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Abstract: In this article, a new multi-objective approach to the aircraft climb path optimization
problem, based on the Particle Swarm Optimization algorithm, is introduced to be used for
aircraft–engine integration studies. This considers a combination of a simulation with a traditional
Energy approach, which incorporates, among others, the use of a proposed path-tracking scheme for
guidance in the Altitude–Mach plane. The adoption of population-based solver serves to simplify case
setup, allowing for direct interfaces between the optimizer and aircraft/engine performance codes.
A two-level optimization scheme is employed and is shown to improve search performance compared
to the basic PSO algorithm. The effectiveness of the proposed methodology is demonstrated in a
hypothetic engine upgrade scenario for the F-4 aircraft considering the replacement of the aircraft’s
J79 engine with the EJ200; a clear advantage of the EJ200-equipped configuration is unveiled, resulting,
on average, in 15% faster climbs with 20% less fuel.

Keywords: aircraft/engine integration; trajectory optimization; multi-objective optimization; particle
swarm optimization

1. Introduction

Given the large investments required to develop new aero-engines, the costs and risks associated
with such projects should be addressed as early as possible for a constructor to achieve market
competitiveness and avoid the financial consequences of potentially unsuccessful designs. This is the
fundamental principle that led to the introduction of the Techno-economic and Environmental Risk
Assessment (TERA) software tools, which allow for management and modeling of various factors
associated with a gas turbine’s operational lifecycle. The TERA concept was introduced by Cranfield
University [1] and its current applications include engines for civil aviation, maritime propulsion and
power generation.

Recognizing the important contribution of the propulsion system to the aircraft’s climb capabilities,
in this article, a new methodology for assessing the climb performance of candidate aircraft–engine
configurations is presented. This is based on a multi-objective climb path optimization search, which
is used to construct Pareto fronts of solutions that minimize climb time and fuel consumption. These
provide a graphical means of representing the aircraft’s climb potential and allow for comparisons
between different aircraft configurations to be made.

Aircraft climb path optimization belongs to a family of trajectory optimization problems that were
born out of the need to maximize the performance of air vehicles and/or reduce their operating cost and
environmental impact. The pioneering work of Routowski [2] in the late 1950s may be considered as the
starting point for work in this domain, later evolving to the Energy–Maneuverability Theory [3] which
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has contributed significantly to the quantification of aircraft performance. Though computationally
inexpensive and relatively accurate, the limitations of this methodology were already evident by the
late 1960s: The flyability of the optimal paths generated was not guaranteed, while simplifications
associated with the method’s fundamental assumptions led, in many cases, to unavoidable deviations
between actual and estimated results [4,5]. The gradual increase in the available computational
resources and improvement of numerical algorithms led to the introduction of more sophisticated
methods for aircraft trajectory optimization: optimal control theory and nonlinear programming
have been used extensively in this scope [6–10]. Optimal control theory, when applied to a trajectory
optimization problem, seeks an optimal control law; in other words, a sequence of control inputs
that drives a given vehicle into a trajectory that minimizes a pre-defined cost function. Methods
for solving optimal control problems include Dynamic Programming [11], which is restricted to
small state dimensions; Indirect Methods, which use the necessary conditions of optimality to
derive and numerically solve a boundary value problem; and Direct Methods, which discretize the
original infinite-dimensional control problem to a finite-dimensional one and solve it using nonlinear
programming techniques [12].

Genetic algorithms and, in general, population-based optimization schemes represent a more
recent addition to the collection of methods for trajectory optimization [13–20]. Although the latter
may not be considered computationally competitive with “traditional” optimal control methodology,
they incorporate some fundamental advantages that have attracted scientific interest: The convergence
of population-based methods is not affected by the smoothness or continuity of the functions being
minimized; this feature is particularly suited to aerospace applications where, traditionally, tabular
data are used for model construction. In the context of an aircraft–engine integration application as the
one hereby considered, this does allow for a direct interface between the optimization code and the
engine performance software to obtain estimates for thrust and fuel consumption, instead of resorting
to simplified functional representations for the latter; in fact, when considering the detailed modeling
of an aircraft powerplant, small discontinuities in these quantities and/or their derivatives are typical
as a result of bleed valve, guide vane, nozzle, bleed and power extraction schedules. Furthermore,
because of their very good global search capabilities and contrary to gradient-based optimization
methods, population-based schemes do not require an initial guess by the user and can thus been
applied to problems with solutions that are hard to estimate [15]. Combining the above with a simple
and straightforward implementation leads to a significant reduction in the effort required for case setup
and makes trajectory optimization accessible to users without the otherwise-necessary mathematical
background or system knowledge. As a result, given the ever-increasing computational power that is
available, the use of such schemes has become widespread over the last decades, replacing, in many
cases, methods that are more traditional.

Yokoyama and Suzuki [15] developed a modified real-coded genetic algorithm for constrained
trajectory optimization to be used for providing appropriate initial solutions to gradient-based direct
trajectory optimization methods. The proposed algorithm was applied to a space vehicle’s reentry
trajectory problem and produced solutions that approached the vicinity of the optimal solution.
Pontani and Conway [16] applied the Particle Swarm Optimization (PSO) technique (an optimization
method inspired by the social behavior of animals) to a series of space trajectory optimization cases
and showed that the method is efficient, reliable and accurate in determining optimal trajectories
for problems with a limited number of unknown parameters. Rahimi, Kumar and Alighanbari [17]
reached the same conclusions while examining the application of PSO to spacecraft reentry trajectory
optimization. Pontani, Ghosh and Conway [18] employed PSO to generate optimal multiple-burn
rendezvous trajectories and used the solutions to initialize a gradient-based optimization process; good
agreement between the results of the two methods was observed, demonstrating the effectiveness
of the PSO scheme. Common features of all the approaches presented above are the use of a
direct-shooting-equivalent problem formulation, employing parameterized curves to produce control
time histories with a finite number of input variables and the implementation of constraints by
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means of penalty functions, selections that are dictated by the particular characteristics of the selected
optimization schemes.

A rather interesting feature of population-based optimization algorithms that has recently been
exploited in the field of trajectory optimization is their ability to handle multiple objectives in a
single optimization run [19,20]; in a so-called multi-objective optimization case, instead of a single
solution, the optimizer seeks for a set of solutions that correspond to the optimal compromises
between contradicting targets; the latter form a front in the objective space, named the Pareto front.
This capability partly compensates for the higher computational cost of population-based methods,
since multiple runs of a comparable gradient-based optimization method are required to produce the
same amount of solutions.

Considering the development of an aircraft/engine integration methodology that will address the
climb performance of candidate aircraft/engine configurations, the use of a climb path optimization
methodology was required, to allow for a “fair” comparison of configurations with different
performance characteristics. In this context, a multi-objective formulation of the aircraft climb path
optimization problem was deemed advantageous over a single-objective one because the generated
Pareto fronts may better represent aircraft climb potential and allow for comparisons between different
configurations to be made on a wider basis. Under this scope and given that the computational cost
per simulation is rather small, a multi-objective, population-based optimization scheme was selected,
also capable of being directly interfaced with the University’s engine performance software, to further
simplify case setup; a user will only need to specify an engine geometry and a generic aircraft model
to obtain results for the climb potential of their combination, allowing for the method to also be used
for educational purposes. The authors’ intention is therefore not to present a climb path methodology
that will compete with present gradient-based methods, but to introduce an easy-to-implement,
non-mathematical, multi-objective formulation to the traditional climb path optimization problem to
be used as a tool for aircraft–engine integration studies.

The well-tried and tested Multi-Objective Particle Swarm Optimization (MOPSO) method [21] is
selected to conduct the intended multi-objective search for optimal climb paths because it combines
simplicity with fine global search characteristics. Energy–Maneuverability (E-M) theory is exploited to
increase the effectiveness of the search. This is achieved in two ways: Firstly, in place of producing
control histories and contrary to similar methods, the optimizer uses Bezier splines to construct
candidate flight paths in the form of curves in the Altitude (h)–Mach number (M) plane. Since the
general form of these paths can be easily predicted by E-M, this facilitates the selection of the design
parameters. To avoid limiting the optimizer’s degrees of freedom by inserting equality constraints
to satisfy the aircraft state equations, a path-tracking technique for guidance in the h-M plane based
on the Carrot Chasing guidance scheme [22] is introduced and used to fly an aircraft model into the
designed trajectories. Secondly, a two-level optimization scheme is employed to boost convergence:
An initial low-level optimization run is performed using E-M as a low-cost, low-fidelity approximate
of the actual objective functions; its solutions are used to initialize a second, high-level optimization
run, which employs a simulation to accurately assess the outcome of candidate flight paths. Better
initialization has a positive effect on the algorithm’s convergence speed and leads to improved results
for a given number of fitness function evaluations.

To demonstrate a practical application of the proposed method on a realistic aircraft–engine
integration scenario, a model of the F-4 Phantom II is selected as the reference airframe for this
application. This represents an aircraft type still in operational service, a fact that is combined with a
wide database of aerodynamic and performance data [3,4,23,24] that have become available during the
aircraft’s long operational career: On the basis of the latter, a reasonably accurate representation of the
aircraft may be constructed. Throttle-dependent forces are also included to account for installation
effects and allow for a more accurate integrated engine representation. Cranfield University’s in-house
gas turbine performance code, Turbomatch, is used to construct engine models, outputting thrust,
air mass flow, nozzle pressure ratio and specific fuel consumption. Turbomatch comprises several
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pre-programmed modules, which correspond to models of individual gas turbine components.
They can be called up to simulate the action of the different components of the engine, resulting
finally in the output of engine thrust or power, specific fuel consumption, etc. Its modularity, which is
supported by the implementation of generic component maps, enables the detailed design of any gas
turbine configuration. The validity of the aircraft performance model produced is assessed against
published performance data [24].

The structure of this article is as follows. Section 2 presents a general description of the aircraft
model, the procedure for the generation of climb paths and the proposed path tracking method. These
are followed, in Section 3, by a stability analysis for the latter and an assessment of simulation results
against published performance data of the aircraft. Section 4 describes the two-level optimization
approach adopted and compares its performance with that of an equivalent single-level scheme. Finally,
in Section 5, a test application of the developed methodology is presented, comparing the performance
of the aircraft’s original J79 engine with that of the EJ200 in a hypothetical engine upgrade scenario

2. Methodology

Most studies that use population-based methods to solve optimal control problems employ
parameterized curves to produce control time histories with a finite number of input variables,
without exceeding the optimization algorithm’s search capabilities [15–18]. Although this approach
is advantageous in terms of reducing the problem’s dimensionality, it requires some knowledge
of the general shape of the time history, which, in many practical problems, can be hard to
define [16]. This also applies to the aircraft climb path optimization problem, though in this case,
the shape of optimal trajectories may be approximated quite well by application of E-M theory.
Consequently, to exploit this information and solve the problem of solution parameterization, a
direct-collocation-equivalent formulation considering the optimization of trajectories in the state
domain appears to be the best approach; consistency with aircraft dynamics can be ensured by
imposing equality constraints corresponding to the aircraft state equations. However, there are two
fundamental difficulties associated with such a selection: Firstly, as shown by related studies [25,26],
equality constraints limit the search capability of population-based optimization schemes. Secondly
and most importantly, E-M solutions are trajectories in the Altitude (h)–Mach number (M) plane that
cannot be directly translated to state trajectories because of the absence of the time parameter; in
practice, a simulation-based approach needs to be adopted, in which an aircraft model alters between
Altitude and Mach number-based guidance logic to fly into a particular trajectory [4]. Switching
between the two guidance laws is case-dependent and needs to be programmed by hand, rendering it
unsuitable for an optimization application.

Considering the above, in this article, a simulation-based optimization approach is proposed,
in which the optimizer seeks for optimal trajectories in the h-M plane and uses Bezier splines to form
candidate solutions. The latter are evaluated by means of an aircraft model which is flown into the
designed trajectories using a proposed path-tracking scheme for “automated” guidance in the h-M
plane. A complete description of the proposed methodology is given in the following sub-sections.

2.1. Aircraft Model

An aircraft state-space model [27] was developed and used as a platform to assess the performance
of candidate trajectories. In order to cut down on the simulation’s computational intensity, the simplest
possible representation was selected, comprising only four states (h, V, γ, m), directly related to
the intended climb performance studies. The resulting model can be generically described as
a single-Degree-of-Freedom (DOF) navigation, two-DOF point mass aircraft state-space model,
augmented with a mass (m) state so as to account for engine fuel burn. The exact formulas
for the aircraft state equations are given in Equations (1)–(6), expressed with respect to an earth
coordinate system.



Appl. Sci. 2017, 7, 469 5 of 22

Modeling was based upon published aerodynamic and mass data for the F-4 aircraft [23,24],
combined with Cranfield University’s in-house gas turbine performance code, Turbomatch, which
was used to construct models for the aircraft’s engines, outputting Thrust (T), air Mass Flow (MF),
Nozzle Pressure Ratio (NPR) and Specific Fuel Consumption (SFC). Turbomatch is a software
based Gas Turbine performance simulation tool developed by the Propulsion Engineering Centre at
Cranfield University [28]. The tool is a 0-D performance simulation code, featuring OD and transient
simulation as well [29]. Turbomatch comprises several pre-programmed modules, which correspond
to thermodynamic models of components. They are called up to evaluate the engine output, i.e., thrust
or power, specific fuel consumption, etc. Its modularity, which is supported by the implementation of
generic component maps, enables the detailed design of any gas turbine configuration. Inlet pressure
recovery was modeled as a function of Mach number, as per MIL-E-5007D [30]. Throttle-dependent
forces were also included to account for installation effects: The experimental data of References [31,32]
were used to construct surrogate models for spillage and afterbody drag respectively. A schematic
representation of the general model arrangement is depicted in Figure 1.Appl. Sci. 2017, 7, 469  6 of 22 
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Figure 1. Schematic representation of the aircraft–engine model structure.

For the simulation runs, a constant throttle setting was assumed, in accordance with standard practice
in aircraft climb sequences [24,33]. A variable-throttle approach (one that considers the sequence
of throttle inputs as a problem variable), as adopted in other studies, would be computationally
demanding for the detailed engine representation required for aircraft–engine integration applications,
since engine transient response would need to be modeled and is anyway impractical for a real-world
scenario, being too complicated to be executed by a human pilot. Flight path angle control was used to
control the aircraft’s climb rate and airspeed to fly commanded paths in the Pressure Altitude (h)–Mach
Number (M) plane. The exact guidance logic employed is addressed in Section 2.3. Flight path angle
rate saturation was implemented to the model to represent the aircraft’s maximum lift capability and
structural strength (Equations (3) and (5))

.
h = V sin γ, (1)

.
V =

T − D
m
− g sin γ (2)
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.
γ =

 min
{

γc−γ
τ , Lmax

mV −
g cos γ

V

}
γc > γ

max
{

γc−γ
τ , −Lmax

mV − g cos γ
V

}
γc < γ

(3)

.
m = −SFC× T (4)

Lmax = min
{

1
2

ρSCLmax V2, nzmax mg
}

(5)

D =
1
2

ρSV2
(

CD0 + kC2
L

)
(6)

2.2. Generation of Climb Paths

To exploit the fact that the general form of optimal trajectories in the h-M plane can be estimated
using E-M theory, in the present study, Bezier splines [34] were selected for the generation of climb
paths in the form of two-dimensional curves in this plane. These are parametric curves built around
polynomial expressions, known as the Bernstein polynomials. A Bezier curve of order n is defined by
a set of control points, P0 through Pn, under the formula:

B(t) =
n

∑
i=0

(
n
i

)
(1− t)n−itiPi 0 ≤ t ≤ 1 (7)

The selection of Bezier splines to construct flight paths is justified by a number of advantages
over other curve-fitting approaches:

1. Complex curve geometries may be generated using a small number of control variables.
2. Boundary conditions may be easily applied.
3. Bezier splines allow for the representation of non-functional relations between h and M, which may

be generated by combinations of accelerated climbs/descents with zoom climb-type maneuvers.
4. The curves produced are directional, a feature that can be exploited by the aircraft’s path-tracking

guidance logic.

An example of a Bezier-spline-generated climb path is shown in Figure 2, plotted over contours
of Specific Excess Power.Appl. Sci. 2017, 7, 469  7 of 22 
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An acceptable climb path should have positive values of altitude along its entire length; depending
on the splines’ degrees of freedom, this may lead to an excessive number of rejected (or penalized)
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solutions during the optimization run. With a view to reducing the amount of unacceptable solutions
without affecting the optimizer’s performance, in place of an inequality path constraint, the resulting
negative values were simply forced to zero. Hence,

h(t) = max{h[B(t)], 0} (8)

2.3. Guidance

2.3.1. Aircraft Control

Assuming a constant throttle setting, the aircraft’s rate of climb and airspeed may be simultaneously
controlled by properly adjusting its flight path angle. From the definitions of Specific Energy (Es) and
Specific Excess Power (Ps) [3]:

Es = h +
V2

2g
(9)

Ps =
T − D

mg
V (10)

Ps =
dEs

dt
=

.
h +

V
g

.
V (11)

Using the chain rule:

dh
dM

=
dh
dV

dV
dM

=
dh
dV

a =
dh
dt

dt
dV

a =

.
h
.

V
a⇒

.
V =

.
ha[
dh
dM

] (12)

Combining Equations (11) and (12),

Ps =
.
h +

V
g

.
ha[
dh
dM

] ⇒ .
h =

Ps

1 + Va
g[ dh

dM ]

(13)

Knowing that
.
h = V sin γ, Equation (13) becomes:

γ = sin−1 Ps(
1 + Va

g[ dh
dM ]

)
V

(14)

It is thus possible to fly in a particular direction in the H-M plane only by controlling the aircraft’s
flight path angle. Limitations, however, do exist:

For γ > 0:
dh
dM

<
V2a

g(Ps −V)
(15)

The limiting value corresponds to the aircraft climbing vertically.
Equivalently, for γ < 0:

dh
dM

>
−Va

g
(

Ps
V + 1

) , (16)

the limiting value corresponding to a vertical dive.
Both limitations are presented graphically in Figure 3, the shaded area denoting the range of

physically possible transitions in the h-M plane.
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Figure 3. Schematic representation of feasible transitions in the h-M plane by means of flight path
angle control (shaded area). Limits (a) and (b) correspond to a vertical climb and a vertical descent,
respectively.

2.3.2. Path Tracking

In order to evaluate the specified climb paths, a non-linear path-tracking guidance method
was developed and used to guide the aircraft model in the h-M space. This was inspired by the
Carrot Chasing algorithm [22], adapted to match the particular characteristics of the examined
guidance problem.

From the derivation of the previous sub-section, it was shown that, subject to some limitations,
it is possible to fly in a particular direction in the h-M plane by properly adjusting the aircraft’s flight
path angle. Hence, a transition from an initial state (0) to new state (1) can be realized by setting
the flight path angle to a value so that dh/dM = tan θ, θ being the angle formed between the states’
relative position vector and the M axis (Figure 4). Consequently, instead of controlling the rate of
rotation of the vehicle’s velocity vector, as in typical guidance applications, direct control over the
direction of displacement in the h-M plane is available. Based on this feature and the Carrot Chasing
guidance scheme, a methodology for path tracking in the h-M plane was developed. This is presented
schematically in Figure 5.Appl. Sci. 2017, 7, 469  9 of 22 
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Let C represent an arbitrary curve in the h-M plane,
→
x 0 the vehicle’s current position and

→
x 1 the

projection of
→
x 0 on C. A reference point

→
x
′
1 is generated on C, at a distance d11′ downstream of

→
x 1.

The direction of the vehicle’s displacement vector
→
V
′

is defined as:

→
V //

(→
x1′ −

→
x0

)
(17)
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Point
→
x
′
1 is equivalent to the Virtual Target Point used in the Carrot Chasing path tracking algorithm

and is generated by means of numerical integration over curve C so as to appear at a fixed curve length
downstream of

→
x 0.

The path tracking methodology hereby presented was evaluated over a wide variety of flight
paths, displaying very good overall performance in following the specified trajectories (Figure 6).
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3. Validation

3.1. Stability Analysis of the Proposed Path Tracking Method

In this Section, a study of the stability characteristics of the proposed path-tracking method is
conducted over a circular trajectory of radius R. Results may be generalized for any curve C by setting
R equal to the local curvature of C. In order to focus on the performance of the path-tracking algorithm
aircraft dynamics have been neglected; it is hereby assumed that the aircraft reproduces all commands
instantaneously and without error. Figure 7 illustrates the system geometry for the examined case.

For a path with fixed curvature:
d11′ = const (18)

Consequently,

δ = const = sin−1
(

d11′

2R

)
(19)
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The rate of change of cross-track error d01 equals

.
d01 = −V′ sin(β + δ) (20)

From the triangle (x0 x0′ x1′):

β = tan−1
(

d01 cos δ

d01 sin δ + d11′

)
(21)

From Equations (20) and (21), knowing that d11′ , δ are constant:

.
d01 = −V′ sin

(
tan−1

(
d01 cos δ

d01 sin δ + d11′

)
+ δ

)
= f (d01), (22)

which is the system’s state-space model. For equilibrium, the system’s state vector must remain
invariable. Consequently:

.
d01 = 0

(20)⇒ β = −δ⇒ tan β = − tan δ (23)

Combining Equations (19), (21) and (23) yields

d01trim = −2R sin2 δ, (24)

which corresponds to a point inside the circle where
→
V0 becomes normal to

→
d 01, as shown in Figure 7.

Some steady-state cross-track error is thus unavoidable, given that a positive value of δ is required
for path-tracking; this, however, may become negligible if angle δ is set at an adequately small value,
i.e., d11′ � R.

Angle β is bounded in the interval (−π/2,+π/2), consequently, from Equations (19) and (21),
d01 is also bounded:

β ∈
(
−π

2
, +

π

2

)
⇒ d01 ∈ (−2R,+∞) (25)

From Equation (22), f is monotonous for d01 ∈ (−2R,+∞), as a synthesis of monotonous
functions:

f (d01) =


> 0 d01 < d01trim

= 0 d01 = d01trim

< 0 d01 >d01trim

(26)

Let = d01 − d01trim, and a Lyapunov-candidate function V(x) = |x|. Then:

.
V(x) =

dV
dx

.
f (x) = sgn(x)

.
d01(x) (27)
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Using Equation (26)
.

V(x) < 0 ∀x ∈
(
−2R− d01trim ,+∞

)
\{0} (28)

Therefore, f (x) is asymptotically stable for all possible values of x.

3.2. Aircraft Model Validation

As for any performance model, an assessment of its outputs was required in order to check the
validity of the produced predictions. Performance data from the aircraft’s operating manual [24] were
used under this scope: The optimal climb sequences listed in the latter for both maximum and military
power settings were simulated and results were compared with the respective data for an aircraft
AUM of 18,000 kg.

Figure 8 shows the trajectories followed during the two simulation runs. Results for Time To
Climb (TTC) and Fuel To Climb (FTC) are compared with the respective estimates from the flight
manual in Tables 1 and 2. In both cases, the level of agreement achieved (average RMS error was
2.987%) was deemed sufficient for the intended application of the model.
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Table 1. Comparison of simulation results with data from the aircraft’s flight manual for a climb with
military power setting for an aircraft AUM of 18,000 kg.

Altitude [ft]
Time To Climb [min] Fuel To Climb [kg]

Sim Manual %Error Sim Manual %Error

5000 0.442 0.45 −1.85 70 68 +2.9
10, 000 0.793 0.8 −0.83 136 136 +0.0
15, 000 1.2 1.2 +0 194 195 −0.52
20, 000 1.667 1.6 +4.17 251 254 −1.17
30, 000 3.0 3.1 −3.23 382 372 +2.72

Table 2. Comparison of simulation results with data from the aircraft’s flight manual for a climb with
maximum power setting for an aircraft AUM of 18,000 kg.

Altitude [ft]
Time To Climb [min] Fuel To Climb [kg]

Sim Manual %Error Sim Manual %Error

5000 0.157 0.15 +4.44 86 91 +2.9
10, 000 0.308 0.3 +2.78 159 159 −0.0
15, 000 0.473 0.5 −5.33 230 227 −0.52
20, 000 0.667 0.65 +2.56 300 317 −1.17
30, 000 1.2 1.15 +4.35 446 454 −2.72
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4. Optimization Approach

4.1. Multi-Objective Particle Swarm Optimization (MOPSO)

Particle Swarm Optimization (PSO), first introduced in [35], accounts for a population-based
optimization algorithm inspired by the social behavior of animals. The baseline PSO algorithm
combines simplicity with fine search capabilities: A population (swarm) of n particles is initialized at
random positions

→
x within a search space of dimension D, assigned with random velocities

→
u ∈ RD.

At the end of each step of the PSO algorithm, positions of all n particles are updated, using the
following set of equations:

For particle i, step j and search variable k:

vijk = ak ∗ c1 ∗
(

xgbestjk
− xijk

)
+ bk ∗ c2 ∗

(
xpbestijk

− xijk

)
+ w ∗ vij−1,k (29)

xij+1k = xijk + vijk (30)

where
→
x gbest stands for the position of the global best, namely, the best-so-far solution discovered by

the swarm;
→
x pbest stands for the position of the particle’s personal best which represents the best-so-far

solution discovered by the particle itself; c1, c2, w are constants (named social factor, cognitive factor
and inertia weight respectively); ak, bk are random numbers uniformly distributed in [0,1]; k = 1, . . . , D
where D is the number of search variables.

As with most similar algorithms, a variety of multi-objective variants of PSO have been proposed
expanding the method’s capabilities to handle multiple objectives in a single optimization run [36].
Among these, the Multi-Objective Particle Swarm Optimization (MOPSO) introduced in [21] represents
one of the most popular approaches and has been adopted for this study. The method retains the basic
features of PSO, its principal difference with the latter lying in the selection of the global best: Instead
of a single position in search space, the global best is chosen from an external repository containing
the members of the updated Pareto front by means of a roulette wheel selection scheme weighted in
accordance with the local density of the front. The procedure comprises the following steps:

5. The objective space is divided into N hypercubes and the number of non-dominated solutions
contained into each hypercube is calculated.

6. Each non-empty hypercube i is assigned with a fitness values fi inversely proportional to the
number ni of non-dominated solutions it contains, through the formula:

fi =

{
0, ni = 0

10/ni, ni > 0
(31)

7. Using fitness values fi, a roulette wheel selection is conducted to select the hypercube from which
the global best will be taken. The probability pi of hypercube i being selected is:

pi =
fi

∑N
j=1 f j

(32)

8. The global best position is picked at random from the solutions contained within the
chosen hypercube.

4.2. Two-Level PSO-Based Approach to Aircraft Climb Path Optimization

Criticism over population-based optimization methods mainly focuses on the excessive number
of fitness function evaluations required for locating the optimal solutions: Although these methods
are very capable of conducting a global search in the optimization domain, in applications where
the computational cost per evaluation is considerable, the optimization turnaround time becomes
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excessive. For a preset number of fitness function evaluations, in some cases this results in sub-optimal,
non-converged solutions. To remedy this problem, two options are generally available:

1. A reduction in the number of design variables.
2. The use of a surrogate model [37,38] to better initialize the search or filter-out non-promising

candidate solutions.

In this article, in order to introduce a computationally competitive climb path optimization
methodology, both strategies were adopted: As specified in Section 2, Bezier splines were used for
the generation of climb paths, reducing design variables to the coordinates of a finite number of
control points, rather than solving the original highly dimensional optimal control problem; the
use of a parameterized curve is a common feature with other, similar methods, however, these are
hereby used to design trajectories and not control sequences, facilitating the selection of inputs.
Furthermore, E-M predictions are used as a surrogate model of the actual cost functions in a proposed
two-level optimization strategy. This focuses on reducing the turnaround time of the simulation-based
optimization run by pre-evaluating the problem in the E-M domain: An initial low-level optimization
run is performed using E-M as a low-cost, low-fidelity approximate of the actual objective functions.
TTC and FTC are obtained from numerical integration of the quantities:

TTC =
∫ Es2

Es1

1
Ps

dEs (32)

FTC =
∫ Es2

Es1

.
m f

Ps
dEs (33)

along candidate flight paths, m f accounting for fuel flow rate.
Whereas “traditional” E-M considers trajectory optimization only in terms of time and fuel burn,

it is evident that a simple modification of Equation (33) (in particular, a replacement of m f with another
appropriate measure) can be used to generate cost functions for other quantities that have recently
attracted scientific interest, such as noise and pollutant emissions. For reasons of simplicity, in the
present study, however, the analysis is restricted to minimum time and fuel trajectories, which are
more suited to the military aircraft/engine integration application that is presented.

Solutions generated at the first level are used to initialize a second, high-level optimization run
which employs the aircraft simulation to accurately assess the outcome of candidate flight paths.
In both levels, the MOPSO algorithm is used to conduct the search. The flowchart of the process is
shown in Figure 9.Appl. Sci. 2017, 7, 469  14 of 22 
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The performance of the two-level optimization scheme was compared with that of standard
MOPSO in a climb path optimization problem with 8 design variables (4 control points× 2 coordinates
per point) using a population of 20 particles. After some trial and error analysis, PSO constants were
set at c1 = c2 = 1.7 and w = 0.3. For the two-level optimization case, an initial low-level run of
300 iterations was specified. Start conditions were set at M = 0.8, h = 0 m and end conditions at M = 1.8,
h = 14,000 m. The hypervolume indicator [39] was used to compare the convergence speed of the two
methods. In a two-objective problem, this equals the area of the objective space formed between the
origin and a user-defined “nadir” point (for our study, this was set at (800, 2500)) that is dominated by
the Pareto front.

In order to address the randomness of the PSO, 10 optimization runs were performed for each
method. The averaged convergence histories are shown in Figure 10 and the mean and standard
deviation values of the final solutions are included in Table 3. These indicate that the proposed
approach displayed consistently faster convergence over the basic MOPSO method, which is initialized
using a homogeneous random distribution of the particles in the design space. As expected, the
injected optimal solutions from the E-M calculations were sub-optimal when evaluated by means of
the aircraft simulation; the average hypervolume of the injected front was rather low when compared
to the converged solutions and was equaled by MOPSO after only a few iterations. Despite this, the
large number of well-placed solutions that were injected to the initial population did consistently
boost convergence speed, leading to better fronts for a given amount of fitness function evaluations
(Figure 11).
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Figure 10. Convergence of the proposed 2-level MOPSO vs. standard MOPSO in a supersonic
climb path optimization problem, using a population of 20 particles; results are averaged from
10 two-objective optimization runs. Iteration counts for the two-level method have been shifted
to account for the computational cost of the low-level optimization run. The hypervolume indicator
quantifies the part of the objective space (up to a user-defined “nadir” point) dominated by the Pareto
front. Higher indicator values correspond to better-placed and/or better-populated fronts.

Table 3. Convergence of the proposed 2-level MOPSO vs. standard MOPSO after 100 iterations;
Statistics have been derived from 10 optimization runs for each method.

Method
Hypervolume Indicator

Mean Std. Dev.

MOPSO 5.142× 105 3.876× 103

MOPSO 2-level 5.234× 105 5.825× 103
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5. Application

As an example application of the proposed methodology, a hypothetical engine upgrade scenario
is examined. This considers a replacement of the aircraft’s original J79 turbojet engine with the EJ200
low-bypass turbofan, which has a similar design air mass flow rate.

Under this scope, the climb performance of three aircraft–engine configurations is examined using
the proposed multi-objective climb path optimization methodology. A summary of their specifications
is given in Table 4. Configuration C1 is the original aircraft configuration, while configurations C2 and
C3 correspond to EJ200-equipped variants. Configuration C2 shares the same AUM with configuration
C1, assuming that, as a result of the reduced weight of the EJ200 engines, the airframe’s weight is
allowed to increase with the addition of extra equipment or internal fuel. Configuration C3 shares the
shame airframe and internal fuel weight with Configuration C1, resulting in a reduced aircraft AUM.

Table 4. Specifications of the examined configurations.

Configuration Engine Type
Mass [kg]

Airframe + Fuel Engines Total

C1 J79 15, 512 3500 19, 012
C2 EJ200 17, 052 1960 19, 012
C3 EJ200 15, 512 1960 17, 472

To assess the performance of the above configurations, two test cases are evaluated, their details
being provided in Table 5. Case A examines a typical subsonic mission climb scenario, where an
aircraft, after takeoff, uses a military (maximum, non-afterburning) thrust setting to climb to the
optimum cruise altitude. Case B, on the other hand, considers a maximum power supersonic climb,
to be encountered in a supersonic, point-intercept-type mission.

Table 5. Test case specifications.

Case Thrust Setting
Start End

Mach Alt [m] Mach Alt [m]

A Military 0.3 0 0.9 10, 000
B Maximum 0.3 0 1.8 15, 000
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A population of 20 particles was selected and run for 300 low-level and 100 high-level iterations in
all test cases. Four control points were employed for the test runs of Case A and six for the runs of Case
B, corresponding to eight and twelve design variables, respectively. In both cases, PSO constants were
set at c1 = c2 = 1.7 and w = 0.3. Results are presented in Figures 12–15 for Case A and Figures 16–19
for Case B. For reasons of clarity, only flight paths corresponding to minimum-time and minimum-fuel
solutions are shown, intermediate flight paths being bounded within them.
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A qualitative assessment of the resulting trajectories indicates that these are in agreement with
related theoretical estimates and published results [2–5,9]: All paths begin with a level acceleration
at sea level where the aircraft has its maximum acceleration capability. In the subsonic climb case,
this is followed by an accelerated climb that follows the peaks of the Specific Excess Power (for
the minimum-time climb) and Energy Efficiency (for the minimum-fuel climb) contours up to the
specified end conditions; this is a good indication for the accuracy of the generated solutions, since the
optimizer, by definition, uses no information about the gradients of the respective functions. In the
supersonic climb case, the tracking of contours usually results in a dive occurring in the transonic
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region. In minimum-fuel climb paths, climbs begin at lower subsonic Mach numbers than in the
respective minimum time paths, trajectories being shifted towards higher altitudes for improved
efficiency. In general, in all cases and in accordance with the results of Reference [4], the resulting paths
look like “smoothed” versions of E-M paths. This is because E-M solutions do not take into account
the energy loss during maneuvers and assume that the transition between equal energy levels may
be realized instantaneously; if the latter are considered, climb path optimization becomes a tradeoff
between accurate tracking of contours and avoidance of intense maneuvers.Appl. Sci. 2017, 7, 469  18 of 22 
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As far as the performance of the examined configurations is concerned; an inspection of Figures 12
and 16 denotes a clear advantage of the EJ200-equipped configurations. In the subsonic climb case;
an average 14.5% reduction in fuel consumption was combined with 13.7% reduction in time to
climb with respect to the aircraft’s original configuration at an equal aircraft AUM (Configuration C2).
The above values were further increased to 23.6% and 22.7%, respectively, if the weight reduction
resulting from the reduced engine weight were considered (Configuration C3). A similar picture was
observed in the supersonic climb test results: The average reduction in fuel consumption was 17.3%
for configuration C2 and 25.3% for configuration C3 accompanied by a 6.7% and 18.9% reduction in
climb time, respectively.
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A comparison of the maximum power Specific Excess Power and Energy Efficiency contours of
the three examined configurations unveils the different performance characteristics of the engines
examined: The EJ200 is a low-bypass turbofan engine with a higher static thrust than the J79 turbojet.
This accounts for an acceleration and efficiency advantage of the former over most of the aircraft’s
envelope, particularly at high altitude and low-to-medium Mach numbers. On the contrary, because of
its turbojet cycle, the J79 has better performance at medium altitudes in the transonic Mach number
range, gradually expanding to the entire altitude range as the Mach number further increases. In Case
B, this results in smaller differences in TTC between configuration C1 and configurations C2 and C3
compared to the results of Case A (Figures 12 and 16). The different performance characteristics of the
two engines also become evident by comparing the minimum-time supersonic climb trajectories of
configurations C2 and C3 with that of configuration C1. The J79-equipped configuration (C1) favors
an acceleration at medium altitude in the transonic regime, followed by a zoom climb to reach the
specified altitude (Figure 17), whereas the EJ200-equipped configurations (C2 and C3) use a subsonic
climb to high altitude followed by an accelerated supersonic climb to the desired conditions (Figures 18
and 19). On the contrary, minimum-fuel supersonic climb trajectories are similar for both engines,
which lead to a rather “broad” front of optimal solutions for configuration C1 (Figure 16) compared
to the respective results for configurations C2 and C3. The same, to a smaller degree, also apply to
the results of the subsonic climb case, as may be observed in Figures 12–15: The greater “distance”
between minimum-fuel and minimum-time trajectories for configuration C1 leads to greater variations
in FTC and TTC among members of the resulting front. Consequently, this constitutes an additional
advantage of the EJ200-equipped configurations since the relative coincidence between minimum-time
and minimum-fuel climb paths minimizes the compromises required (in fuel when climbing for the
minimum time and the reverse) in each climb case. As a general conclusion, the characteristics of the
low-bypass turbofan cycle appear to be better suited to typical aircraft mission requirements, leading
to faster climbs with less fuel consumption. On the other hand, the regions where the performance
of the turbojet is dominant are of little operational interest, a fact that is justified by the evolution of
military aircraft engines since the development of the J79 in the late 1950s.

6. Conclusions

Population-based schemes represent a rather recent addiction to the collection of methods
for aircraft trajectory optimization that, despite their rather high computational cost, combine
extreme simplicity with robustness and are therefore accessible to a larger number of users.
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In this article, the authors considered the development of an easy-to-implement, non-mathematical,
multi-objective formulation to the traditional climb path optimization problem to be used as a tool
for aircraft–engine integration studies. This was built upon a combination of a simulation-based
optimization scheme using the Multi-Objective Particle Swarm Optimization method with “traditional”
Energy–Maneuverability theory. The combination of the two methods was shown to output better
results than any of the methods individually.

As part of the proposed optimization methodology, and to avoid inserting equality constrained
that would limit the optimizer’s search capability, a new variant of the Carrot Chasing guidance
method was introduced and used to guide the aircraft model through specified trajectories in the
Altitude (h)–Mach (M) plane. Tested on a wide variety of possible trajectories, the proposed guidance
method was found to produce very accurate path tracking.

The performance of the developed methodology was demonstrated in a test application, which
compared the performance of J79- and EJ200-equipped variants of an F-4-like aircraft, in a hypothetical
engine upgrade scenario. Pareto fronts of solutions that minimize climb time and fuel consumption
were generated using the proposed optimization scheme and used to compare the performance of
the different aircraft/engine configurations. Results denoted a clear advantage of the EJ200-equipped
configurations in both subsonic and supersonic climb conditions: on average, 15% faster climbs were
achieved with 20% less fuel consumption. As expected, the characteristics of the low-bypass turbofan
cycle were found to be better suited to aircraft mission requirements, while the regions where the
performance of the turbojet was dominant were of little operational interest; a point that is justified by
the evolution of military aircraft engines since the development of the J79.

As a concluding remark, it is important to note that, if an actual engine replacement for an F-4
fleet were to be examined, various other factors would need to be considered, such as the costs for
engine purchase and airframe modification, the overall gain in mission performance and the fleet’s
remaining operational life. Such issues are out of the scopes of the presented methodology and will
be addressed in future studies by the authors, as part of the synthesis of a TERA module for military
aircraft applications.
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Nomenclature

a speed of sound
AUM All-Up Mass
c commanded
CD0 zero-lift drag coefficient
CL lift coefficient
D drag
DOF Degrees Of Freedom
Es specific energy
E-M Energy–Maneuverability
FTC Fuel To Climb
g gravitational acceleration
h altitude
k induced drag coefficient
L lift
M Mach number
m mass
nz load factor
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Ps specific excess power
S wing area
SFC Specific Fuel Consumption
T thrust
TTC Time To Climb
V velocity
γ flight path angle
ρ air density
τ time constant
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