FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of TiO Nanoparticles
2.2. Modification of TiO NPs by PEG
2.3. Drug Encapsulation and Loading Efficiencies
2.4. Characterization of TiO, TiO–PEG, and TiO–PEG–2ME NPs
3. Results and Discussion
3.1. FTIR Analysis
4. Raman Analysis
4.1. Raman TiO
4.2. Raman Spectrum PEG
4.3. Raman Spectra Analysis of TiO–PEG
4.4. Raman Spectra Analysis of 2ME
4.5. Raman Spectra Analysis of TiO–PEG–2ME
5. 2ME Loading Capacity
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Atefeh, G.T.; Nosrat, O. A comparative study on the nanoparticles for improved drug delivery systems. J. Photochem. Photobiol. B Biol. 2016, 162, 681–693. [Google Scholar]
- Mahendra, R.; Avinash, P.; Inglea, I.; Adriano, B. Bioactivity of noble metal nanoparticles decorated with biopolymersand their application in drug delivery. Int. J. Pharm. 2015, 496, 159–172. [Google Scholar]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B 2010, 79, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Shuin, T.; Kawasaki, C.; Hosaka, M.; Kitamura, H.; Cai, R.; Sakai, H.; Hashimoto, K.; Fujishima, A. Photokilling of T-24 human bladder cancer cells with Titanium dioxide. Br. J. Cancer 1994, 70, 1107–1111. [Google Scholar] [CrossRef] [PubMed]
- Sunkara, B.; Misra, R.D.K. Enhanced antibactericidal function of W4+ doped titania coated nickel ferrite composite nanoparticles A biomaterial system. Acta Biomater. 2008, 4, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Venkatasubramanian, R.; Srivastava, R.; Misra, R.D.K. A comparative study of antimicrobial and photocatalytic activity of different dopants in titania encapsulated nanoparticle composites. Mater. Sci. Technol. 2008, 24, 589–595. [Google Scholar] [CrossRef]
- Rawat, J.; Rana, S.; Srivastava, R.; Misra, R.D.K. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater. Sci. Eng. C 2007, 27, 540–545. [Google Scholar] [CrossRef]
- Kulkarni, M.; Mazare, M.; Gongadze, E.; Perutkova, S.; Kralj-Iglic, V.; Milosev, I.; Schmuki, P.; Iglic, A.; Mozetic, M. Titanium nanostructures for biomedical applications. Nanotechnology 2015, 26, 062002. [Google Scholar] [CrossRef] [PubMed]
- Tianyi, W.; Haitao, J.; Long, W.; Qinfu, Z.; Tongying, J.; Bing, W.; Siling, W. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 2015, 13, 354–363. [Google Scholar]
- Jin, X.; Xiaobo, P.; Mengyan, W.; Jiong, M.; Yiyan, F.; Pei-Nan, W.; Lan, M. The role of surface modification for TiO2 nanoparticles in cancer cells. Colloids Surf. B Biointerfaces 2016, 143, 148–155. [Google Scholar]
- Yamaguchi, S.; Kobayashi, H.; Narita, T.; Kanehira, K.; Sonezaki, S.; Kudo, N.; Kubota, Y.; Terasaka, S.; Houkin, K. Sonodynamic therapy using water-dispersed TiO2 polyethylene glycol compound on glioma cells: Comparison of cytotoxic mechanism with photodynamic therapy. Ultrason. Sonochem. 2011, 18, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Sun, L.; Li, X.; Cao, Q.; Wang, H.; Tang, X.; Ye, L. Highly waterdispersible TiO2 nanoparticles for doxorubicin delivery: Effect of loading mode on therapeutic efficacy. J. Mater. Chem. 2011, 21, 18003–18010. [Google Scholar] [CrossRef]
- Koch, S.; Kessler, M.; Mandel, K.; Dembski, K.; Heuze, S.; Hackenberg, S. Polycarboxylate ethers: The key towards non-toxic TiO2 nanoparticles stabilisation in physiological solutions. Colloids Surf. B Biointerfaces 2016, 143, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Naghibi, S.; Madaah, H.; Faghihi, M. Colloidal stability of dextran and dextran/poly ethylene glycol coated TiO2 nanoparticles by hydrothermal assisted sol-gel method. Ceram. Int. 2013, 39, 8377–8384. [Google Scholar] [CrossRef]
- Mano, S.; Kanehira, K.; Sonezaki, S.; Taniguchi, A. Effect of polyethylene glycol modication of TiO2 nanoparticles on cytotoxicity and gene expressions in human cell lines. Int. J. Mol. Sci. 2012, 13, 3703–3717. [Google Scholar] [CrossRef] [PubMed]
- Devanand, G.; Ramasamy, S.; Ramakrishnan, B.; Kumar, J. Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv. Powder Technol. 2013, 24, 947–954. [Google Scholar] [CrossRef]
- Sanaz, N.; Hamid, R.; Mohammad, F.; Mhammad, S.; Morteza, M. Mortality response of folate receptor-activated, PEG-functionalized TiO2 nanoparticles for doxorubicin loading with and without ultraviolet irradiation. Ceram. Int. 2014, 40, 5481–5488. [Google Scholar]
- Parada-Bustamante, A.; Valencia, C.; Reuquen, P.; Diaz, P.; Rincon-Rodriguez, R.; Orihuela, P.A. Role of 2-methoxyestradiol, an endogenous estrogen metabolite, in health and disease. Mini Rev. Med. Chem. 2015, 15, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Guohua, X.; Baoan, C.; Jiahua, D.; Chong, G.; Huixia, L.; Zeye, S.; Feng, G.; Xuemei, W. Effect of magnetic Fe3O4 nanoparticles with 2-metoxyestradiol, on the cell-cycle progression and apoptosis of myelodysplastic syndrome cells. Int. J. Nanomed. 2011, 6, 1921–1927. [Google Scholar]
- Shi, J.; Wang, Z.; Wang, L.; Wang, H.; Li, L.; Yu, X.; Zhang, J.; Ma, R.; Zhang, Z. Photodynamic therapy of a 2-methoxyestradiol tumor-targeting drug delivery system mediated by Asn-Gly-Arg in breast cancer. Int. J. Nanomed. 2013, 8, 1551–1562. [Google Scholar]
- Wang, Y.; Guo, R.; Cao, X.; Shen, M.; Shi, X. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials 2011, 32, 3322–3329. [Google Scholar] [CrossRef] [PubMed]
- Jang, L.; Liu, Y.; Zeng, G.; Xiao, F.; Hu, X.-J.; Hu, X.; Wang, H.; Li, T.; Zhou, L.; Tan, X. Removal of 17b-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Eng. J. 2016, 284, 93–102. [Google Scholar] [CrossRef]
- Mahshid, S.; Askari, M.; Ghamsari, M. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J. Mater. Process. Technol. 2007, 189, 296–300. [Google Scholar] [CrossRef]
- Zapata, P.; Palza, H.; Rabagliati, F.M. Novel antimicrobial polyethylene composites prepared by metallocenic in situ polymerization with TiO2 based nanoparticles. J. Polym. Sci. 2012, 50, 4055–4062. [Google Scholar] [CrossRef]
- Putz, H.; Brandenburg, K. Diamond-crystal and molecular structure visualization. Cryst. Impact-GbR 2006, 102, 53227. [Google Scholar]
- Nadica, D.; Abazovic, M.; Comor, M.; Dramicanin, D.; Jovanovic, S.; Jovan, M. Photoluminescence of Anatase and Rutile TiO2 Particles. J. Phys. Chem. B 2006, 110, 25366–25370. [Google Scholar]
- Mugundan, S.; Rajamannan, G.; Viruthagiri, N.; Shanmugam, R.; Gobi, P. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique. Appl. Nanosci. 2015, 5, 449–456. [Google Scholar] [CrossRef]
- Colthup, N.; Daly, L.; Wiberley, S. Introduction to Infrared and Raman Spectroscopy; Academic Press: Boston, MA, USA, 1990. [Google Scholar]
- Choi, H.C.; Young, M.; Seung, B. Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spect. 2005, 37, 33–38. [Google Scholar] [CrossRef]
- Ohsaka, T. Temperatura dependence of the Raman spectrum in anatase TiO2. J. Phys. Soc. Jpn. 1980, 48, 1661. [Google Scholar] [CrossRef]
- Zhu, K.R.; Zhang, M.S.; Chen, Q.; Yin, Z. Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys. Lett. A 2005, 340, 220–227. [Google Scholar] [CrossRef]
- Jin, Y.; Sun, M.; Mu, D.; Ren, X.; Wang, Q.; Wen, L. Investigation of PEG adsorption on copper in Cu2+ free solution by SERS and AFM. Electrochim. Acta 2012, 78, 459–465. [Google Scholar] [CrossRef]
- Constantinescu, M.; Dumitrache, D.; Constantinescu, E.; Anghel, V.; Popa, M. Latent heat nano composite building materials. Eur. Polym. J. 2010, 46, 2247–2254. [Google Scholar] [CrossRef]
- Marek, K. Conformational changes in the chains of polyoxyethylene glycols. J. Mol. Liq. 2006, 128, 105–107. [Google Scholar]
- Yamini, D.; Devanand, G.; Kumar, J.; Ramakrishnan, V. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Hyangah, C.; Sangyeop, L.; Ziyi, C.; Sung, H.; Young, H.; Jaebum, C. Highly sensitive detection of hormone estradiol E2 using surface enhanced Raman scattering based immunoassays for the clinical diagnosis of precocious puberty. Appl. Mater. Interfaces 2016, 8, 10665–10672. [Google Scholar]
- Variankaval, N.; Jacob, K.; Dinh, S. Characterization of crystal forms of 2-mestradiol thermal analysis, Raman microscopy, X-ray analysis and solid-state NMR. J. Cryst. Growth 2000, 217, 320–331. [Google Scholar] [CrossRef]
- Du, B.; Li, Y.; Youmei, A.; Chen, Ch.; Zhang, Z. Preparation, characterization and in vivo evaluation of 2-methoxyestradiol-loaded liposomes. Int. J. Pharmacol. 2010, 384, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Wang, S.; Shi, S.; Zhang, C.; Zhang, Z. The effect of 2-methoxyestradiol liposome on growth inhibition, angiogenesis and expression of VEGF and Ki67 in mice bearing H22 hepatocellular carcinoma. Tumori 2011, 97, 660–665. [Google Scholar] [PubMed]
- Guo, X.; Mei, Q.; Xing, Y.; Ye, L.; Zhang, H.; Shi, X.; Zhang, Z. Preparation and cytotoxicity of poly (DL-lactide-co-glycolide) microspheres encapsulating 2-methoxyestradiol. Drug Deliv. 2011, 19, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, N.; Cui, F.; Du, B.; Zhang, Z. An investigation on intestinal absorption of a new anticancer drug, 2-methoxyestradiol. Pharmazie 2009, 64, 748–751. [Google Scholar] [PubMed]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. https://doi.org/10.3390/app7010049
León A, Reuquen P, Garín C, Segura R, Vargas P, Zapata P, Orihuela PA. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Applied Sciences. 2017; 7(1):49. https://doi.org/10.3390/app7010049
Chicago/Turabian StyleLeón, Andrea, Patricia Reuquen, Carolina Garín, Rodrigo Segura, Patricio Vargas, Paula Zapata, and Pedro A. Orihuela. 2017. "FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol" Applied Sciences 7, no. 1: 49. https://doi.org/10.3390/app7010049
APA StyleLeón, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P., & Orihuela, P. A. (2017). FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Applied Sciences, 7(1), 49. https://doi.org/10.3390/app7010049