Picosecond Photoacoustic Metrology of SiO2 and LiNbO3 Layer Systems Used for High Frequency Surface-Acoustic-Wave Filters
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ruppel, C.C.; Reindl, L.; Weigel, R. SAW Devices and their Wireless Communication Applications. IEEE Microw. Mag. 2002, 3, 65–71. [Google Scholar] [CrossRef]
- Lam, C.S. A Review of the Timing and Filtering Technologies in Smartphones. In Proceedings of the IEEE International Frequency Control Symposium, New Orleans, LA, USA, 9–12 May 2016. [Google Scholar]
- Thomsen, C.; Grahn, H.T.; Maris, H.J.; Tauc, J. Surface generation and detection of photons by picosecond light pulses. Phys. Rev. 1986, 34, 4129–4138. [Google Scholar] [CrossRef]
- Thomsen, C.; Strait, J.; Vardeny, Z.; Maris, H.J.; Tauc, J.; Hauser, J.J. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 1984, 53, 989–992. [Google Scholar] [CrossRef]
- Mante, P.A.; Robillard, J.F.; Devos, A. Complete thin film mechanical characterization using picosecond ultrasonics and nanostructured transducers: Experimental demonstration on SiO2. Appl. Phys. Lett. 2008, 93, 1–4. [Google Scholar] [CrossRef]
- Mounier, D.; Morozov, E.; Ruello, P.; Breteau, J.; Picart, P.; Gusev, V. Detection of shear picosecond acoustic pulses by transient femtosecond polarimetry. Eur. Phys. J. Spec. Top. 2008, 153, 243–246. [Google Scholar] [CrossRef]
- Pezeril, T.; Chigarev, N.; Ruello, P.; Gougeon, S.; Mounier, D.; Breteau, J.; Picart, P.; Gusev, V. Laser acoustics with picosecond collimated shear strain beams in single crystals and polycrystalline materials. Phys. Rev. B 2006, 73, 132301. [Google Scholar] [CrossRef]
- Mounier, D.; Morosov, E.; Ruello, P.; Edely, M.; Babilotte, P.; Mechri, C.; Breteau, J.-M.; Gusev, V. Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics. J. Phys. Conf. Ser. 2007, 92, 12179. [Google Scholar] [CrossRef]
- Weber, M.F.; Stover, C.A.; Gilbert, L.R.; Nevitt, T.J.; Ouderkirk, A.J. Giant Birefringent Optics in Multilayer Polymer Mirrors. Science 2000, 287, 2451–2456. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Esqueda, J.A.; Torres-Torres, C.; Cheang-Wong, J.C.; Crespo-Sosa, A.; Rodríguez-Fernández, L.; Noguez, C.; Oliver, A. Large optical birefringence by anisotropic silver nanocomposites. Opt. Express 2008, 16, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Harris, B.K.D.; van Popta, A.C.; Sit, J.C.; Broer, D.J.; Brett, M.J. A Birefringent and Transparent Electrical Conductor. Adv. Funct. Mater. 2008, 18, 2147–2153. [Google Scholar] [CrossRef]
- Muskens, O.L.; Borgström, M.T.; Bakkers, E.P.A.M.; Rivas, J.G. Giant optical birefringence in ensembles of semiconductor nanowires. Appl. Phys. Lett. 2006, 89, 233117. [Google Scholar] [CrossRef]
- Künzner, N.; Kovalev, D.; Diener, J.; Gross, E.; Timoshenko, V.Y.; Polisski, G.; Koch, F. Giant birefringence in anisotropically nanostructured silicon. Opt. Lett. 2001, 26, 1265–1267. [Google Scholar] [CrossRef] [PubMed]
- Ristow, O.; Merklein, M.; Grossmann, M.; Hettich, M.; Schubert, M.; Bruchhausen, A.; Grebing, J.; Erbe, A.; Mounier, D.; Gusev, V.; et al. Ultrafast spectroscopy of super high frequency mechanical modes of doubly clamped beams. Appl. Phys. Lett. 2013, 103, 233114. [Google Scholar] [CrossRef]
- Bartels, A.; Cerna, R.; Kistner, C.; Thoma, A.; Hudert, F.; Janke, C.; Dekorsy, T. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Rev. Sci. Instrum. 2007, 78, 35107. [Google Scholar] [CrossRef] [PubMed]
- Gebs, R.; Klatt, G.; Janke, C.; Dekorsy, T.; Bartels, A. High-speed asynchronous optical sampling with sub-50fs time resolution. Opt. Express 2010, 18, 5974–5983. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Matsuda, O.; Wright, O.B. Picosecond acoustic phonon pulse generation in nickel and chromium. Phys. Rev. B 2003, 67, 205421. [Google Scholar] [CrossRef]
- Ruello, P.; Gusev, V.E. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics 2014, 56, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, J.G.; Liu, J.M.; Ippen, E.P.; Bloembergen, N. Femtosecond Laser Interaction with Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures. Phys. Rev. Lett. 1984, 53, 1837–1840. [Google Scholar] [CrossRef]
- Devos, A. Colored ultrafast acoustics: From fundamentals to applications. Ultrasonics 2015, 56, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Nazaretski, E.; Merithew, R.D.; Pohl, R.O.; Parpia, J.M. Measurement of the acoustic properties of amorphous silica above 4.5 mK. Phys. Rev. B 2005, 71, 144201. [Google Scholar] [CrossRef]
- Chern, E.J.; Nielsen, H.T.C. Generalized formulas for reflected pulse response of multilayered structures. J. Appl. Mech. 1989, 66, 2833. [Google Scholar] [CrossRef]
- Lejman, M.; Vaudel, G.; Infante, I.C.; Chaban, I.; Pezeril, T.; Edely, M.; Nataf, G.F.; Guennou, M.; Kreisel, J.; Gusev, V.E.; et al. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Auld, B.A. Acoustic Fields and Waves in Solids; Wiley: New York, NY, USA, 1973. [Google Scholar]
- MTI Corporation. Available online: http://www.mtixtl.com/linbo3.aspx (accessed on 15 April 2017).
- Nagata, H.; Takahashi, H.; Takai, H.; Kougo, T. Impurity Evaluations of SiO2 Films Formed on LiNbO3 Substrates. Jpn. J. Appl. Phys. 1995, 34, 606–609. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brick, D.; Emre, E.; Grossmann, M.; Dekorsy, T.; Hettich, M. Picosecond Photoacoustic Metrology of SiO2 and LiNbO3 Layer Systems Used for High Frequency Surface-Acoustic-Wave Filters. Appl. Sci. 2017, 7, 822. https://doi.org/10.3390/app7080822
Brick D, Emre E, Grossmann M, Dekorsy T, Hettich M. Picosecond Photoacoustic Metrology of SiO2 and LiNbO3 Layer Systems Used for High Frequency Surface-Acoustic-Wave Filters. Applied Sciences. 2017; 7(8):822. https://doi.org/10.3390/app7080822
Chicago/Turabian StyleBrick, Delia, Erkan Emre, Martin Grossmann, Thomas Dekorsy, and Mike Hettich. 2017. "Picosecond Photoacoustic Metrology of SiO2 and LiNbO3 Layer Systems Used for High Frequency Surface-Acoustic-Wave Filters" Applied Sciences 7, no. 8: 822. https://doi.org/10.3390/app7080822
APA StyleBrick, D., Emre, E., Grossmann, M., Dekorsy, T., & Hettich, M. (2017). Picosecond Photoacoustic Metrology of SiO2 and LiNbO3 Layer Systems Used for High Frequency Surface-Acoustic-Wave Filters. Applied Sciences, 7(8), 822. https://doi.org/10.3390/app7080822