Theoretical Analysis of Effective Thermal Conductivity for the Chinese HTR-PM Heat Transfer Test Facility
Abstract
:1. Introduction
2. Heat Transfer Mechanisms in Pebble Bed
3. Effective Thermal Conductivity Analysis
3.1. Solid Conduction + Surface Radiation + Solid Conduction
3.2. Solid Conduction + Gas Conduction + Solid Conduction
3.3. Solid Conduction + Contact Area Conduction + Solid Conduction
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Acronym
HTR | high temperature pebble bed reactor |
HTR-PM | high temperature gas-cooled reactor pebble bed module |
INET | Institute of Nuclear and New Energy Technology |
TF-PBEC | test facility for pebble bed equivalent conductivity measurement |
References
- Yang, X.T.; Li, Y.; Gui, N.; Jia, X.L.; Tu, J.Y.; Jiang, S.Y. Some movement mechanisms and characteristics in pebble bed reactor. Sci. Technol. Nucl. Install. 2014, 2014, 820481. [Google Scholar] [CrossRef]
- Jia, X.L.; Yang, X.T.; Gui, N.; Li, Y.; Tu, J.Y.; Jiang, S.Y. Experimental and Numerical Study of Stagnant Zones in Pebble Bed. Sci. Technol. Nucl. Install. 2014, 2014, 120640. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Z.; Wang, D.; Xu, Y.H.; Sun, Y.L.; Li, F.; Dong, Y.J. Current status and technical description of Chinese 2 × 250 MWth HTR-PM demonstration plant. Nucl. Eng. Des. 2009, 239, 1212–1219. [Google Scholar] [CrossRef]
- Yang, X.T.; Sun, Y.F.; Ju, H.M.; Jiang, S.Y. Procedure of Active Residual Heat Removal after Emergency Shutdown of High-Temperature-Gas-Cooled Reactor. Sci. Technol. Nucl. Install. 2014, 2014, 583597. [Google Scholar] [CrossRef]
- Ren, C.; Li, C.X.; Yang, X.T.; Liu, Z.Y.; Sun, Y.F.; Jiang, S.Y. Porous structure analysis of large-Scale randomly packed pebble bed in high temperature gas-cooled reactor. Atw-Int. J. Nucl. Power 2015, 60, 103–106. [Google Scholar]
- Breitbach, G.; Barthels, H. The radiant heat transfer in the HTR Core after failure of the afterheat removal systems. Nucl. Technol. 1980, 49, 392–399. [Google Scholar]
- Frano, R.L.; Aquaro, D.; Scaletti, L. Thermo-mechanical Characterization of Ceramic Pebbles for Breeding Blanket. Fusion Eng. Des. 2016, 109, 383–388. [Google Scholar] [CrossRef]
- Frano, R.L.; Moscardini, M.; Aquaro, D. Numerical-experimental analyses by Hot-Wire method of an alumina cylinder for future studies on thermal conductivity of the fusion breeder materials. J. Phys. Conf. Ser. 2014, 547, 1–9. [Google Scholar] [CrossRef]
- Frano, R.L.; Aquaro, D.; Pupeschi, S.; Moscardini, M. Thermo-mechanical test rig for experimental evaluation of thermal conductivity of ceramic pebble beds. Fusion Eng. Des. 2014, 89, 1309–1313. [Google Scholar] [CrossRef]
- Antwerpen, W.V.; Rousseau, P.G.; Toit, C.G.D. Multi-sphere Unit Cell model to calculate the effective thermal conductivity in packed pebble beds of mono-sized spheres. Nucl. Eng. Des. 2012, 247, 183–201. [Google Scholar] [CrossRef]
- Antwerpen, W.V.; Toit, C.G.D.; Rousseau, P.G. A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nucl. Eng. Des. 2010, 240, 1803–1818. [Google Scholar] [CrossRef]
- Nieβen, A.F.; Stocker, B. Sana-1 Code-to-experiment Summary Description of Benchmark. In Proceedings of the 3rd IAEA Research Coordination Meeting on Heat Transport and Afterheat Removal for Gas-Cooled Reactors under Accident Conditions, Vienna, Austria, 14–17 November 1995.
- Ren, C.; Yang, X.T.; Li, C.X.; Liu, Z.Y.; Jiang, S.Y. Design of the material performance test apparatus for high temperature gas-cooled reactor. Nucl. Sci. Tech. 2013, 24, 060602. [Google Scholar]
- Ren, C.; Yang, X.T.; Jiang, S.Y. Development of chinese HTR-PM pebble bed equivalent conductivity test facility. Atw-Int. J. Nucl. Power 2016, 61, 23–27. [Google Scholar]
- Currie, J.A. Gaseous diffusion in porous media, Part 1. A non-steady state method; Part 2. Dry granular materials. Br. J. Appl. Phys. 1960, 11, 314–317, 318–324. [Google Scholar] [CrossRef]
- Prasad, V.; Kladas, N.; Bandyopadhaya, A.; Tian, Q. Evaluation of correlations for stagnant thermal conductivity of liquid-saturated porous beds of spheres. Int. J. Heat Mass Trans. 1989, 32, 1783–1796. [Google Scholar] [CrossRef]
- Kaviany, M. Principles of Heat Transfer in Porous Media; Springer-Verlag: New York, NY, USA, 1991; pp. 126–127. [Google Scholar]
- Aquaro, D.; Zaccari, N. Experimental and numerical analysis on pebble beds used in an ITER Test Module Blanket. Fusion Eng. Des. 2006, 81, 707–712. [Google Scholar] [CrossRef]
- Antwerpen, W.V. Modelling the Effective Thermal Conductivity in the Near-Wall Region of a Packed Pebble Bed. Ph.D. Thesis, North-West University, Potchefstroom, South Africa, 2009. [Google Scholar]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, C.; Yang, X.; Jia, H.; Jiang, Y.; Xiong, W. Theoretical Analysis of Effective Thermal Conductivity for the Chinese HTR-PM Heat Transfer Test Facility. Appl. Sci. 2017, 7, 76. https://doi.org/10.3390/app7010076
Ren C, Yang X, Jia H, Jiang Y, Xiong W. Theoretical Analysis of Effective Thermal Conductivity for the Chinese HTR-PM Heat Transfer Test Facility. Applied Sciences. 2017; 7(1):76. https://doi.org/10.3390/app7010076
Chicago/Turabian StyleRen, Cheng, Xingtuan Yang, Haijun Jia, Yueyuan Jiang, and Wei Xiong. 2017. "Theoretical Analysis of Effective Thermal Conductivity for the Chinese HTR-PM Heat Transfer Test Facility" Applied Sciences 7, no. 1: 76. https://doi.org/10.3390/app7010076
APA StyleRen, C., Yang, X., Jia, H., Jiang, Y., & Xiong, W. (2017). Theoretical Analysis of Effective Thermal Conductivity for the Chinese HTR-PM Heat Transfer Test Facility. Applied Sciences, 7(1), 76. https://doi.org/10.3390/app7010076