Polarization Properties of Laser Solitons
Abstract
:1. Introduction
2. Materials and Method
- : Horizontally polarized component of the intensity.
- : Vertically polarized component of the intensity
- : Intensity component diagonally polarized.
- : Circular component of the emission. In this case, a QWP is used in addition to the linear polarizer. including the factor associated with this component, the Stokes parameters are calculated from the following set of equations:
3. Results
3.1. Single Soliton Case. The Cavity Soliton
3.2. The Ring-Shaped Structure. The Optical Vortex Beam
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leo, F.; Coen, S.; Kockaert, P.; Gorza, S.-P.; Emplit, P.; Haelterman, M. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 2010, 4, 471–476. [Google Scholar] [CrossRef]
- Schapers, B.; Feldmann, M.; Ackemann, T.; Lange, W. Interaction of localized structures in an optical pattern-forming system. Phys. Rev. Lett. 2000, 85, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Firth, W.J.; Weiss, C.O. Cavity and feedback solitons. Opt. Photonics News 2002, 13, 54–58. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankhiewicz, A. (Eds.) Dissipative Solitons; Lecture Notes in Physics; Springer: Berlin, Germany, 2005; Volume 336. [Google Scholar]
- Bazhenov, V.Y.; Taranenko, V.B.; Vasnetsov, M.V. Transverse optical effects in bistable active cavity with nonlinear absorber on bacteriorhodopsin. Proc. SPIE 1992, 1840, 183–193. [Google Scholar]
- Odent, V.; Tlidi, M.; Clerc, M.G.; Glorieux, P.; Louvergneaux, E. Experimental observation of front propagation in a negatively diffractive inhomogeneous kerr cavity. Phys. Rev. A 2014, 90, 011806. [Google Scholar] [CrossRef]
- Schreiber, A.; Thüring, B.; Kreuzer, M.; Tschudi, T. Experimental investigation of solitary structures in a nonlinear optical feedback system. Opt. Commun. 1997, 136, 415–418. [Google Scholar] [CrossRef]
- Radwell, N.; Ackemann, T. Characteristics of laser cavity solitons in a vertical-cavity surface-emitting laser with feedback from a volume Bragg grating. IEEE J. Quantum Electron. Phys. Lett. 2009, 45, 1388–1395. [Google Scholar] [CrossRef]
- Wilmsen, C.; Temkin, H.; Coldren, L. (Eds.) Vertical-Cavity Surface-Emitting Lasers. Design, Fabrication, Characterization and Applications; Cambridge Studies in Modern Optics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Michalzik, R. (Ed.) VCSEL’s: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers; Springer Series in Optical Sciences; Springer: Berlin, Germany, 2013. [Google Scholar]
- Webb, C.; Jones, J. (Eds.) Handbook of Laser Technology and Applications. Volume II: Laser Design and Laser Applications; Institute of Physics Publishing: Bristol, UK, 2004. [Google Scholar]
- Jimenez, J.; Noblet, Y.; Paulau, P.V.; Gomila, D.; Ackemann, T. Observation of laser vortex solitons in a self-focusing semiconductor laser. J. Opt. 2013, 15, 044011. [Google Scholar] [CrossRef]
- Jimenez, J.; Oppo, G.-L.; Ackemann, T. Temperature dependence of spontaneous switch-on and switch-off of laser cavity solitons in vertical-cavity surface-emitting lasers with frequency-selective feedback. J. Phys. D 2016, 49, 095110. [Google Scholar] [CrossRef]
- Averlant, E.; Tlidi, M.; Thienpont, H.; Ackemann, T.; Panajotov, K. Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting Lasers. Sci. Rep. 2016, 6, 20428. [Google Scholar] [CrossRef] [PubMed]
- Beckley, A.M.; Brown, T.G.; Alonso, M.A. Full Poincare Beams. Opt. Exp. 2010, 18, 10777–10785. [Google Scholar] [CrossRef] [PubMed]
- Grabher, M.; Jager, R.; Miller, M.; Thalmaier, C.; Herlein, J.; Ebeling, K.J. Bottom emitting VCSELs for High-CW optical output power. IEEE Photonics Technol. Lett. 1998, 10, 1061–1603. [Google Scholar] [CrossRef]
- Hecht, E. Optics; Pearson Education Ltd.: Harlow, UK, 2012. [Google Scholar]
- Brambilla, M.; Lugiato, L.A.; Prati, F.; Spinelli, L.; Firth, W. Spatial soliton pixels in semiconductor devices. Phys. Rev. Lett. 1997, 79, 2042–2045. [Google Scholar] [CrossRef]
- Barland, S.; Tredicce, J.R.; Brambilla, M.; Lugiato, L.A.; Balle, S.; Guidici, M.; Maggipinto, T.; Spinelli, L.; Tissoni, G.; Knodel, T.; et al. Cavity solitons as pixels in semiconductors. Nature 2002, 419, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Firth, W.J.; Scroggie, A.J. Optical Bullet Holes: Robust Controllable Localized States of a Nonlinear Cavity. Phys. Rev. Lett. 1996, 76, 1623–1626. [Google Scholar] [CrossRef] [PubMed]
- Panajotov, K.; Prati, F. Polarization Dynamics in VCSELs; Chapter 6 in “VCSEL’s: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers”; Springer Series in Optical Sciences; Springer: Berlin, Germany, 2013. [Google Scholar]
- San Miguel, M.; Feng, Q.; Moloney, J.V. Light polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 1995, 52, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Nye, J.F.; Berry, M.V. Dislocations in wave trains. Proc. R. Soc. A 1974, 336. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Ostrovskaya, E.A. Optical vortices: Folding and twisting waves of light. Opt. Photonics News 2001, 12, 24–28. [Google Scholar] [CrossRef]
- Genevet, P.; Barland, S.; Giudici, M.; Tredicce, J.R. Bistable and Addressable Localized Vortices in Semiconductor Lasers. Phys. Rev. Lett. 2010, 104, 223902. [Google Scholar] [CrossRef] [PubMed]
- Mihalache, D.; Mazilu, D.; Lederer, F.; Leblond, H.; Malomed, B.A. Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation. Phys. Rev. A 2008, 77, 033817. [Google Scholar] [CrossRef]
- Paulau, P.V.; Gomila, D.; Colet, P.; Loiko, N.A.; Rosanov, N.N.; Ackemann, T.; Firth, W.J. Vortex solitons in lasers with feedback. Opt. Express 2010, 18, 8859–8866. [Google Scholar] [CrossRef] [PubMed]
- Paulau, P.V.; Gomila, D.; Colet, P.; Malomed, B.A.; Firth, W.J. From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback. Phys. Rev. E 2011, 84, 036213. [Google Scholar] [CrossRef] [PubMed]
- Desyatnikov, A.S.; Sukhorukov, A.A.; Kivshar, Y.S. Azimuthons: Spatially Modulated Vortex Solitons. Phys. Rev. Lett. 2005, 95, 203904. [Google Scholar] [CrossRef] [PubMed]
- Minovich, A.; Neshev, D.N.; Desyatnikov, A.S.; Krolikowski, W.; Kivshar, Y.S. Observation of optical azimuthons. Opt. Express 2009, 17, 23610–23616. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, S.V.; Rosanov, N.N.; Shatsev, A.N.; Veretenov, N.A.; Vladimorov, A.G. Topologically multicharged and multihumped rotating solitons in wide-aperture lasers with a saturable absorber. IEEE J. Quantum Electron. 2003, 39, 197–205. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, P.; Jimenez, J.; Guillet, T.; Ackemann, T. Polarization Properties of Laser Solitons. Appl. Sci. 2017, 7, 442. https://doi.org/10.3390/app7050442
Rodriguez P, Jimenez J, Guillet T, Ackemann T. Polarization Properties of Laser Solitons. Applied Sciences. 2017; 7(5):442. https://doi.org/10.3390/app7050442
Chicago/Turabian StyleRodriguez, Pedro, Jesus Jimenez, Thierry Guillet, and Thorsten Ackemann. 2017. "Polarization Properties of Laser Solitons" Applied Sciences 7, no. 5: 442. https://doi.org/10.3390/app7050442
APA StyleRodriguez, P., Jimenez, J., Guillet, T., & Ackemann, T. (2017). Polarization Properties of Laser Solitons. Applied Sciences, 7(5), 442. https://doi.org/10.3390/app7050442