Irradiation Induced Defect Clustering in Zircaloy-2
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Ion Irradiation
3.2. MD Simulation
4. Discussion
4.1. Prismatic Loop Formation
4.2. Influence of Alloy Elements
5. Summary and Conclusions
- Zr and Zircaloy-2 exhibit different defect clustering behaviour under a similar irradiation environment. Formation of prismatic defects is dependent on both the temperature and the alloy elements.
- MD simulations show that the lower DY at higher temperature is a result of a lower number of defect clusters produced during cascade collapse at higher irradiation temperatures in pure Zr.
- DY is higher in Zircaloy-2 as compared to pure Zr at 773 K, which can be attributed to the higher number of nucleation sites for the defect clusters. However, the size of prismatic loops is found to be much smaller in Zircaloy-2 compared to pure Zr due to the presence of alloying element Sn and its effect on point defect recombination.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Azevedo, C.R.F. Selection of fuel cladding material for nuclear fission reactors. Eng. Fail. Anal. 2011, 18, 1943–1962. [Google Scholar] [CrossRef]
- Onimus, F.; Béchade, J.L. Radiation effects in zirconium alloys. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4, pp. 1–31. [Google Scholar]
- Carpenter, G.J.C.; Watters, J.F. A study of electron irradiation damage in zirconium using a high voltage electron microscope. J. Nucl. Mater. 1981, 96, 213–226. [Google Scholar] [CrossRef]
- Gulden, T.D.; Bernstein, I.M. Dislocation loops in irradiated zirconium. Philos. Mag. 1966, 14, 1087–1091. [Google Scholar] [CrossRef]
- Kelly, P.M.; Blake, R.G. The chracterization of dislocation loops in neutron irradiated zirconium. Philos. Mag. 1973, 28, 415–426. [Google Scholar] [CrossRef]
- Northwood, D.O.; Fidleris, V.; Gilbert, R.W.; Carpenter, G.J.C. Dislocation loop generation and irradiation growth in a zirconium single crystal. J. Nucl. Mater. 1976, 61, 123–130. [Google Scholar] [CrossRef]
- Northwood, D.O. Irradiation damage in zirconium and its alloys. Atom. Energy Rev. 1977, 15, 547–610. [Google Scholar]
- Gilbert, R.W.; Farrell, K.; Coleman, C.E. Damage structure in zirconium alloys neutron irradiated at 573 to 923 K. J. Nucl. Mater. 1979, 84, 137–148. [Google Scholar] [CrossRef]
- Griffiths, M. A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 1988, 159, 190–218. [Google Scholar] [CrossRef]
- Jostsons, A.; Kelly, P.M.; Blake, R.G. The nature of dislocation loops in neutron irradiated zirconium. J. Nucl. Mater. 1977, 66, 236–256. [Google Scholar] [CrossRef]
- Northwood, D.O.; Gilbert, R.W.; Bahen, L.E.; Kelly, P.M.; Blake, R.G.; Jostsons, A.; Madden, P.K.; Faulkner, P.; Bell, W.; Adamson, R.B. Characterization of neutron irradiation damage in zirconium alloys—An international ‘round-robin’ experiment. J. Nucl. Mater. 1979, 79, 379–394. [Google Scholar] [CrossRef]
- Buckley, S.N.; Manthorpe, S.A. Dislocation loop nucleation and growth in zirconium-2.5wt % niobium alloy during 1 MeV electron irradiation. J Nucl. Mater. 1980, 90, 169–174. [Google Scholar] [CrossRef]
- Hellio, C.; de Novion, C.H.; Boulanger, L. Influence of alloying elements on the dislocation loops created by Zr+ ion or by electron irradiation in α-zirconium. J. Nucl. Mater. 1988, 159, 368–378. [Google Scholar] [CrossRef]
- Adamson, R.B.; Bell, W.L.; Lee, D. Use of ion bombardment to study irradiation damage in zirconium alloys. Zirconium Nucl. Appl. 1974, 551, 215–228. [Google Scholar]
- Idrees, Y.; Yao, Z.; Kirk, M.A.; Daymond, M.R. In-situ study of defect accumulation in zirconium under heavy ion irradiation. J. Nucl. Mater. 2013, 433, 95–107. [Google Scholar] [CrossRef]
- Faulkner, D.; Styles, R.C. Radiation damage simulation experiments in zirconium. In Proceedings of the Thirty-First Annual EMSA Meeting, New Orleans, LA, USA, 14 August 1973. [Google Scholar]
- Griffiths, M.; Gilbert, R.W.; Coleman, C.E. Grain boundary sinks in neutron-irradiated Zr and Zr-alloys. J. Nucl. Mater. 1988, 159, 405–416. [Google Scholar] [CrossRef]
- Wooding, S.J.; Bacon, D.J. A molecular-dynamics study of displacement cascades in α-zirconium. Philos. Mag. A 1996, 76, 1033–1051. [Google Scholar] [CrossRef]
- Wooding, S.J.; Howe, L.M.; Gao, F.; Calder, A.M.; Bacon, D.J. A molecular dynamics study of high-energy displacement cascades in α-zirconium. J. Nucl. Mater. 1998, 254, 191–200. [Google Scholar] [CrossRef]
- Gao, F.; Bacon, B.J.; Howe, L.M.; So, C.B. Temperature-dependence of defect creation and clustering by displacement cascades in α-zirconium. J. Nucl. Mater. 2001, 294, 288–298. [Google Scholar] [CrossRef]
- Voskoboinikov, R.E.; Osetsky, Y.N.; Bacon, D.J. Statistics of primary damage creation in high-energy displacement cascades in copper and zirconium. Nucl. Instrum. Methods Phys. Res. B 2006, 242, 68–70. [Google Scholar] [CrossRef]
- Hinks, J.A. A review of transmission electron microscope with in-situ ion irradiation. Nucl. Instrum. Methods Phys. Res. B 2009, 267, 3652–3662. [Google Scholar] [CrossRef]
- Merkle, K.L. Radiation-induced point defect clusters in copper and gold. Phys. Status Solidi 1966, 18, 173–188. [Google Scholar] [CrossRef]
- Merkle, K.L. Radiation Damage in Reactor Materials; IAEA: Vienna, Austria, 1969; Volume 1, pp. 159–170. [Google Scholar]
- Di, S.; Yao, Z.; Daymond, M.; Gao, F. Molecular dynamics simulations of irradiation cascades in alpha-zirconium under macroscopic strain. Nucl. Instrum. Methods Phys. Res. B 2013, 303, 95–99. [Google Scholar] [CrossRef]
- Mendelev, M.I.; Ackland, G.J. Development of an interatomic potential for the simulation of phase transformations in zirconium. Philos. Mag. Lett. 2007, 87, 349–359. [Google Scholar] [CrossRef]
- De Diego, N.; Osetsky, Y.N.; Bacon, D.J. Structure and properties of vacancy and interstitial clusters in α-zirconium. J. Nucl. Mater. 2008, 374, 87–94. [Google Scholar] [CrossRef]
- Yao, Z.; Hernandez-Mayoral, M.; Jenkins, M.L.; Kirk, M.A. Heavy ion irradiations of Fe and Fe-Cr model alloys part 1: Damage evolution in thin foils at lower doses. Philos. Mag. 2008, 88, 2851–2880. [Google Scholar] [CrossRef]
- Hernandez-Mayoral, M.; Yao, Z.; Jenkins, M.L.; Kirk, M.A. Heavy ion irradiations of Fe and Fe-Cr model alloys part 2: Damage evolution in thin foils at higher doses. Philos. Mag. 2008, 88, 2881–2897. [Google Scholar] [CrossRef]
- Yao, Z.; Jenkins, M.L.; Hernandez-Mayoral, M.; Kirk, M.A. The temperature dependence of heavy ion damage in Fe: A microstrcuture transition at elevated temperatures. Philos. Mag. 2010, 90, 4623–4634. [Google Scholar] [CrossRef]
- Jenkins, M.L.; Yao, Z.; Hernandez-Mayoral, M.; Kirk, M.A. Dynamic observations of heavy ion damage in Fe and Fe-Cr alloys. J. Nucl. Mater. 2009, 389, 197–202. [Google Scholar] [CrossRef]
- Mason, D.R.; Yi, X.; Kirk, M.A.; Dudarev, S.L. Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils. J. Phys. Condens. Matter 2014, 26, 375701. [Google Scholar] [CrossRef] [PubMed]
- Sand, A.E.; Dudarev, S.L.; Nordlund, K. High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws. EPL 2013, 103, 46003. [Google Scholar] [CrossRef]
- Yi, X.; Sand, A.E.; Mason, D.R.; Kirk, M.A.; Roberts, S.G.; Nordlund, K.; Dudarev, S.L. Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades. EPL 2015, 110, 36001. [Google Scholar] [CrossRef]
- Yao, Z. The Relationship between the Irradiation Induced Damage and the Mechanical Properties of Single Crystal Ni. Ph. D. Thesis, École polytechnique fédérale de Lausanne, Lausanne, Switzerland, 2005. [Google Scholar]
- Zhang, H.K.; Yao, Z.; Judge, C.; Griffiths, M. Microstructure evolution of CANDU spacer material Inconel X-750 under in-situ ion irradiation. J. Nucl. Mater. 2013, 443, 49–58. [Google Scholar] [CrossRef]
- Hood, G.M. Point defect diffusion in α-Zr. J. Nucl. Mater. 1988, 159, 149–175. [Google Scholar] [CrossRef]
Cluster Size (Number of Defects) | 600 K | 800 K | ||
---|---|---|---|---|
SIA | V | SIA | V | |
5–10 | 11 | 14 | 8 | 7 |
11–20 | 5 | 1 | 5 | 6 |
21–40 | 4 | 8 | 1 | 1 |
41–50 | 1 | 2 | 1 | 2 |
Summary | 21 | 25 | 15 | 16 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.; Daymond, M.; Di, S.; Idrees, Y. Irradiation Induced Defect Clustering in Zircaloy-2. Appl. Sci. 2017, 7, 854. https://doi.org/10.3390/app7080854
Yao Z, Daymond M, Di S, Idrees Y. Irradiation Induced Defect Clustering in Zircaloy-2. Applied Sciences. 2017; 7(8):854. https://doi.org/10.3390/app7080854
Chicago/Turabian StyleYao, Zhongwen, Mark Daymond, Sali Di, and Yasir Idrees. 2017. "Irradiation Induced Defect Clustering in Zircaloy-2" Applied Sciences 7, no. 8: 854. https://doi.org/10.3390/app7080854
APA StyleYao, Z., Daymond, M., Di, S., & Idrees, Y. (2017). Irradiation Induced Defect Clustering in Zircaloy-2. Applied Sciences, 7(8), 854. https://doi.org/10.3390/app7080854