Silver Nanoparticles-Loaded Exfoliated Graphite and Its Anti-Bacterial Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Graphite Intercalation Compounds (GICs)
2.3. Preparation of Ag Nanoparticles-Loaded Exfoliated Graphite
2.4. Structural Characterization
2.5. Antibacterial Activity and Anti-Adhesion Effect of Bacteria
3. Results and Discussion
3.1. XRD and FTIR Analysis
3.2. Morphology Observation by SEM and TEM
3.3. Pore Structure by Nitrogen Adsorption and Mercury Intrusion Porosimetry Measurement
3.4. Inhibition Ring Test and Anti-Adhesion Effect of Bacteria
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Tomacheski, D.; Pittol, M.; Simoes, D.N.; Ribeiro, V.F. Effect of natural ageing on surface of silver loaded TPE and its influence in antimicrobial efficacy. Appl. Surf. Sci. 2017, 405, 137–145. [Google Scholar] [CrossRef]
- Pak, Z.H.; Abbaspour, H.; Karimi, N.; Fattahi, A. Eco-friendly synthesis and antimicrobial activity of silver nanoparticles using dracocephalum moldavica seed extract. Appl. Sci. 2016, 6, 69. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Jo, Y.K.; Cha, M.; Cha, Y.J.; Yoon, D.K.; Sanandiya, N.D.; Prajatelistia, E.; Oh, D.X.; Hwang, D.S. Mussel-inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties, electrical conductivity and antibacterial activity. Polymers 2016, 8, 102. [Google Scholar] [CrossRef]
- Porcaro, F.; Carlini, L.; Ugolini, A.; Visaggio, D.; Visca, P.; Fratoddi, I.; Venditti, I.; Meneghini, C.; Simonelli, L. Synthesis and structural characterization of silver nanoparticles stabilized with 3-Mercapto-1-Propansulfonate and 1-Thioglucose mixed thiols for antibacterial applications. Materials 2016, 9, 1028. [Google Scholar] [CrossRef] [PubMed]
- Aruguete, D.M.; Kim, B.; Hochella, M.F.; Ma, Y.J.; Cheng, Y.W.; Hoegh, A.; Liu, J.; Pruden, A. Antimicrobial nanotechnology: Its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ. Sci. Process. Impacts 2013, 15, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Rieger, K.A.; Cho, H.J.; Yeung, H.F.; Fan, W.; Schiffman, J.D. Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl. Mater. Interfaces 2016, 8, 3032–3040. [Google Scholar] [CrossRef] [PubMed]
- Rocks, L.; Faulds, K.; Graham, D. Rationally designed SERS active silica coated silver nanoparticles. Chem. Commun. 2011, 47, 12886. [Google Scholar] [CrossRef] [PubMed]
- Uzayisenga, V.; Lin, X.D.; Li, L.M.; Anema, J.R.; Yang, Z.L.; Huang, Y.F.; Lin, H.X.; Li, S.B.; Li, J.F.; Tian, Z.Q. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced raman spectroscopy. Langmuir 2012, 28, 9140–9146. [Google Scholar] [CrossRef] [PubMed]
- Sotiriou, G.A.; Teleki, A.; Camenzind, A.; Krumeich, F.; Meyer, A.; Panke, S.; Pratsinis, S.E. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area. Chem. Eng. J. 2011, 170, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Liang, J.; Cao, X.; Tang, J.; Gao, J.; Wang, L.; Shao, W.; Gao, Q.; Teng, Z. Facile synthesis of monodisperse of hollow mesoporous SiO2 nanoparticles and in-situ growth of Ag nanoparticles for antibacterial. J. Colloid Interface Sci. 2016, 474, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.Z.; Wang, H.R.; Huo, K.F.; Cui, L.Y.; Zhang, W.R.; Ni, H.W.; Zhang, Y.M.; Wu, Z.F.; Chu, P.K. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011, 32, 5706–5716. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpaa, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Tang, C.L.; Sun, W.; Yan, W. Green and facile fabrication of silver nanoparticles loaded activated carbon fibers with long-lasting antibacterial activity. RSC Adv. 2014, 4, 523–530. [Google Scholar] [CrossRef]
- Chingombe, P.; Saha, B.; Wakeman, R.J. Sorption of atrazine on conventional and surface modified activated carbons. J. Colloid Interface Sci. 2006, 302, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Hu, D.; Cao, Q.; Yan, W.; Xing, B. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: Preparation, mechanism, and their antibacterial activity. Appl. Surf. Sci. 2017, 394, 457–465. [Google Scholar] [CrossRef]
- Zhang, S.T.; Wu, D.C.; Wan, L.; Tan, H.B.; Fu, R.W. Adsorption and antibacterial activity of silver-dispersed carbon aerogels. J. Appl. Polym. Sci. 2006, 102, 1030–1037. [Google Scholar] [CrossRef]
- Kazmi, S.J.; Shehzad, M.A.; Mehmood, S.; Yasar, M.; Naeem, A.; Bhatti, A.S. Effect of varied Ag nanoparticles functionalized CNTs on its anti-bacterial activity against E. coli. Sens. Actuator A Phys. 2014, 216, 287–294. [Google Scholar] [CrossRef]
- Khare, P.; Ramkumar, J.; Verma, N. Control of bacterial growth in water using novel laser-ablated metal–carbon–polymer nanocomposite-based microchannels. Chem. Eng. J. 2015, 276, 65–74. [Google Scholar] [CrossRef]
- Sun, X.F.; Qin, J.; Xia, P.F.; Guo, B.B.; Yang, C.M.; Song, C.; Wang, S.G. Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J. 2015, 281, 53–59. [Google Scholar] [CrossRef]
- Chae, H.R.; Lee, J.; Lee, C.H.; Kim, I.C.; Park, P.K. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Membr. Sci. 2015, 483, 128–135. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Zhang, C.; Zeng, G.M.; Gong, J.L.; Ou, X.M.; Huan, S.Y. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity. J. Colloid Interface Sci. 2016, 471, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Gerasymchuk, Y.; Lukowiak, A.; Wedzynska, A.; Kedziora, A.; Bugla-Ploskonska, G.; Piatek, D.; Bachanek, T.; Chernii, V.; Tomachynski, L.; Strek, W. New photosensitive nanometric graphite oxide composites as antimicrobial material with prolonged action. J. Inorg. Biochem. 2016, 159, 142–148. [Google Scholar] [CrossRef] [PubMed]
- De Faria, A.F.; Martinez, D.S.T.; Meira, S.M.M.; de Moraes, A.C.M.; Brandelli, A.; Souza, A.G.; Alves, O.L. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B Biointerfaces 2014, 113, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, J.C.; Wang, Y.J.; Yan, X.L.; Sun, D.D. Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J. Chem. 2011, 35, 1418–1423. [Google Scholar] [CrossRef]
- Das, M.R.; Sarma, R.K.; Saikia, R.; Kale, V.S.; Shelke, M.V.; Sengupta, P. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf. B Biointerfaces 2011, 83, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 2004, 69. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhao, Y.; Ma, L.K.; Fan, P.H.; Xu, C.B.; Jiao, C.L.; Lin, A.J. Preparation of composite modified expanded graphite and its adsorption on acid brilliant blue dye. Chem. J. Chin. Univ. Chin. 2016, 37, 335–341. [Google Scholar]
- Ntsendwana, B.; Sampath, S.; Mamba, B.B.; Oluwafemi, O.S.; Arotiba, O.A. Photoelectrochemical degradation of eosin yellowish dye on exfoliated graphite-ZnO nanocomposite electrode. J. Mater. Sci. Mater. Electron. 2016, 27, 592–598. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, J.H.; Wang, S.H.; Ko, T.H.; Tseng, G.C. Evaluation of silver-containing activated carbon fiber for wound healing study: In vitro and in vivo. J. Biomed. Mater. Res. B 2012, 100, 2288–2296. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Ashfaq, M.; Singh, R.K.; Joshi, H.C.; Srivastava, A.; Sharma, A.; Verma, N. Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnol. 2013, 30, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.F.; Gao, Q.; Xia, K.S.; Huang, Z.Y.; Han, B.; Zhou, C.G. Three-dimensionally porous graphene: A high-performance adsorbent for removal of albumin-bonded bilirubin. Colloids Surf. B Biointerfaces 2017, 149, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Malas, A.; Das, C.K. Influence of modified graphite flakes on the physical, thermo-mechanical and barrier properties of butyl rubber. J. Alloy. Compd. 2017, 699, 38–46. [Google Scholar] [CrossRef]
- Vatanpour, V.; Shockravi, A.; Zarrabi, H.; Nikjavan, Z.; Javadi, A. Fabrication and characterization of anti-fouling and anti-bacterial Ag-loaded graphene oxide/polyethersulfone mixed matrix membrane. J. Ind. Eng. Chem. 2015, 30, 342–352. [Google Scholar] [CrossRef]
- Park, S.; An, J.H.; Jung, I.W.; Piner, R.D.; An, S.J.; Li, X.S.; Velamakanni, A.; Ruoff, R.S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597. [Google Scholar] [CrossRef] [PubMed]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.H.; Wu, D.J.; Weng, W.U.; Wu, C.L. Exfoliation of graphite flake and its nanocomposites. Carbon 2003, 41, 619–621. [Google Scholar] [CrossRef]
- Kang, F.Y.; Zheng, Y.P.; Wang, H.N.; Nishi, Y.; Inagaki, M. Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon 2002, 40, 1575–1581. [Google Scholar] [CrossRef]
- Xue, C.-H.; Chen, J.; Yin, W.; Jia, S.T.; Ma, J.Z. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl. Surf. Sci. 2012, 258, 2468–2472. [Google Scholar] [CrossRef]
- Su, C.-I.; Peng, C.-C.; Lu, Y.-C. Silver-supporting modification of viscose rayon-based activated carbon fabrics. Text. Res. J. 2009, 79, 1486–1501. [Google Scholar] [CrossRef]
- Feng, Q.; Wu, J.; Chen, G.; Cui, F.; Kim, T.; Kim, J. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, X.; Wang, X. Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. J. Inorg. Biochem. 2011, 105, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
Concentrations of AgNO3/10−3 mol·dm−3 | 0.3125 | 0.625 | 1.25 | 2.5 | 5 | 20 | 80 |
Sliver content/% | 0.071 | 0.16 | 0.38 | 0.73 | 1.26 | 3.75 | 8.24 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.; Li, J.; Huang, X.; Wang, X.; Ma, L.; Shen, W.; Kang, F.; Huang, Z.-H. Silver Nanoparticles-Loaded Exfoliated Graphite and Its Anti-Bacterial Performance. Appl. Sci. 2017, 7, 852. https://doi.org/10.3390/app7080852
Hou S, Li J, Huang X, Wang X, Ma L, Shen W, Kang F, Huang Z-H. Silver Nanoparticles-Loaded Exfoliated Graphite and Its Anti-Bacterial Performance. Applied Sciences. 2017; 7(8):852. https://doi.org/10.3390/app7080852
Chicago/Turabian StyleHou, Shiyu, Jihui Li, Xiaochuan Huang, Xiaomao Wang, Liqiang Ma, Wanci Shen, Feiyu Kang, and Zheng-Hong Huang. 2017. "Silver Nanoparticles-Loaded Exfoliated Graphite and Its Anti-Bacterial Performance" Applied Sciences 7, no. 8: 852. https://doi.org/10.3390/app7080852
APA StyleHou, S., Li, J., Huang, X., Wang, X., Ma, L., Shen, W., Kang, F., & Huang, Z. -H. (2017). Silver Nanoparticles-Loaded Exfoliated Graphite and Its Anti-Bacterial Performance. Applied Sciences, 7(8), 852. https://doi.org/10.3390/app7080852