and accessory connections. By considering the unknown parameters, the two elements [image: there is no content] and [image: there is no content] in Equation (4) can be written as:


h(x)=(A+Aθ)x+f1(x)B1=B+Bθ



(5)




where:


[image: there is no content]








represents the linear parts of [image: there is no content], [image: there is no content] represents the high-order nonlinear parts of [image: there is no content], while [image: there is no content] and [image: there is no content] represent the certain and uncertain part of [image: there is no content]. The subscript θ in Equation (5) refers to the uncertain parameters. [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are:


[image: there is no content]










[image: there is no content]










B=00001Jxy0001Jxy0,Bθ=0000−θ1Jxy0(Jxy0+θ1)00−θ1Jxy0(Jxy0+θ1)











Next, we define:


[image: there is no content]



(6)




and


[image: there is no content]



(7)




where [image: there is no content] is a linear state feedback that renders [image: there is no content] Hurwitz. [image: there is no content] is the adaptive input vector used to compensate for the unknown parameter, system nonlinearity and other disturbances. Then, Equation (4) can be rewritten as:


x˙(t)=Ax(t)+B(um+uad)+f(t,x(t))x(0)=x0



(8)







[image: there is no content] should satisfies the following two assumptions:



Assumption 1. 

(Uniform boundedness of [image: there is no content]).



For any [image: there is no content], there exists [image: there is no content], such that [image: there is no content].





Assumption 2. 

(Boundedness of partial derivatives).



For arbitrary [image: there is no content], there exist [image: there is no content] and [image: there is no content], such that, for arbitrary [image: there is no content], as long as [image: there is no content], the partial derivatives of [image: there is no content] are bounded:


∂f∂x∞≤dfx(δ),∂f∂t1≤dft(δ)



(9)









In this paper, the system equilibrium [image: there is no content] implies that the rotor is along the vertical direction, which is just the control aim of the system. In other words, the control input must ensure that the equilibrium of Equation (8) is [image: there is no content]. While the rotor lies vertically, the external control torques also need to be zero, i.e., [image: there is no content]. Therefore, [image: there is no content] for all [image: there is no content], and Assumption 1 is satisfied naturally. Assumption 2 requires that [image: there is no content] is continuous about [image: there is no content] and slowly-varying about t. [image: there is no content] consists of three parts: [image: there is no content], [image: there is no content] and [image: there is no content]. It is obvious that [image: there is no content] and [image: there is no content] satisfy the requirement, and the key issue is [image: there is no content]. Equation (7) indicates that [image: there is no content] contains [image: there is no content] and [image: there is no content], while [image: there is no content] satisfies the requirement, and [image: there is no content] is an artificial adaptive control input, which can be designed to be continuous and slowly varying. Therefore, Assumption 2 can be satisfied.



The control aim is to seek a proper adaptive control signal [image: there is no content], such that the state in Equation (2) is stable about the origin.




3. [image: there is no content] Adaptive Control Design of the Rotor Orientation System


3.1. Semi-Global Linearization of the System


If the nonlinearity [image: there is no content] is subject to the two assumptions in Section 2, then, for all [image: there is no content], [image: there is no content] can be linearized to a time-varying equation about [12], the norm of [image: there is no content] [12], i.e.,


f(t,x(t))=Kθ(t)∥x(t)∥L∞+σ(t)



(10)




where [image: there is no content], Θ is a convex set and [image: there is no content], [image: there is no content]. [image: there is no content] and F are defined in Assumptions 1 and 2, respectively. In addition, there exists a constant [image: there is no content], such that [image: there is no content].



In this paper, as [image: there is no content], [image: there is no content], and Equation (8) can be written as a linear time varying system:


x˙=Amx+Buad+Kθ(t)∥x(t)∥L∞x(0)=x0



(11)








3.2. State Predictor


For the linearly-parameterized system Equation (11), consider the following state predictor:


x^˙(t)=Amx^(t)+BK^θ(t)∥x(t)∥∞+uadx^(0)=x0



(12)




where [image: there is no content] is the state of the predictor, K^θ=K^θ1(t)K^θ2(t)⊤ is the estimate of [image: there is no content] and [image: there is no content].




3.3. [image: there is no content] Adaptive Control Algorithm


To streamline the following derivation, we need to use the projection operator [image: there is no content] , which is defined in [12]. The projection operator has the following property: For any [image: there is no content], [image: there is no content] and [image: there is no content], we have:


[image: there is no content]



(13)







With the projection operator, the [image: there is no content] adaptive control algorithm can be expressed as:


K^˙θ=ΓProjK^θ,−B⊤Pe∥x(t)∥L∞,K^θ(0)=K^θ0∈Θ



(14)




where [image: there is no content] is the adaptive gain and [image: there is no content] is a positive matrix that solves the Lyapunov equation [image: there is no content] for any [image: there is no content]. [image: there is no content] is the prediction error. The projection operator ensures that [image: there is no content] for all [image: there is no content].



The adaptive control signal is:


[image: there is no content]



(15)




where [image: there is no content] is a low-pass filter, [image: there is no content] is the Laplace transform of [image: there is no content] and [image: there is no content] is the reference input signal. In this paper, the control aim is [image: there is no content] at [image: there is no content], so rg=00⊤.



The block diagram of the adaptive control is illustrated in Figure 2.


Figure 2. [image: there is no content] adaptive control system algorithm.
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4. Adaptive Control System Analysis


4.1. Boundedness of State Error and Parameter Error


To evaluate the performance of the adaptive control algorithm, first, we need to analyze the error boundedness. Consider the following prediction error equation derived from Equations (11) and (12):


e˙(t)=Ame(t)+Bθe(t)∥x(t)∥L∞e(0)=0



(16)




where [image: there is no content]. For the stability of Equation (16), we have the following proposition:



Proposition 1. 

If the adaptive input [image: there is no content] is defined as Equation (15), then we have the following result:


[image: there is no content]



(17)




where:


[image: there is no content]













Proof. 

First, we consider the following positive definite function:


[image: there is no content]



(18)







Obviously,


[image: there is no content]



(19)







The derivative of V about t is:


V˙(e,θe)=e˙⊤Pe+e⊤Pe˙+2ΓθeK^˙θ−2ΓθeK˙θ=−e⊤Qe+2θeB⊤Pe∥x∥L∞+Proj(K^θ,−B⊤Pe∥x∥L∞)−2ΓθeK˙θ



(20)







According to the property of the projection operator, it follows that:


[image: there is no content]



(21)







Then, the derivative yields:


[image: there is no content]



(22)







Given that [image: there is no content], [image: there is no content] and [image: there is no content], for any [image: there is no content], the parameter error yields:


∥θeK˙θ∥≤∥θe∥·∥K˙θ∥=∥K^θ−Kθ∥·∥K˙θ∥≤2maxϑ∈Θ∥ϑ∥·dθ1Γθe(τ)⊤θe(τ)≤4Γmaxϑ∈Θ∥ϑ∥2



(23)







Therefore, if, for any τ, there exists [image: there is no content], the quadratic form of the prediction error has to yield:


[image: there is no content]



(24)







Hence:


[image: there is no content]



(25)




which means that, for any [image: there is no content], as long as [image: there is no content], its derivative yields.


[image: there is no content]



(26)




Given that [image: there is no content], therefore, for all [image: there is no content], it follows that:


[image: there is no content]



(27)




Meanwhile, as [image: there is no content], it follows that:


∥e(t)∥L∞2≤θmλmin(P)Γ,∀t≥0



(28)




Then Equation (17) is proved. ☐





According to Equation (18), the parameter error yields:


[image: there is no content]



(29)




which leads to:


[image: there is no content]



(30)







Therefore, the parameter error is also bounded.




4.2. Boundedness of State Variables


To analyze the boundedness of the system state [image: there is no content], we first consider the following ideal system:


x˙id(t)=Amxid(t)+BKθ∥xid(t)∥∞+uid(t)xid(0)=x0



(31)







The ideal control signal is:


[image: there is no content]



(32)




where [image: there is no content] is the Laplace transform of [image: there is no content].



We define [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content] are, respectively, fourth-order and second-order identity matrices. According to the definition of [image: there is no content] in Equation (10), [image: there is no content]. It can be proven that [image: there is no content] in Equation (31) is banded input banded state (BIBS) stable when [image: there is no content].



Proof. 

According to the definition of [image: there is no content], Equation (31) can be transformed to:


[image: there is no content]



(33)







After performing some algebraic operations, we get:


[image: there is no content]



(34)




where [image: there is no content]. For ∀τ∈(0,∞) and t∈[0,τ], the following bound exists [12]:


∥xidτ∥L∞≤∥G(s)Kθ∥L1·∥xid(t)∥∞τL∞+∥xinτ∥L∞



(35)







According to the definition of the ∞-norm and the [image: there is no content]-norm, the following bound exists:


∥xidτ∥L∞≤xidτ(t)∞L∞



(36)







Meanwhile, since [image: there is no content], therefore,


∥xidτ∥L∞≤∥xin∥L∞1−∥G(s)Kθ∥L1



(37)







According to the definition of [image: there is no content], if it is bounded, [image: there is no content] will be bounded. Therefore, System (31) is BIBS stable.



The system in Equation (31) is equivalent to the system predictor in Equation (12) while [image: there is no content]. Because [image: there is no content] and [image: there is no content] are both bounded, [image: there is no content] is bounded. Meanwhile, since [image: there is no content] and [image: there is no content] is also bounded, therefore, [image: there is no content] is bounded, i.e., System (2) is BIBS stable under the [image: there is no content]-controller. ☐






4.3. Performance of the Adaptive System


According to Equation (17), the prediction error [image: there is no content] can be reduced by enhancing [image: there is no content] or the adaptive gain Γ. [image: there is no content] depends on the performance of the linear part [image: there is no content], i.e., the wider the stability margin of the linear part of the system is, the smaller will be the prediction error. Similarly, the increase of Γ will reduce the error, as well.





5. Simulation Results for the Adaptive Control System


5.1. Simulation of the Adaptive Controller


Consider the nominal mechanical parameters in Table 1.



Table 1. Rotor parameters.







	
Parameter

	
Value

	
Unit






	
Material

	
Iron

	
–




	
Outer diameter

	
150

	
mm




	
Inner diameter

	
142

	
mm




	
Height

	
150

	
mm




	
Mass

	
1.737

	
kg










According to Table 1, the nominal rotational inertias of the rotor about the two axes are: Jxy0=0.01864kg·m2 and Jz0=0.008439kg·m2. Then, the system parameters in Equation (8) are:


A=00100001161.400−185.10161.4185.10,B=000056.650056.65



(38)







The control input is:


[image: there is no content]



(39)







Therefore,


[image: there is no content]



(40)







Let the parameter uncertainties be [image: there is no content] and [image: there is no content], the adaptive gain be [image: there is no content] and the low-pass filter be:


[image: there is no content]



(41)







The bandwidth of [image: there is no content] will influence the stability and performance of the system. A detailed discussion of the low-pass filter [image: there is no content] is in [12].



The simulation model using MATLAB/Simulink is illustrated in Figure 3. (a) is the parameter adaptive law in Equation (14); (b) is the nonadaptive control input [image: there is no content] in Equation (39); (c) is the low-pass filter [image: there is no content] in Equation (41); (d) is the reference input, which is zero in this paper’s situation; (e) is the state predictor in Equation (12); (f) is the plant system in Equation (2); (g) gives the parameter uncertainties; (h) is the external disturbance.


Figure 3. Block diagram in Simulink.



[image: Applsci 06 00242 g003]






The simulation results for the prediction error in every component are shown in Figure 4. All of the components of the prediction error get reduced as time progresses.


Figure 4. Prediction error simulation results for: (a) the x-direction component [image: there is no content]; (b) the y-direction component [image: there is no content]; (c) the x-direction angular error [image: there is no content]; and (d) y-direction angular error [image: there is no content].



[image: Applsci 06 00242 g004]






The variation trends of system parameter prediction, [image: there is no content], and one of the prediction error components, [image: there is no content], under different adaptive gains are shown in Figure 5. It can be seen that, when Γ is larger, [image: there is no content] and [image: there is no content] will converge more quickly. Therefore, Γ should be as large as possible, as long as the actuator of the control system can be achieved.


Figure 5. Simulation comparison for Γ values: (a) comparison of parameter [image: there is no content]; (b) comparison of error [image: there is no content].



[image: Applsci 06 00242 g005]







5.2. Simulation of the Rotor Orientation System


Figure 4 and Figure 5 imply that the adaptive control algorithm in Equations (14) and (15) is effective. On this basis, to further simulate the performance of the orientation system, we introduce more uncertainties. Besides the parameter uncertainty, consider the following uncertain system:


x˙=Amx+B(uad+Kθ∥x∥∞+σ),x(0)=x0



(42)




where [image: there is no content] refers to an external random disturbance. Unlike Equation (11), here [image: there is no content].



Let the adaptive controller activate at t=4s, then we obtain the result of the rotor angular drift, [image: there is no content], from the vertical direction, as shown in Figure 6. It is obvious that, after the controller actuates, the angular displacement of the rotor reduces from more than [image: there is no content] to [image: there is no content]. Therefore, the orientation control is effective.


Figure 6. Simulation result for the orientation control system.



[image: Applsci 06 00242 g006]








6. Experimental Results for the Rotor Orientation System


6.1. Experimental Devices


To demonstrate the feasibility of the adaptive control algorithm, we designed an experimental platform as shown in Figure 7. The iron rotor lies vertically in the center. It is connected to the drive motor at the bottom with a universal bearing, which enables the rotor to swing freely while rotating with the motor coaxially. Four electromagnets lie perpendicularly around the rotor to provide the orientation control forces. Two gap sensors are installed at a [image: there is no content] interval to detect the attitude of the rotor and provide feedback signals to the control system.


Figure 7. Experimental platform for the orientation control system: (a) electromagnet; (b) rotor; (c) universal joint; (d) motor.



[image: Applsci 06 00242 g007]







6.2. Experimental Process


The block diagram is illustrated in Figure 8. In the experiment, we choose dSPACE as the digital controller.


Figure 8. Block diagram of the orientation experiment: (a) gap sensor; (b) electromagnet; (c) rotor; (d) gap calculation; (e) angle calculation; (f) controller; (g) control current calculation; (h) power amplifier.



[image: Applsci 06 00242 g008]






The experimental program is as follows:

	1.

	
Measurement of the rotor drift angle.









The drift angles of the rotor in the [image: there is no content] directions [image: there is no content] and [image: there is no content], respectively, are converted from the two gap values [image: there is no content] and [image: there is no content]. The two angles are the state variables [image: there is no content] and [image: there is no content] in Equation (2).



	2.

	
Calculation of the electromagnetic force.







According to Equations (15) and (39), the control torque is:


[image: there is no content]



(43)







The torque is given by:


Txe=(Fy−−Fy+)hmTye=(Fx+−Fx−)hm



(44)




where Fx+,Fx−,Fy+ and [image: there is no content] are the forces of each electromagnet in the X and Y directions and [image: there is no content] is the installation height of the electromagnets.



Because the electromagnetic force can only be attractive, to make them continuous and smooth, the forces of each direction are realized via a bias control, i.e.,


[image: there is no content]



(45)




where [image: there is no content] is the reference value of each electromagnet, about which each force varies. The control force signal for each electromagnet is determined through Equations (43) and (45).



	3.

	
Calculation of the current in every electromagnet.







The electromagnetic force of each electromagnet yields:


[image: there is no content]



(46)




where A and B are factors corresponding to the electromagnet. Substituting Equations (46) into the control force Equations (45) gives the current signal of each electromagnet.


[image: there is no content]



(47)




where [image: there is no content] and [image: there is no content] are the gaps of each electromagnet. The current signal in Equation (47) can be loaded onto each electromagnet via a power amplifier.




6.3. Experimental Results


The experimental results for the orientation control system are shown in Figure 9. To clearly show the performance of the adaptive orientation control system, a result of the nonadaptive orientation control, that [image: there is no content] and only [image: there is no content] activates, is also illustrated, as a contrast. [image: there is no content] is the average angular displacement without control, which is about [image: there is no content] of the adaptive control and [image: there is no content] of the nonadaptive control. The control system starts to actuate at t=4s.


Figure 9. Experimental results for the angular drift of the rotor orientation system.



[image: Applsci 06 00242 g009]






It can be seen from Figure 5 that, after the controller activates, the average angular displacement of the rotor from the vertical direction reduces to less than ∼50% of the adaptive controller and about ∼60% of the nonadaptive controller. The adaptive controller has a better performance in vibration reduction.



Furthermore, by comparing Figure 9 with Figure 6, it can be seen that the trend of the angular displacement is basically the same.





7. Conclusions


In the paper, an adaptive orientation control system for a vertical low-speed rotor is presented. The nonlinearity and parameter uncertainty are transformed into an equivalent linear time-varying form about the norm of the system state. Then, an adaptive algorithm is established based on the state predictor, and an adaptive position control method is presented to overcome the parameter uncertainty, nonlinearity and random disturbance. The stability and boundedness of the prediction error has been analyzed. The analysis indicates that the prediction error is uniformly bounded and that the bound is inversely proportional to the square root of the adaptive gain. Meanwhile, the state of the adaptive control system is BIBS stable. Finally, the control system is verified via simulation and experiment. Simulation results demonstrate the boundedness of the prediction error and the parameter estimation. The experimental result shows that the position control method reduces the amplitude of rotor vibration effectively during rotation. The work in this paper is of significance for control methods and the design of vertical AMB systems and similar rotor mechanical systems.
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