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Abstract:



This paper presents a robust backstepping design for motion control in the presence of model uncertainties and exogenous disturbances. The main difficulty in dealing with motion control is to reduce the effect of friction, which exists in the moving mechanism and induces nonlinear behavior. In this study, the friction dynamic is considered as the external disturbance, and the proposed backstepping control algorithm is integrated with the sliding mode control, so that the effect of matching disturbances can be eliminated. The proposed approach guarantees the system asymptotic stability, globally, without significant chatter. Therefore, the developed algorithm can be realized for practical manufacturing motion control stages. Experiments including positioning and tracking controls are conducted to demonstrate the feasibility of the proposed method.
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1. Introduction


Backstepping design is a systematic recursive design procedure based on the choice of a Lyapunov function. This approach is suitable for the design of a class of nonlinear systems in the strict feedback form. In the design procedure, the system variable is treated as an independent (or a fictitious) input for subsystems, and consequently, each step results in an updated control design for the next step. The control law for each step is refined with the satisfaction of the Lyapunov function, such that the stability for each subsystem can be guaranteed as outlined in [1]. In the traditional backstepping design, system robustness can be maintained by using high gain control (under the condition that the system uncertainties are state dependent). However, in the case of a motion system, the system may be subject not only to uncertain parameters, but also to un-modeled system dynamics; which is state independent, such that the high gain backstepping design may not result in the asymptotic stability of such a system.



In recent years, several control strategies, such as adaptive control [2,3,4], sliding mode control [5,6] and neural networks [7,8], have been integrated into the logical backstepping design procedure in order to enhance system robustness. An integral action has been widely used in adaptive backstepping control for eliminating steady state error, while a smooth sign function was adopted for avoiding chatter in sliding mode control. Some nonlinear functions can be estimated using neural networks with a backstepping design scheme. Other robust backstepping control approaches for specific nonlinearities, such as system time delays [9], mismatched uncertainties [10], backlash-like hysteresis [11] and input uncertainties [12], were also developed to make the resulting system insensitive to model uncertainties and external disturbances. Moreover, in recent studies [13,14,15,16], it has been demonstrated that the backstepping controller design concept can be applied for different nonlinear systems. However, only numerical simulations were provided. In this paper, this design concept is applied for the control of a servo mechanical system. Not only the theoretical derivation is given, both the numerical simulations and experimental verifications are addressed, as well, to verify the feasibility of the proposed method. In regard to [15], the authors proposed an integral type robust controller based on the sliding control design concept. However, the controllers cannot attain the so-called approaching/sliding conditions, so the stability proof will be relatively complicated.



One of the main difficulties in dealing with motion control is to suppress the effect of friction, which exists in the moving mechanism. Two main kinds of friction behavior have been observed experimentally in the literature, namely the Stribeck effect and hysteresis [17], occurring in sliding and pre-sliding regions, respectively. These nonlinear properties of friction induce undesirable behavior that includes steady state positioning errors, tracking lags, limit cycles and stick-slip motion. In the recent decade, friction model-based compensation approaches and the disturbance observer have been widely adopted for motion control problems [18,19,20,21,22]. Due to the complexity of friction, recently, a nonlinear damping-based backstepping design was proposed, where the friction effect is taken as a nonlinear function and is going to be measured by a time delay estimate (TDE) [23]. Then, the control performance is further enhanced by considering the TDE together with an internal model control [24].



However, the friction behavior is a highly nonlinear phenomenon, which is difficult to be well described, especially for the inter-medium region between static friction [25] and dynamic friction. Even though there were several friction models in the literature, they can only be applied for specific friction regions. It is difficult to obtain quantitative analysis of friction due to its time and position varying nature. In some cases, an inaccurate friction model would likely induce an additional control payload. Therefore, in this work, the LuGre model [26] is considered, but no extra estimator [23,24], friction observer [27] or adaption law [28] is applied. Designers only have to deal with a pair liner gain and a robust gain. To relax the implementation effort, only the upper bound of the variation on the lumped perturbation is needed to adjust the control gain w. Therefore, based on the robust stability property, one can gradually increase the value of the robust gain to achieve a satisfactory result. From the end-user point of view, less control parameters are able to achieve a more user-friendly environment for control tuning.



To preserve the approaching/sliding conditions in the traditional sliding mode control (SMC), as well as ease the control discontinuity, this paper develops an extended backstepping sliding mode control (EBSMC) algorithm, which provides global stability of the system without including an additional compensator or observer. Moreover, it will be shown that the proposed controller turns into a robust PD controller once a robust gain is set to be zero. Under this circumstance, the robust stability issue is going to be addressed by using some linear matrix inequalities (LMIs). Finally, the effectiveness of the developed control strategy is verified through numerical and experimental studies.




2. Proposition of EBSMC


The LuGre model, which is capable of describing most friction phenomena, was proposed by Canudas et al. [26]. This model states that once relative motion occurs between two surfaces, friction force is caused by the deflection of bristles on those surfaces.



Consider the following motion system with friction:


[image: there is no content]



(1)




where [image: there is no content] is the system mass, [image: there is no content] is the system position and [image: there is no content] is the applied force. Moreover, [image: there is no content] and [image: there is no content] are the friction force and an external load, respectively. The friction force described by the LuGre model is comprised of two components. One originates from the bristle behavior defined as [image: there is no content], and the other is due to the viscous effect [image: there is no content], that is:


[image: there is no content]



(2)




where [image: there is no content] and [image: there is no content]. [image: there is no content] is the stiffness coefficient; [image: there is no content] is the damping coefficient; and [image: there is no content] is the viscous coefficient. [image: there is no content] is the deflection of the bristle, and its variation is defined as follows:


[image: there is no content]



(3)




where [image: there is no content]. [image: there is no content] is the Coulomb friction, and [image: there is no content] is the maximum static friction; [image: there is no content] is the Stribeck velocity; and the positive factor [image: there is no content] is employed in modifying the transition curve of friction at low velocity.



Define tracking error as [image: there is no content] and [image: there is no content], where [image: there is no content] is the desired position. Then, the system in the form of error dynamics becomes:


[image: there is no content]



(4)







Define a virtual state [image: there is no content]; the system (4) can then be represented as the following extended third order extended dynamic system [29]:


[image: there is no content]



(5)







The proposed EBSMC design procedure for System (5) is described as follows.



Step 1:



By choosing the nominal control effort [image: there is no content] of the extended system as:


[image: there is no content]



(6)




where [image: there is no content] and [image: there is no content] are the nominal values of system mass and viscous coefficient, respectively. Then, the extended system in (5) can be formulated as:


[image: there is no content]



(7)




where [image: there is no content] denotes the lumped system perturbations. Note that [image: there is no content] and [image: there is no content].



For the servo motor, since the maximum applied force is limited, the resulting speed, acceleration and jerk are also limited. Therefore, it is reasonable to assume that there exists a positive constant [image: there is no content] that satisfies [image: there is no content]. The detailed proof can be found in the Appendix A.



Consider the system state [image: there is no content] as an independent input, and let:


[image: there is no content]



(8)







Select a Lyapunov function [image: there is no content]. It can then be obtained that:


[image: there is no content]



(9)







Therefore, state [image: there is no content] is asymptotically stable.



Step 2:



Actually, there may be differences between [image: there is no content] and [image: there is no content]. Therefore, a new error variable [image: there is no content] is defined, which presents the difference between the stabilizing control law [image: there is no content] and the error state [image: there is no content]. By adding and subtracting the virtual control law [image: there is no content] to the first equation of (7), we can get the dynamic of the subsystem [image: there is no content] as follows:


[image: there is no content]



(10)







Equations (8) and (9) can be satisfied if [image: there is no content] in (10) equals zero. Further, consider the dynamic of [image: there is no content]:


[image: there is no content]



(11)







In a similar manner, treat the state [image: there is no content] as an independent input of the form [image: there is no content] as the following:


[image: there is no content]



(12)







Select a Lyapunov function of the subsystem [image: there is no content] in the form of:


[image: there is no content]



(13)







From (10)–(12), the derivative of (13) is obtained as:


[image: there is no content]



(14)







Thus, the subsystem [image: there is no content] is asymptotically stable.



Step 3:



By adding and subtracting the virtual control law [image: there is no content] to (11) and defining an error variable as [image: there is no content], (11) can then be represented as:


z˙1=[e3−ϕ2(e1,z1)]+ϕ2(e1,z1)−ϕ˙1(e1)=z2+ϕ2(e1,z1)−ϕ˙1(e1)



(15)




and:


z˙2=e˙3−ϕ˙2(e1,z1)=u˙C−ϕ˙2(e1,z1)+D˜˙(e3,x¨d,x⃛d,u˙C,F˙B(κ,κ˙),d˙)



(16)







From Step 1 and Step 2, it is found that the desired behavior of the subsystem [image: there is no content] can be achieved if the condition [image: there is no content] is satisfied. Therefore, the control purpose can be simplified to the regulation of the virtual state [image: there is no content] in the presence of external disturbances. The sliding mode control can be introduced to the backstepping design as follows.



Select a sliding surface of:


[image: there is no content]



(17)







In the absence of [image: there is no content] in (16), the corresponding equivalent control force can be obtained by [image: there is no content], that is:


[image: there is no content]



(18)







A switching control action is applied to enhance the system robustness, such that system states stay on the sliding surface even in the presence of disturbances:


[image: there is no content]



(19)




where the robust gain w satisfies the condition [image: there is no content].



Choose a Lyapunov function as [image: there is no content], and it can be obtained that:


V˙S=S[u˙C−ϕ˙2(e1,z1)+D˜˙(e3,x¨d,x⃛d,u˙C,F˙B(κ,κ˙),d˙)]=S[−wsgn(S)+D˜˙(e3,x¨d,x⃛d,u˙C,F˙B(κ,κ˙),d˙)]≤−|S|[w−η]≤0



(20)







It shows that the approaching condition can be reached, and thus, the system is asymptotically stable.



For the final implementation, substituting (19) into (6), the integral type control effort for the original second order system can be represented as:


[image: there is no content]



(21)







Represent (21) in the form of error states:


[image: there is no content]



(22)







Further, substitute (22) into (4); it results:


e˙2=−σ2Me2−1Mu+σ2Mx˙d+x¨d+1MFB(κ,κ˙)=−σ2Me2−1M[M^(1+k1k2)e1+M^(k1+k2)e2−σ^2e2+σ^2x˙d+M^x¨d+M^w∫0tsgn(S)dτ]+σ2Mx˙d+x¨d+1MFB(κ,κ˙)+1Md=−(1+k1k2)e1−(k1+k2)e2+D˜(e2,x˙d,x¨d,uC,FB(κ,κ˙),d)−w∫0tsgn(S)dτ



(23)







From (17), the sliding mode dynamics can be represented as:


[image: there is no content]



(24)







Remark 1.

According to (20), the robust gain w can be applied to maintain the sliding motion even when the system is subject to disturbances. This reveals that the lumped perturbation [image: there is no content]in (24) can be compensated by the nonlinear integral action, and thereby, the exponential stability of the system can be achieved by a proper choice of gain [image: there is no content]and [image: there is no content]used in (22).





Remark 2.

The closed-loop system robustness against system uncertainties, as well as unknown exogenous disturbances is achieved by a suitable adjustment of a single robust gain w. When an insufficient large value is applied, the condition (20) may not be attained. Under this circumstance, for example, a critical case that w = 0, one has [image: there is no content]. Roughly speaking, the closed-loop system is stable by means of bounded-input bounded-output stability (BIBO). In the Appendix A, robust gain estimation and the robust stability issue are going to be addressed further. Based on the achievement of robust stability, one can increase the value of w gradually to achieve desired control performance without inducing unstable behavior.






3. Simulation Results


For general controller design and system physical behavior validation purposes, system parameters need to be identified in advance [30]. In Section 2, the proposed control law (22) involves part of the system nominal parameters, including system mass and viscous coefficient. A systematic estimation method is going to present in the following.



For the servo system with apparent velocity, the main contribution of the friction effect comes from Coulomb friction and the viscous coefficient; that is, [image: there is no content], where [image: there is no content].



Reconsider (1) in the absence of external disturbance; one has:


[image: there is no content]



(25)







From the practical realization point of view, the corresponding discrete model can be directly derived by taking the backward difference:


[image: there is no content]



(26)




where [image: there is no content] denotes as the sampling period.



Hence, the dynamic Equation (25) can be approximated by:


[image: there is no content]



(27)







Based on several measurements, (27) can be represented by:


[image: there is no content]



(28)




where:


[image: there is no content]



(29)







Define:


[image: there is no content]



(30)







The optimal solution is:


[image: there is no content]



(31)







Therefore, the servo motor parameters can be calculated by:


[image: there is no content]



(32)







In the following simulation study, periodical reference commands of the form [image: there is no content] shown in Figure 1 and [image: there is no content] shown in Figure 2 were adopted. The simulation results were performed by MATLAB code ode45 (Runge–Kutta method) with maximum step size 0.000025 (s). The same control gains were used for both cases and are listed in Table 1. Figure 3 is the comparison of tracking performance. It can be found that the tracking error with [image: there is no content] is comparatively large at the beginning of control process, which is caused by initial velocity error, but this phenomenon can be avoided with [image: there is no content]. The tracking error is of the order 10−7 in the simulation, which is caused by the finite time switching numerical simulation and can be totally eliminated from the continuous case. Figure 4 is the corresponding control force for both cases. A larger control force was caused by the reference [image: there is no content] from non-zero desired initial velocity. According to (27), the gain w required to force the state on the sliding surface is 395,640 and 603 for [image: there is no content] and [image: there is no content], respectively. For illustrative purposes, w = 603 is applied for both cases. Figure 5 shows that the state stays on the sliding surface for [image: there is no content], but not for [image: there is no content], even though the steady state tracking error was eliminated for both cases. To bound the system state on S = 0 for non-zero initial velocity, the approaching condition can only be achieved using a sufficiently large gain w, which may cause the controller saturation. The initial reference commands play an important role in tracking control, which is true when applying other control strategies.


Figure 1. Reference command [image: there is no content].



[image: Applsci 07 00220 g001]





Figure 2. Reference command [image: there is no content].



[image: Applsci 07 00220 g002]





Figure 3. Tracking error comparison.



[image: Applsci 07 00220 g003]





Figure 4. Control force comparison.



[image: Applsci 07 00220 g004]





Figure 5. Sliding surface comparison.



[image: Applsci 07 00220 g005]






Table 1. Parameter values used for numerical study.







	
Parameter

	
Value

	
Unit






	
[image: there is no content] ([image: there is no content])

	
1.5 (1.2)

	
(kg)




	
[image: there is no content]

	
105

	
(N/m)




	
[image: there is no content]

	
105/2

	
(Ns/m)




	
[image: there is no content] ([image: there is no content])

	
2.5 (2.0)

	
(Ns/m)




	
[image: there is no content]

	
1.3

	
(N)




	
[image: there is no content]

	
1.5

	
(N)




	
[image: there is no content]

	
0.001

	
(m/s)




	
[image: there is no content]

	
0.01

	
(m)




	
[image: there is no content]

	
1

	
(Hz)




	
[image: there is no content]

	
[image: there is no content]

	
---




	
[image: there is no content]

	
30

	
---




	
[image: there is no content]

	
50

	
---




	
[image: there is no content]

	
603

	
---










Next, a comparison study on the PID controller and the proposed EBSMC is presented. It is well known that for tracking applications, larger tracking errors are usually induced when motions change direction. During the velocity reversal, the variation of the nonlinear friction forces is apparently fast such that the linear controller (PID) is not able to overcome the perturbations properly for this critical situation.



For the motion control system, the error dynamics can be represented by:


[image: there is no content]



(33)







Consider (22), but now, the control algorithm is modified in the form of a PID controller:


[image: there is no content]



(34)







Substituting (34) into (33) yields:


[image: there is no content]



(35)




where:


Γ=M˜MKPe1+M˜MKDe2+M˜MKI∫0te1dτ−σ˜2Me2+σ˜2Mx˙d+(1−M˜M)x¨d+1MFB(κ,κ˙)+1Md



(36)







To address the closed-loop stability and control performance of (35), let [image: there is no content] and [image: there is no content]; one can derive the following augmented system:


[image: there is no content]



(37)




where [image: there is no content] and:


[image: there is no content]



(38)







It is clear that the control issue turns into a robust stabilization problem, and the stability issue can also be solved by ways of LMIs. Similar to the steps from (47) to (56), it is easy to show that by the properly selected triple [image: there is no content], there must exist a region [image: there is no content], such that:


[image: there is no content]



(39)







Equation (39) implies that the control performance is relevant to the size of [image: there is no content]. Even though the variation of the lumped perturbation is finite, the PID control precision is going to be limited by the magnitude of the variation. In other words, better tracking performance needs to be achieved by means of high gain control.



However, different from the PID control, asymptotic tracking performance remains available by the proposed EBSMC even without the use of high gain manner, as long as the upper bound of the uncertainty variation is known. Simulations are going to demonstrate this feature.



Comparing with the PID controller, to fairly address the main advantage of the proposed EBSMC, an equivalent control gain setting (that is [image: there is no content], [image: there is no content] and [image: there is no content]) is applied. Moreover, in the following simulations, two cases are applied. Cases I and II are with the consideration of time varying external disturbance and nonlinear friction, respectively. The disturbance [image: there is no content] is applied, where [image: there is no content] and [image: there is no content] Hz.



Figure 6a,b are the simulation results of Cases I and II, respectively. It is clear that the tracking performances of the proposed EBSMC for both cases is better than that by the PID controller. Detailed control performance comparisons are summarized in Table 2. Apparently, once the variation of the lumped perturbations is fast, the PID control performance will be degraded obviously. On the contrary, the EBSMC is able to achieve much better control precision even without the use of high gain control.


Figure 6. Performance comparisons between PID control and extended backstepping sliding mode control (EBSMC). (a) system subject to time varying external disturbance; (b) system subject to nonlinear friction.



[image: Applsci 07 00220 g006]






Table 2. Numerical control performance comparison.







	
Controller

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
Case I.

External Disturbance

	
PID

	
4.7691 × 10−4

	
2.1244 × 10−4

	
0.0601




	
[image: there is no content]




	
EBSMC

	
2.0468 × 10−7

	
1.1448 × 10−7

	
3.2380 × 10−5




	
[image: there is no content]




	
Case II.

Nonlinear Friction

	
PID

	
7.6552 × 10−4

	
6.7840 × 10−4

	
0.1919




	
[image: there is no content]




	
EBSMC

	
1.3089 × 10−6

	
1.1904 × 10−6

	
3.3669 × 10−4




	
[image: there is no content]











4. Experimental Study


In order to verify the feasibility of the proposed control scheme in practice, the following experimental study was conducted by an AC servomotor equipped with an encoder (10,000 counts/rev). The dynamics of the motor (i.e., [image: there is no content]) is similar to the system analyzed in Section 2, where the mass [image: there is no content] in (22) is replaced by the moment of inertia [image: there is no content], and the tracking error is defined as [image: there is no content]. Apply the method presented in Section 4; the estimation nominal values of [image: there is no content] and [image: there is no content] in (22) are [image: there is no content] ([image: there is no content]) and 0.0018 ([image: there is no content]), respectively. An industrial computer equipped with a motion control card is used to implement the control algorithm, where the sampling rate is 500 Hz.



According to the analysis in Section 3, a precise estimation of the disturbance variation rate will be appreciated. However, due to the restriction of sensor resolution, it is hard to identify the parameters in the pre-sliding region (i.e., [image: there is no content], [image: there is no content]). Nevertheless, a suitable switching gain can reasonably be applied, such that the approaching condition is satisfied. In the experiments, both positioning control (i.e., [image: there is no content] is constant) and tracking control were performed to demonstrate the effectiveness of the proposed method. For positioning control, the reference position is [image: there is no content] rad (10,000 counts). The periodic reference command for tracking control is [image: there is no content], where [image: there is no content] rad (10,000 counts) and [image: there is no content] Hz. The control algorithm (22) was adopted for both positioning and tracking control. The value of w was altered to illustrate the resulting robustness. The values of control gains [image: there is no content], [image: there is no content] and resulting performance indexes are listed in Table 3. Moreover, with the consideration of about 10% modeling errors and the selected gains, the robust stability (54) is feasible for [image: there is no content], where:


[image: there is no content]



(40)







Table 3. Control gains setting in experiments.







	
Control Task

	
Control Gains

	
[image: there is no content] (Counts)

	
Overshoot (Counts)

	
[image: there is no content] (s)






	
Positioning Control

	
k1 = 15, k2 = 30, w = 0

	
295

	
-

	
0.75




	
k1 = 15, k2 = 30, w = 2500

	
0

	
6

	
1.45




	
k1 = 15, k2 = 30, w = 5000

	
0

	
4

	
0.905




	
k1 = 15, k2 = 30, w = 7000

	
0

	
2

	
0.765




	
Control Task

	
Control Gains

	
Maximum Tracking Error [image: there is no content](counts)




	
Tracking Control

	
k1 = 15, k2 = 30, w = 0

	
1584




	
k1 = 15, k2 = 30, w = 5000

	
544




	
k1 = 15, k2 = 30, w = 10,000

	
280




	
k1 = 15, k2 = 30, w = 15,000

	
173










As a result, one can gradually increase the value of the robust gain step-by-step to achieve a satisfactory result without inducing system instability.



Figure 7 shows the positioning response, where the steady state error ([image: there is no content]) caused by friction was eliminated via using gain [image: there is no content]. In addition, a larger w also reduces overshoots and settling time [image: there is no content]. Unlike the general PID controller, experiments showed that zero positioning error can be achieved without obvious overshoot. The control effort is shown in Figure 8, where the chattering phenomenon induced by the conventional sliding mode control was improved. System output responses, error response and control effort of tracking control with respect to w are shown in Figure 9, Figure 10 and Figure 11. The experimental results are consistent with (20) in that the larger the w, the larger the uncertain variation rates can be suppressed and, thereby, a better tracking performance can be obtained in the pre-sliding region (i.e., [image: there is no content]). All of the experiments show that the proposed method is capable of achieving good positioning/tracking performance, as well as avoiding significant control chattering.


Figure 7. Experimental result of positioning control.



[image: Applsci 07 00220 g007]





Figure 8. Positioning control effort.



[image: Applsci 07 00220 g008]





Figure 9. Experiment result of tracking control.



[image: Applsci 07 00220 g009]





Figure 10. Comparison of tracking error.



[image: Applsci 07 00220 g010]





Figure 11. Tracking control effort.



[image: Applsci 07 00220 g011]






In this study, we focus on motion control systems subject to nonlinear friction effects. To achieve good tracking precision, an EBSMC is proposed. However, the nonlinear friction effects must be continuous; that is, the upper bound of the time derivative of the friction should be finite. To satisfy this requirement, the LuGre friction model is considered. The LuGre model provides simple and continuous features for the friction forces, even when the velocity changes direction. As a result, the variation of the friction will be bounded. Otherwise, for discontinuous disturbances, both the conventional PID and the proposed EBSMC or other continuous control algorithms are not able to eliminate such fast switching perturbations.



Finally, for practical realization, the upper bound may not always be easy to identify. However, the robust gain w can be determined by increasing the value gradually. This feature has been verified through experiments.




5. Conclusions


To inherit the outstanding features, simple and straight forward stability proof, as well as attenuate the control discontinuity in the traditional SMC, an EBSMC design scheme is presented. For the developed control algorithm, the boundedness of the variation on the lumped perturbation is required. In the practical case, estimating the boundedness of the perturbation variation may not be an easy task. Therefore, based on the achievement of robust stability proven by LMIs, the proposed method allows the designer to apply it in a step by step tuning manner to pursue desired control performance without inducing unstable behavior. Based on the proposed method, the system stability is achieved via the backstepping design while the robustness against unknown perturbations is enhanced by a single robust gain. The proposed method did not use the additional friction model-based compensator or other disturbance observers, and therefore, the implementation effort is relatively low. Finally, simulations and experimental studies are addressed to verify the feasibility of the proposed method.
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Appendix A


In this Appendix, a robust gain estimation is firstly introduced, and then, the robustness stability analysis for w = 0 is further addressed. The parameters of the motion tracking control system subjected to friction were listed in Table 1. According to the analysis in Section 2, the desired error dynamics can be guaranteed if the reaching condition (20) is satisfied. Therefore, it is important to estimate a suitable w for suppressing the disturbance effect on the control process. In the tracking task, most of the tracking errors are induced in the pre-sliding region, and it is reasonable to conclude that the variation rate of the disturbance in the pre-sliding region is larger than that in the sliding region. In other words, the reaching condition in the motion process is guaranteed if it can be satisfied in the pre-sliding region. For this reason, the variation rate of [image: there is no content] in the pre-sliding region should be estimated for determining a suitable w.



To fulfill the so-called approaching condition and attain the sliding condition, it has been shown in (20) that [image: there is no content] should be satisfied. In other words, the derivation of the lumped perturbation needs to be bounded. In the following, the variation of the lumped perturbation is going to be addressed.



From (3), the deflection of the bristles is bounded, and its maximum value is [image: there is no content]. Moreover, [image: there is no content] is positive and bounded by [image: there is no content].



For [image: there is no content], the dynamic equation of the bristle can be represented as [image: there is no content], and the following inequality can be obtained.


κ˙=x˙p−x˙pG(x˙p)κ≤x˙p+x˙pG(x˙p)κ≤x˙p+x˙pfCσ0κ≤x˙p+x˙pfCσ0κss≤x˙p+x˙pfCσ0G(x˙p)≤x˙p+x˙pfCfS≤x˙p(1+fSfC)



(A1)







For [image: there is no content], [image: there is no content]:


κ¨=x¨p−x¨pG(x˙p)−x˙pG˙(x˙p)G(x˙p)2κ−x˙pG(x˙p)κ˙≤x¨p+x¨pG(x˙p)−x˙pG˙(x˙p)G(x˙p)2κ+x˙pG(x˙p)κ˙≤x¨p+x¨pfSσ0−x˙p{1σ0(fS−fC)exp[−(x˙pvS)N]⋅[−N(x˙pvS)N−1⋅x¨pvS]}(fC/σ0)2κss+x˙p(fC/σ0)κ˙≤x¨p+x¨pfSσ0+x˙p⋅fS−fCσ0⋅N(x˙pvS)N−1⋅x¨pvS(fC/σ0)2κss+x˙p(fC/σ0)⋅x˙p(1+fSfC)≤x¨p+x¨pfSσ0+x˙p⋅fS−fCσ0⋅N(x˙pvS)N−1⋅x¨pvS(fC/σ0)2⋅fSσ0+x˙p2(fC/σ0)⋅(1+fSfC)≤x¨p+[x¨p+x˙p⋅(1−fCfS)⋅N(x˙pvS)N−1⋅x¨pvS]⋅(fSfC)2+x˙p2(fC/σ0)⋅(1+fSfC)



(A2)




where [image: there is no content].



From (25) and (26), the maximum variation rate of the friction is:


[image: there is no content]



(A3)







Based on the limitation of the possible maximum velocity and acceleration of the servo mechanism, (A3) is bounded, and therefore, exists. According to the desired motion trajectory, we can substitute its maximum velocity and maximum acceleration into (A3) to estimate the required gain w. However, for practical implementation, if the reference command is a sine wave as shown in Figure 1, the corresponding desired velocity in the pre-sliding region is not zero at the initial instant, such that if we adopt its value in (A3), it requires an extremely large gain w for achieving the approaching condition, but it may not be realizable in practice. Alternatively, a reference signal with zero velocity is preferred. Moreover, according to the friction model, Stribeck velocity determines which friction region occurs, so that [image: there is no content] and [image: there is no content] are used for [image: there is no content] and [image: there is no content], respectively, to obtain the maximum required w.



In Remark 2, the system stability is briefly addressed by means of BIBO for the critical condition w = 0. In the following, the closed-loop robust stability issue is going to be interpreted as a feasibility problem of a linear matrix inequality (LMI). According to (24), when applying zero robust gain, the sliding controller (22) turns into a PD control plus a feed-forward compensation, which leads to the following error dynamics:


e˙2=−(1+k1k2)e1−(k1+k2)e2+M˜M(1+k1k2)e1+M˜M(k1+k2)e2−σ˜2Me2+σ˜2Mx˙d+(1−M˜M)x¨d+1MFB(κ,κ˙)+1Md



(A4)




where [image: there is no content] and [image: there is no content].



System (A4) can then be further represented by the following state space form:


[image: there is no content]



(A5)




where:


[image: there is no content]



(A6)







For (A5), consider a Lyapunov candidate as:


[image: there is no content]



(A7)




where [image: there is no content]. Taking the time derivative of (A7) yields:


[image: there is no content]



(A8)







Since the last term in (A8) is bounded, the closed-loop system is said to be robust stable if the following inequality exists:


[image: there is no content]



(A9)




where [image: there is no content].



According to the structure of [image: there is no content], it can be factorized by:


[image: there is no content]



(A10)




and:


[image: there is no content]



(A11)




where [image: there is no content] is a known positive constant.



Furthermore, considering the following inequality:


ΔATP+PΔA=FT∇TETP+PE∇F≤εFTF+1εμPEETP



(A12)




where [image: there is no content].



Based on (A12), (A9) is guaranteed as long as:


[image: there is no content]



(A13)




is attained.



As a result, it can be concluded that the robust stability can be guaranteed provided the following inequalities


[image: there is no content]



(A14)




are feasible.



Based on (A14), the Lyapunov function is re-written by:


[image: there is no content]



(A15)




which indicates that:


[image: there is no content]



(A16)




eventually. As a result, a robust stability can be guaranteed, even when w = 0.
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