Size Control of Carbon Encapsulated Iron Nanoparticles by Arc Discharge Plasma Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CEINPs
2.2. Characterization
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iacovita, C.; Florea, A.; Dudric, R.; Pall, E.; Moldovan, A.I.; Tetean, R.; Stiufiuc, R.; Lucaciu, C.M. Small versus large iron oxide magnetic nanoparticles: Hyperthermia and cell uptake properties. Molecules 2016, 21. [Google Scholar] [CrossRef] [PubMed]
- Higashi, T.; Minegishi, H.; Nagaoka, Y.; Fukuda, T.; Echigo, A.; Usami, R.; Maekawa, T.; Hanajiri, T. Effects of superparamagnetic nanoparticle clusters on the polymerase chain reaction. Appl. Sci. 2012, 2, 303–314. [Google Scholar] [CrossRef]
- Popa, E.G.; Santo, V.E.; Rodrigues, M.T.; Gomes, M.E. Magnetically-responsive hydrogels for modulation of chondrogenic commitment of human adipose-derived stem cells. Polymers 2016, 8. [Google Scholar] [CrossRef]
- Li, Y.; Burke, D.T.; Kopelman, R.; Burns, M.A. Asynchronous magnetic bead rotation (AMBR) microviscometer for label-free DNA analysis. Biosensors 2014, 4, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Singamaneni, S.; Bliznyuk, V.N.; Binek, C.; Tsymbal, E.Y. Magnetic nanoparticles: Recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 2011, 21, 16819–16845. [Google Scholar] [CrossRef]
- Lemos, B.R.; Teixeira, A.P.C.; Ardisson, J.D.; Macedo, W.A.; Fernandez-Outon, L.E.; Amorim, C.C.; Moura, F.C.; Lago, R.M. Magnetic amphiphilic composites applied for the treatment of biodiesel wastewaters. Appl. Sci. 2012, 2, 513–524. [Google Scholar] [CrossRef]
- Yepez, A.; De, S.; Climent, M.S.; Romero, A.A.; Luque, R. Microwave-assisted conversion of levulinic acid to γ-valerolactone using low-loaded supported iron oxide nanoparticles on porous silicates. Appl. Sci. 2015, 5, 532–543. [Google Scholar] [CrossRef]
- Galakhov, V.; Shkvarin, A.; Semenova, A.; Uimin, M.; Mysik, A.; Shchegoleva, N.; Yermakov, A.Y.; Kurmaev, E. Characterization of carbon-encapsulated nickel and iron nanoparticles by means of x-ray absorption and photoelectron spectroscopy. J. Phys. Chem. C 2010, 114, 22413–22416. [Google Scholar] [CrossRef]
- De Matteis, L.; Fernandez-Pacheco, R.; Custardoy, L.; García-Martín, M.L.; de la Fuente, J.S.M.; Marquina, C.; Ibarra, M.R. Influence of a silica interlayer on the structural and magnetic properties of sol–gel TiO2-coated magnetic nanoparticles. Langmuir 2014, 30, 5238–5247. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-S.; Chiu, C.-C.; Chang, R.-W.; Liou, Y.-H.; Teng, M.-H. Synthesis and properties of modified graphite encapsulated iron metal nanoparticles. Diam. Relat. Mater. 2016, 63, 153–158. [Google Scholar] [CrossRef]
- Sanaee, M.R.; Freire, V.; Aguil, N.; Bertran, E.; Aguiló-Aguayo, N. Design and synthesis of carbon encapsulated iron nanoparticle for drug delivery. In Proceedings of the 10th International Conference on nanoscience and nanotechnology, Bilbao, Spain, 23–26 April 2013; pp. 212–213.
- Schärtl, W. Current directions in core–shell nanoparticle design. Nanoscale 2010, 2, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.H.; Salabas, E.E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Bakthavathsalam, P.; Rajendran, V.K.; Saran, U.; Chatterjee, S.; Ali, B.M.J. Immunomagnetic nanoparticle based quantitative pcr for rapid detection of salmonella. Microchim. Acta 2013, 180, 1241–1248. [Google Scholar] [CrossRef]
- Zhao, B.; Yu, X.; Cai, R.; Ran, R.; Wang, H.; Shao, Z. Solution combustion synthesis of high-rate performance carbon-coated lithium iron phosphate from inexpensive iron (III) raw material. J. Mater. Chem. 2012, 22, 2900–2907. [Google Scholar] [CrossRef]
- Xuan, S.; Hao, L.; Jiang, W.; Gong, X.; Hu, Y.; Chen, Z. A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology 2007, 18. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhu, Z.; Liu, Z. Carbon-encapsulated fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 2005, 43, 369–374. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Choi, C.; Kim, B. Structure and magnetic properties of Fe (C) and Co (C) nanocapsules prepared by chemical vapor condensation. J. Alloys Compd. 2003, 361, 289–293. [Google Scholar] [CrossRef]
- Nishijo, J.; Okabe, C.; Bushiri, J.; Kosugi, K.; Nishi, N.; Sawa, H. Formation of carbon-encapsulated metallic nano-particles from metal acetylides by electron beam irradiation. Eur. Phys. J. D Atom. Mol. Opt. Plasma Phys. 2005, 34, 219–222. [Google Scholar] [CrossRef]
- Park, J.; Jeong, S.; Jeong, M.; Kim, J.; Cho, B. Synthesis of carbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution. Carbon 2008, 46, 1369–1377. [Google Scholar] [CrossRef]
- Chaitoglou, S.; Sanaee, M.R.; Aguiló-Aguayo, N.; Bertran, E. Arc-discharge synthesis of iron encapsulated in carbon nanoparticles for biomedical applications. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Song, H.; Chen, X. Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene. Chem. Phys. Lett. 2003, 374, 400–404. [Google Scholar] [CrossRef]
- Chen, C.-J.; Chiang, R.-K.; Wang, J.-S.; Wang, S.-L. Synthesis and magnetic properties of octahedral magnetite nanoparticles in 20–110 nm range. J. Nanopart. Res. 2013, 15. [Google Scholar] [CrossRef]
- Ando, Y.; Iijima, S. Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys. Part 2 Lett. 1993, 32. [Google Scholar] [CrossRef]
- Saito, Y.; Inagaki, M.; Shinohara, H.; Nagashima, H.; Ohkohchi, M.; Ando, Y. Yield of fullerenes generated by contact arc method under He and Ar: Dependence on gas pressure. Chem. Phys. Lett. 1992, 200, 643–648. [Google Scholar] [CrossRef]
- Fang, F.; Kennedy, J.; Futter, J.; Markwitz, A.; Manikandan, E. Transition metal doped metal oxide nanostructures synthesized by arc discharge method. In Proceedings of the 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Suzhou, China, 26–30 August 2013; pp. 220–223.
- Aguiló-Aguayo, N.; Liu, Z.; Bertran, E.; Yang, J. Thermal-induced structural evolution of carbon-encapsulated iron nanoparticles generated by two different methods. J. Phys. Chem. C 2013, 117, 19167–19174. [Google Scholar] [CrossRef]
- Bystrzejewski, M.; Huczko, A.; Lange, H.; Cudziło, S.; Kiciński, W. Combustion synthesis route to carbon-encapsulated iron nanoparticles. Diam. Relat. Mater. 2007, 16, 225–228. [Google Scholar] [CrossRef]
- Borysiuk, J.; Grabias, A.; Szczytko, J.; Bystrzejewski, M.; Twardowski, A.; Lange, H. Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon 2008, 46, 1693–1701. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, P.; He, N. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon 2006, 44, 3277–3284. [Google Scholar] [CrossRef]
- Bertran-Serra, E.; Inestrosa-Izurieta, M. Method and Reactor for the Production of Carbon-Coated Nanoparticles. Patent 2,012,025,652, 1 March 2012. [Google Scholar]
- Sanaee, M.R. Synthesis and Characterization of Engineered Carbon-Based Nanoparticles by arc-Discharge Plasma; Universitat de Barcelona: Barcelona, Spain, 2015. [Google Scholar]
- Sanaee, M.R.; Bertran, E. Synthesis of carbon encapsulated mono- and multi-iron nanoparticles. J. Nanomater. 2015, 2015. [Google Scholar] [CrossRef]
- Aguayo, N.A. Production and Characterisation of Carbon-Encapsulated Iron Nanoparticles by arc-Discharge Plasma. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2012. [Google Scholar]
- Thomas, R.; Swathi, R. Organization of metal nanoparticles for surface-enhanced spectroscopy: A difference in size matters. J. Phys. Chem. C 2012, 116, 21982–21991. [Google Scholar] [CrossRef]
- Oh, W.-K.; Yoon, H.; Jang, J. Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials 2010, 31, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- McDermott, S.; Guimaraes, A.R. Magnetic nanoparticles in the imaging of tumor angiogenesis. Appl. Sci. 2012, 2, 525–534. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, N.; Maurizi, L.; Galmarini, S.; Ollivier-Beuzelin, M.G.; Coullerez, G.; Bertran, E.; Hofmann, H. Aqueous stabilisation of carbon-encapsulated superparamagnetic α-iron nanoparticles for biomedical applications. Dalton Trans. 2014, 43, 13764–13775. [Google Scholar] [CrossRef] [PubMed]
- Grudzinski, I.P.; Bystrzejewski, M.; Cywinska, M.A.; Kosmider, A.; Poplawska, M.; Cieszanowski, A.; Ostrowska, A. Cytotoxicity evaluation of carbon-encapsulated iron nanoparticles in melanoma cells and dermal fibroblasts. J. Nanopart. Res. 2013, 15. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M. Nanogeometry: Beyond drug delivery. Nat. Nanotechnol. 2008, 3, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Li, X.; Wang, X.; Yan, H.; Zhang, C.; Wang, H. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon 2010, 48, 3858–3863. [Google Scholar] [CrossRef]
- Huo, J.; Song, H.; Chen, X. Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene. Carbon 2004, 42, 3177–3182. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, L.; Lin, K.; Jin, F.-M.; Wang, B.; Shi, S.-X.; Yang, D.-A.; Wang, H.; He, F.; Chen, X.-P. Preparation of carbon-encapsulated iron nanoparticles in high yield by DC arc discharge and their characterization. J. Alloys Compd. 2013, 553, 367–374. [Google Scholar] [CrossRef]
- Ruiz-Hernandez, E.; Baeza, A.; Vallet-Regí, M.A. Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano 2011, 5, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Bittova, B.; Vejpravova, J.P.; Kalbac, M.; Burianova, S.; Mantlikova, A.; Danis, S.; Doyle, S. Magnetic properties of iron catalyst particles in HiPco single wall carbon nanotubes. J. Phys. Chem. C 2011, 115, 17303–17309. [Google Scholar] [CrossRef]
- Ramírez-Meneses, E.; Betancourt, I.; Morales, F.; Montiel-Palma, V.; Villanueva-Alvarado, C.; Hernández-Rojas, M. Superparamagnetic nickel nanoparticles obtained by an organometallic approach. J. Nanopart. Res. 2011, 13, 365–374. [Google Scholar] [CrossRef]
- Seehra, M.; Singh, V.; Dutta, P.; Neeleshwar, S.; Chen, Y.; Chen, C.; Chou, S.; Chen, C.C. Size-dependent magnetic parameters of fcc FePt nanoparticles: Applications to magnetic hyperthermia. J. Phys. D Appl. Phys. 2010, 43. [Google Scholar] [CrossRef]
- Dutta, P.; Pal, S.; Seehra, M.; Shah, N.; Huffman, G. Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef]
- Sanchez, R.; Rivas, J.; Vaqueiro, P.; Lopez-Quintela, M.; Caeiro, D. Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol–gel method. J. Magn. Magn. Mater. 2002, 247, 92–98. [Google Scholar] [CrossRef]
- Donegan, K.P.; Godsell, J.F.; Otway, D.J.; Morris, M.A.; Roy, S.; Holmes, J.D. Size-tuneable synthesis of nickel nanoparticles. J. Nanopart. Res. 2012, 14, 670. [Google Scholar] [CrossRef]
- Shiratsuchi, Y.; Yamamoto, M.; Endo, Y.; Li, D.; Bader, S. Superparamagnetic behavior of ultrathin fe films grown on Al2O3 (0001) substrates. J. Appl. Phys. 2003, 94, 7675–7679. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Bae, C.J.; Park, J.G.; Noh, H.J.; Park, J.H.; Hyeon, T. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater. 2005, 15, 503–509. [Google Scholar] [CrossRef]
- Raj, B. Frontiers in Materials Science; Universities Press: Bangalore, India, 2005. [Google Scholar]
- Shigeta, M.; Murphy, A.B. Thermal plasmas for nanofabrication. J. Phys. D Appl. Phys. 2011, 44. [Google Scholar] [CrossRef]
- Saito, Y. Nanoparticles and filled nanocapsules. Carbon 1995, 33, 979–988. [Google Scholar] [CrossRef]
- Majetich, S.; Scott, J.; Brunsman, E.; McHenry, M. Formation of nanoparticles in a carbon arc. In Proceedings of the MRS Proceedings, San Francisco, CA, USA, 4–8 April 1994; Cambridge University Press: Cambridge, UK; p. 29.
- Scott, J.H.J.; Majetich, S.A. Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phys. Rev. B 1995, 52. [Google Scholar] [CrossRef]
- Seraphin, S.; Zhou, D.; Jiao, J. Filling the carbon nanocages. J. Appl. Phys. 1996, 80, 2097–2104. [Google Scholar] [CrossRef]
- Bystrzejewski, M.; Huczko, A.; Lange, H. Arc plasma route to carbon-encapsulated magnetic nanoparticles for biomedical applications. Sens. Actuators B Chem. 2005, 109, 81–85. [Google Scholar] [CrossRef]
- Haines, J.; Tsai, C. Graphite Sublimation Tests for the Muon Collider/Neutrino Factory Target Development Program; ORNL/TM-2002/27; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2002. [Google Scholar]
- Tsai, C.; Gabriel, T.; Haines, J.; Rasmussen, D. Graphite sublimation tests for target development for the muon collider/neutrino factory. In Proceedings of the 21st IEEE/NPS Symposium on Fusion Engineering SOFE 05, Knoxville, TN, USA, 26–29 September 2005; pp. 1–3.
- Farhat, S.; de La Chapelle, M.L.; Loiseau, A.; Scott, C.D.; Lefrant, S.; Journet, C.; Bernier, P. Diameter control of single-walled carbon nanotubes using argon–helium mixture gases. J. Chem. Phys. 2001, 115, 6752–6759. [Google Scholar] [CrossRef]
- Yadav, S.K. Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration; Springer: Berlin, Germany, 2016. [Google Scholar]
- Peng, R.; Zhang, W.; Ran, Q.; Liang, C.; Jing, L.; Ye, S.; Xian, Y. Magnetically switchable bioelectrocatalytic system based on ferrocene grafted iron oxide nanoparticles. Langmuir 2011, 27, 2910–2916. [Google Scholar] [CrossRef] [PubMed]
- Sethuraman, V.A.; Hardwick, L.J.; Srinivasan, V.; Kostecki, R. Surface structural disordering in graphite upon lithium intercalation/deintercalation. J. Power Sources 2010, 195, 3655–3660. [Google Scholar] [CrossRef]
- Laplaze, D.; Alvarez, L.; Guillard, T.; Badie, J.; Flamant, G. Carbon nanotubes: Dynamics of synthesis processes. Carbon 2002, 40, 1621–1634. [Google Scholar] [CrossRef]
Sample Name | Ar100 | Ar75 | Ar50 | Ar25 | Ar0 |
---|---|---|---|---|---|
Gas% | 100% Ar | 75% Ar + 25% He | 50% Ar + 50% He | 25% Ar + 75% He | 0% Ar + 100% He |
CEINPs 1 Sample | Ar100 (Pure Argon) | Ar75 | Ar50 | Ar25 | Ar0 (Pure Helium) |
---|---|---|---|---|---|
CV | 0.17 | 0.21 | 0.30 | 0.22 | 0.21 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanaee, M.R.; Chaitoglou, S.; Aguiló-Aguayo, N.; Bertran, E. Size Control of Carbon Encapsulated Iron Nanoparticles by Arc Discharge Plasma Method. Appl. Sci. 2017, 7, 26. https://doi.org/10.3390/app7010026
Sanaee MR, Chaitoglou S, Aguiló-Aguayo N, Bertran E. Size Control of Carbon Encapsulated Iron Nanoparticles by Arc Discharge Plasma Method. Applied Sciences. 2017; 7(1):26. https://doi.org/10.3390/app7010026
Chicago/Turabian StyleSanaee, Mohammad Reza, Stefanos Chaitoglou, Noemí Aguiló-Aguayo, and Enric Bertran. 2017. "Size Control of Carbon Encapsulated Iron Nanoparticles by Arc Discharge Plasma Method" Applied Sciences 7, no. 1: 26. https://doi.org/10.3390/app7010026
APA StyleSanaee, M. R., Chaitoglou, S., Aguiló-Aguayo, N., & Bertran, E. (2017). Size Control of Carbon Encapsulated Iron Nanoparticles by Arc Discharge Plasma Method. Applied Sciences, 7(1), 26. https://doi.org/10.3390/app7010026