Path Loss Measurements of Indoor LTE System for the Internet of Things
Abstract
:1. Introduction
- An experimental method was designed to perform the wireless channel parameter measurements of indoor LTE systems for the IoT. This method could be applied to factorial environments.
- Based on the experimental results, we provided the indoor channel model with modified parameter values. This facilitates the system planning and deployment of small cell base stations with 90% SR for the IoT.
2. Principles
2.1. Path Loss Model
2.2. Coverage Range
3. Experimental Methods
4. Evaluation Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- MacDougall, W. Industrie 4.0: Smart Manufacturing for the Future; Trade & Invest: Bonn, Germany, 2014. [Google Scholar]
- Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Qureshi, F.F.; Iqbal, R.; Asghar, M.N. Energy Efficient Wireless Communication Technique based on Cognitive Radio for Internet of Things. J. Netw. Comput. Appl. 2017. [Google Scholar] [CrossRef]
- Kumar, N.; Iqbal, R.; Misra, S.; Rodrigues, J.J.P.C.; Obaidat, M.S. Bayesian Cooperative Coalition Game as-a-Service for RFID-Based Secure QoS Management in Mobile Cloud. IEEE Trans. Emerg. Top. Comput. 2016. [Google Scholar] [CrossRef]
- Kumar, N.; Iqbal, R.; Misra, S.; Rodrigues, J.J.P.C. Bayesian Coalition Game for Contention-Aware Reliable Data Forwarding in Vehicular Mobile Cloud. Futuru Gener. Comput. Syst. 2015, 48, 60–72. [Google Scholar] [CrossRef]
- Gozalvez, J. New 3GPP Standard for IoT [Mobile Radio]. IEEE Veh. Technol. Mag. 2016, 11, 14–20. [Google Scholar] [CrossRef]
- Rico-Alvarino, A.; Vajapeyam, M.; Xu, H.; Wang, X.; Blankenship, Y.; Bergman, J.; Tirronen, T.; Yavuz, E. An Overview of 3GPP Enhancements on Machine to Machine Communications. IEEE Commun. Mag. 2016, 54, 14–21. [Google Scholar] [CrossRef]
- Ratasuk, R.; Mangalvedhe, N.; Ghosh, A. Overview of LTE enhancements for cellular IoT. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hongkong, China, 30 August–2 September 2015; pp. 2293–2297. [Google Scholar]
- Ratasuk, R.; Prasad, A.; Li, Z.; Ghosh, A.; Uusitalo, M.A. Recent advancements in M2M communications in 4G networks and evolution towards 5G. In Proceedings of the 2015 18th International Conference on Intelligence in Next Generation Networks, Paris, France, 17–19 February 2015; pp. 52–57. [Google Scholar]
- Ratasuk, R.; Mangalvedhe, N.; Zhang, Y.; Robert, M.; Koskinen, J.P. Overview of Narrowband IoT in LTE Rel-13. In Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking (CSCN), Berlin, Germany, 31 October–2 November 2016; pp. 1–7. [Google Scholar]
- Ratasuk, R.; Vejlgaard, B.; Mangalvedhe, N.; Ghosh, A. NB-IoT System for M2M Communication. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–5. [Google Scholar]
- Nakamura, T.; Nagata, S.; Benjebbour, A.; Kishiyama, Y.; Hai, T.; Xiaodong, S.; Ning, Y.; Nan, L. Trends in Small Cell Enhancements in LTE Advanced. IEEE Commun. Mag. 2013, 51, 98–105. [Google Scholar] [CrossRef]
- Nokia White Paper: LTE Evolution for IoT Connectivity. Available online: http://resources.alcatel-lucent.com/asset/200178 2016 (accessed on 11 May 2017).
- Savazzi, S.; Rampa, V.; Spagnolini, U. Wireless Cloud Networks for the Factory of Things: Connectivity Modeling and Layout Design. IEEE Internet Things J. 2014, 1, 180–195. [Google Scholar] [CrossRef]
- International Telecommunication Union (ITU). Recommendation ITU-R P.1238-7 Propagation Data and Prediction Methods for the Planning of Indoor Radio Communication Systems and Radio Local Area Networks in the Frequency Range 900 MHz to 100 GHz; International Telecommunication Union (ITU): Geneva, Switzerland, 2012. [Google Scholar]
- Bernardin, P.; Yee, M.F.; Ellis, T. Cell Radius Inaccuracy: A New Measure of Coverage Reliability. IEEE Trans. Veh. Technol. 1998, 47, 1215–1226. [Google Scholar] [CrossRef]
- Jakes, W.C. Microwave Mobile Communications; Wiley: New York, NY, USA, 1974; pp. 125–128. [Google Scholar]
Carrier Frequency (MHz) | 2350 |
Bandwidth (MHz) | 20 (100 PRBs) |
Antenna Mode | SISO |
Tx/Rx Cable Loss (dB) | 14.11 |
Tx/Rx Antenna Gain (dBi) | 0 |
PA Gain (dB) | 18 |
Rx Noise Figure (dB) | 8 |
Distance (m) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Standard deviation (dBm) | 0.008378 | 0.03065 | 0.052378 | 1.150136 | 0.401302 | 0.822842 | 0.557252 | 1.339847 |
Distance (m) | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Standard Deviation (dBm) | 1.398415 | 1.476168 | 0.278014 | 1.956235 | 1.97834 | 1.777501 | 0.853046 | 0.877525 |
Distance (m) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Standard Deviation (dBm) | 0.008378 | 0.03065 | 3.000157 | 2.67308 | 2.596399 | 1.908254 | 2.153402 | 3.272921 |
Distance (m) | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Standard Deviation (dBm) | 4.230201 | 1.90781 | 3.208245 | 3.013187 | 3.063887 | 2.005314 | 2.930522 | 2.507987 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.-Y.; Chang, T.-Y.; Chiang, Y.-C.; Lin, P.-C.; Mar, J. Path Loss Measurements of Indoor LTE System for the Internet of Things. Appl. Sci. 2017, 7, 537. https://doi.org/10.3390/app7060537
Liu G-Y, Chang T-Y, Chiang Y-C, Lin P-C, Mar J. Path Loss Measurements of Indoor LTE System for the Internet of Things. Applied Sciences. 2017; 7(6):537. https://doi.org/10.3390/app7060537
Chicago/Turabian StyleLiu, Guan-Yi, Tsung-Yu Chang, Yung-Chun Chiang, Po-Chiang Lin, and Jeich Mar. 2017. "Path Loss Measurements of Indoor LTE System for the Internet of Things" Applied Sciences 7, no. 6: 537. https://doi.org/10.3390/app7060537
APA StyleLiu, G. -Y., Chang, T. -Y., Chiang, Y. -C., Lin, P. -C., & Mar, J. (2017). Path Loss Measurements of Indoor LTE System for the Internet of Things. Applied Sciences, 7(6), 537. https://doi.org/10.3390/app7060537