Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD) Method
Abstract
:1. Introduction
1.1. Asphalt Material
1.2. Molecular Dynamics (MD) Method
1.3. Objectives and Sections
2. Force Field and Optimization Methods
2.1. Classical MD Simulation Methods
2.2. Force Field
2.3. Optimization Methods
3. Model Generation
4. Physical Properties of the Control and xGNP Modified Asphalt Models
4.1. Density
4.2. Glass Transition Temperature
5. Rheological Properties of the Control and xGNP Modified Asphalt Models
5.1. Viscosity Measurement Method and Results
5.2. MD Viscosity Aimulation Methods and Results
5.3. Statistical Analysis for Viscosities of the Control and xGNP Modified Asphalt Models
5.4. Comparison of Viscosity Predictions of the Control and xGNP Modified Asphalt Models
6. Thermal Property of the Control and xGNP Modified Asphalt Models
6.1. Thermal Conductivity Measurement Methods and Results
6.2. MD Simulation Methods and Results
6.3. Comparison of Thermal Conductivity of the Control and xGNP Modified Asphalt Binder Models
7. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Asphalt Institute. Superpave Performance Graded Asphalt Binder Specification and Testing; Superpave Series No 1 (SP-1); Asphalt Institute: Lexington, KY, USA, 2003. [Google Scholar]
- Yao, H.; Li, L.; Xie, H.; Dan, H.-C.; Yang, X.-L. Microstructure and Performance Analysis of Nanomaterials Modified Asphalt. In Proceedings of the American Society of Civil Engineers — Geo Hunan International Conference, Hunan, China, 9–11 June 2011; pp. 220–228.
- Ahmad, S.; Tripathy, D.B.; Mishra, A. Sustainable Nanomaterials. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Yao, H.; You, Z.; Li, L.; Goh, S.W.; Lee, C.H.; Yap, Y.K.; Shi, X. Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Const. Build. Mater. 2013, 38, 327–337. [Google Scholar] [CrossRef]
- Yao, H.; You, Z.; Li, L.; Shi, X.; Goh, S.W.; Mills-Beale, J.; Wingard, D. Performance of asphalt binder blended with non-modified and polymer-modified nanoclay. Const. Build. Mater. 2012, 35, 159–170. [Google Scholar] [CrossRef]
- Yao, H.; You, Z.; Li, L.; Lee, C.H.; Wingard, D.; Yap, Y.K.; Shi, X.; Goh, S.W. Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica. J. Mater. Civ. Eng. 2013, 25, 1619–1630. [Google Scholar] [CrossRef]
- Liu, X.; Wu, S. Study on the graphite and carbon fiber modified asphalt concrete. Const. Build. Mater. 2011, 25, 1807–1811. [Google Scholar] [CrossRef]
- Wu, S.P.; Mo, L.T.; Shui, Z.H. Piezoresistivity of Graphite Modified Asphalt-Based Composites. Key Eng. Mater. 2003, 249, 391–396. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347. [Google Scholar] [CrossRef] [PubMed]
- Girit, Ç.Ö.; Meyer, J.C.; Erni, R.; Rossell, M.D.; Kisielowski, C.; Yang, L.; Park, C.-H.; Crommie, M.F.; Cohen, M.L.; Louie, S.G.; et al. Graphene at the Edge: Stability and Dynamics. Science 2009, 323, 1705–1708. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Rahman, A. Correlations in the Motion of Atoms in Liquid Argon. Phys. Rev. 1964, 136, A405–A411. [Google Scholar] [CrossRef]
- Alder, B.J.; Wainwright, T.E. Studies in Molecular Dynamics. I. General Method. J. Che. Phys. 1959, 31, 459–466. [Google Scholar] [CrossRef]
- Schlick, T. Pursuing Laplace’s Vision on Modern Computers. In Mathematical Approaches to Biomolecular Structure and Dynamics; Mesirov, J.P., Schulten, K., Sumners, D.W., Eds.; Springer: New York, NY, USA, 1996; Volume 82, pp. 219–247. [Google Scholar]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Martin, M.G. MCCCS Towhee: A tool for Monte Carlo molecular simulation. Mol. Simul. 2013, 39, 1212–1222. [Google Scholar] [CrossRef]
- Zhang, L.; Greenfield, M.L. Analyzing Properties of Model Asphalts Using Molecular Simulation. Energy Fuels 2007, 21, 1712–1716. [Google Scholar] [CrossRef]
- Zhang, L.; Greenfield, M.L. Effects of Polymer Modification on Properties and Microstructure of Model Asphalt Systems. Energy Fuels 2008, 22, 3363–3375. [Google Scholar] [CrossRef]
- Bhasin, A.; Bommavaram, R.; Greenfield, M.; Little, D. Use of Molecular Dynamics to Investigate Self-Healing Mechanisms in Asphalt Binders. J. Mater. Civ. Eng. 2011, 23, 485–492. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L. Nanoscale modelling of mechanical properties of asphalt–aggregate interface under tensile loading. Int. J. Pavement Eng. 2010, 11, 393–401. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.; Xiao, Y.; Wang, P.; Liu, X. Influence of graphite on the thermal characteristics and anti-ageing properties of asphalt binder. Constr. Build. Mater. 2014, 68, 220–226. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.; You, Z.; Ye, M.; Yap, Y.K. Rheological Properties, Low-Temperature Cracking Resistance, and Optical Performance of Exfoliated Graphite Nanoplatelets Modified Asphalt Binder. Constr. Build. Mater. 2016, 13, 988–996. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.; You, Z. Molecular dynamics simulation of physicochemical properties of the asphalt model. Fuel 2016, 164, 83–93. [Google Scholar] [CrossRef]
- Bandyopadhyay, A. Molecular Modeling of EPON 862-DETDA Polymer. Ph.D. Thesis, Michigan Technological University, Houghton, MI, USA, 2012. [Google Scholar]
- Li, Z.; Yu, H.; Zhuang, W.; Mukamel, S. Geometry and excitation energy fluctuations of NMA in aqueous solution with CHARMM, AMBER, OPLS, and GROMOS force fields: Implications for protein ultraviolet spectra simulation. Chem. Phys. Lett. 2008, 452, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, S.; Bick, A.; Subramanian, L.; Krokidis, X. Influences on the stability of collagen triple-helix. Fluid Phase Equilib. 2014, 362, 113–117. [Google Scholar] [CrossRef]
- Martin, M.G. Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor–liquid coexistence curves and liquid densities. Fluid Phase Equilib. 2006, 248, 50–55. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Hazewinkel, M. Encyclopaedia of Mathematics (set); Springer: Berlin, Germany, 1994. [Google Scholar]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles; Taylor & Francis Group: New York, NY, USA, 1988. [Google Scholar]
- Sadus, R.J. Molecular Simulation of Fluids: Theory, Algorithms, and Object-Orientation; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Storm, D.A.; Edwards, J.C.; DeCanio, S.J.; Sheu, E.Y. Molecular Representations of Ratawi and Alaska North Slope Asphaltenes Based on Liquid- and Solid-Sate Nmr. Energy Fuels 1994, 8, 561–566. [Google Scholar] [CrossRef]
- Groenzin, H.; Mullins, O.C. Molecular Size and Structure of Asphaltenes from Various Sources. Energy Fuels 2000, 14, 677–684. [Google Scholar] [CrossRef]
- Kowalewski, I.; Vandenbroucke, M.; Huc, A.Y.; Taylor, M.J.; Faulon, J.L. Preliminary Results on Molecular Modeling of Asphaltenes Using Structure Elucidation Programs in Conjunction with Molecular Simulation Programs. Energy Fuels 1996, 10, 97–107. [Google Scholar] [CrossRef]
- Artok, L.; Su, Y.; Hirose, Y.; Hosokawa, M.; Murata, S.; Nomura, M. Structure and Reactivity of Petroleum-Derived Asphaltene†. Energy Fuels 1999, 13, 287–296. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Greenfield, M.L.; Zhang, L. Final Report-Developing Model Asphalt Systems Using Molecular Simulation; URITC Project No. 000216; University of Rhode Island Transportation Center, Department of Chemical Engineering, University of Rhode Island: Kingston, RI, USA, 2009; pp. 1–109. [Google Scholar]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Usmani, A. Asphalt Science and Technology; Taylor & Francis: Boca Raton, FL, USA, 1997. [Google Scholar]
- Tabatabaee, H.A.; Velasquez, R.; Bahia, H.U. Predicting low temperature physical hardening in asphalt binders. Constr. Build. Mater. 2012, 34, 162–169. [Google Scholar] [CrossRef]
- Chilingarian, G.V.; Yen, T.F. Asphaltenes and Asphalts, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Vacquier, V. The measurement of thermal conductivity of solids with a transient linear heat source on the plane surface of a poorly conducting body. Earth Planet. Sci. Lett. 1985, 74, 275–279. [Google Scholar] [CrossRef]
- xGnP Graphene Nanoplatelets—Grade H; MSDS No. CSSS-TCO-010-112126. XG Sciences: Lansing, MI, USA, October 2012. Available online: http://xgsciences.com/products/graphene-nanoplatelets/grade-h/ (accessed on 1 May 2014).
- Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 1997, 106, 6082–6085. [Google Scholar] [CrossRef]
Modified Asphalt Model | Mass (g/mol) | Sum Formula | Number of Atoms per Molecule | Number of Bonds per Molecule | Number of Molecules | Total Mass (g) | Mass Fraction (%) |
---|---|---|---|---|---|---|---|
Asphaltene | 885.23 | C64H52S2 | 118 | 132 | 20 | 17,704.59 | 20.25 |
1,7-Dimethylnaphthalene | 156.22 | C12H12 | 24 | 25 | 108 | 16,872.16 | 19.30 |
Docosane | 310.6 | C22H46 | 68 | 67 | 164 | 50,938.50 | 58.30 |
xGNP | 472.53 | C38H16 | 54 | 65 | 4 | 1890.13 | 2.15 |
Modified asphalt model | - | - | - | - | 296 | 87,405.39 | - |
Type | ||
---|---|---|
xGNP (<500) | 3.81542596 (0.01393144) | 0.85901818 (0.00985102) |
Control (<500) | 3.01951678 (0.01529361) | 0.95801986 (0.01081422) |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Dai, Q.; You, Z.; Bick, A.; Wang, M.; Guo, S. Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD) Method. Appl. Sci. 2017, 7, 43. https://doi.org/10.3390/app7010043
Yao H, Dai Q, You Z, Bick A, Wang M, Guo S. Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD) Method. Applied Sciences. 2017; 7(1):43. https://doi.org/10.3390/app7010043
Chicago/Turabian StyleYao, Hui, Qingli Dai, Zhanping You, Andreas Bick, Min Wang, and Shuaicheng Guo. 2017. "Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD) Method" Applied Sciences 7, no. 1: 43. https://doi.org/10.3390/app7010043
APA StyleYao, H., Dai, Q., You, Z., Bick, A., Wang, M., & Guo, S. (2017). Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD) Method. Applied Sciences, 7(1), 43. https://doi.org/10.3390/app7010043