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Abstract:



A modified mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with cytotoxic T-lymphocytes (CTL) and infected cells in eclipse phase is presented and studied in this paper. The model under consideration also includes a saturated rate describing viral infection. First, the positivity and boundedness of solutions for nonnegative initial data are proved. Next, the global stability of the disease free steady state and the endemic steady states are established depending on the basic reproduction number [image: there is no content] and the CTL immune response reproduction number [image: there is no content]. Moreover, numerical simulations are performed in order to show the numerical stability for each steady state and to support our theoretical findings. Our model based findings suggest that system immunity represented by CTL may control viral replication and reduce the infection.
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1. Introduction


Human immunodeficiency virus (HIV) is known as a pathogen causing the acquired immunodeficiency syndrome (AIDS), which is the end-stage of the infection. After that, the immune system fails to play its life-sustaining role [1,2]. Indeed, it is well known that the cellular immune responses play an indispensable role during the HIV viral infection, especially in people known as elite controllers who are infected by HIV but maintain a normal CD4 count for many years and remain asymptomatic or have a very delayed disease progression over the course of their HIV infection [3,4].



The basic viral infection model with CTLs immune was first studied in [5] and its global stability was studied in [6,7]. A prevailing theory suggests that CTL cells are responsible for the sudden decrease HIV virus load and the subsequent quasi-steady state level of the viral load after a sharp increase during the primary infection phase [8,9,10,11]. In [12], the authors consider the interaction between CTL, viruses and macrophages and study the global stability in a model with a mass action infection term. With a saturated infection term, the same mathematical question was tackled in [13] with a model consisting of four ordinary differential equations with a Beddington–DeAngelis infection term.



More recently, the model describing the interaction between the HIV viruses, CD4+ T cells, infected cells with a standard incidence rate function describing saturated viral infection is formulated and studied in [14]. The authors study the local and global stability of the endemic states and illustrate that their model can fit well with some clinical HIV infection data sets. In this paper, we extend their work by incorporating the cytotoxic T lymphocytes (CTL) immune response. The dynamics of HIV infection with CTL response that we consider is given by the following nonlinear system of differential equations:


[image: there is no content]



(1)




with the initial conditions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



In this model, x, y, s, v and z denote the concentration of uninfected cells, infected cells, exposed cells, free virus and CTL cells, respectively. Susceptible host cells CD4+ T cells are produced at a rate [image: there is no content], die at a rate [image: there is no content] and become infected by virus at a rate [image: there is no content]. Exposed cells die at a rate [image: there is no content] and become infected at a rate of [image: there is no content]. Infected cells increase at rate [image: there is no content] and die at rate [image: there is no content] and are killed by the CTL response at a rate [image: there is no content]. Free virus is produced by infected cells at a rate [image: there is no content] and decays at a rate [image: there is no content]. Finally, CTLs expand in response to viral antigen derived from infected cells at a rate [image: there is no content] and decay in the absence of antigenic stimulation at a rate [image: there is no content]. Note that this model (1) employs the more realistic standard incidence rate function [image: there is no content] as in [14,15], which better describes the rate of viral infection. The schematic representing the viral dynamics of the problem under consideration is illustrated in Figure 1.


Figure 1. Schematic of the model under consideration.



[image: Applsci 07 00861 g001]






The rest of the paper is organized as follows. In Section 2, we study the positivity and boundedness of solutions. We present the steady states and give a local stability result in Section 3. Section 4 is dedicated to the global stability results. Numerical simulations are performed in Section 5 and we conclude the paper in the last section.




2. Mathematical Analysis of the HIV Model


2.1. Existence and Local Stability


For the problems deal with cell population evolution, the cell densities should remain non-negative and bounded. In this section, we will establish the positivity and boundedness of solutions of the model (1). First of all, for biological reasons, the parameters [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] must be larger than or equal to 0. Hence, we have the following result:



Proposition 1.

For any non-negative initial conditions [image: there is no content], system (1) has a unique solution. Moreover, this solution is non-negative and bounded for all [image: there is no content].





Proof. 

The proof is given in Appendix A. ☐





Moreover, system (1) has an infection-free equilibrium [image: there is no content], corresponding to the maximal level of healthy CD4+ T-cells. The basic reproduction number of our problem is given as follows:


[image: there is no content]



(2)




where [image: there is no content] is the proportion of exposed cells to become productively infected cells, [image: there is no content] is the number of free virus production by an infected cell and [image: there is no content] is the average life of virus. From a biological point of view, [image: there is no content] stands for the average number of secondary infections generated by one infected cell when all cells are susceptibles. Depending on the value of this basic reproduction number [image: there is no content]; in other words, depending on these three biological proportions, we will study the stability of the free-endemic and the endemic equilibria.



In addition to the disease free equilibrium, system (1) has three endemic equilibria. The first of them is [image: there is no content], where


[image: there is no content]











The second endemic steady state is [image: there is no content], where


[image: there is no content]











The third endemic steady state is [image: there is no content], where


[image: there is no content]








with [image: there is no content].



The last endemic steady-state [image: there is no content] will not be taken under consideration since [image: there is no content], which is not possible biologically. On the other hand, from the components of [image: there is no content], it is clear that, when [image: there is no content], this endemic point exists. In what follows, we will make use of the following CTL immune response reproduction number [image: there is no content] to classify the model system dynamics


[image: there is no content]








depending on the value of this CTL immune reproduction number [image: there is no content]; in other words, depending on [image: there is no content] and the parameters describing the effectiveness of CTL like c and b, we will study the stability of the endemic equilibria.



First, observe that the second endemic state [image: there is no content] exists when [image: there is no content]. This endemic state is also called an interior equilibrium.



We explain the existence of this endemic equilibrium [image: there is no content] as follows. We recall first that, in this state, both of the free viruses and CTL cells are present. Assume that [image: there is no content], in the total absence of CTL immune response, the infected cell load per unit time is [image: there is no content]. Via the five equations of model (1), CTL cells reproduced due to infected cells stimulating per unit time is [image: there is no content]. The CTL load during the lifespan of a CTL cell is [image: there is no content]. If [image: there is no content], we will have the existence of the endemic equilibrium [image: there is no content].



The local stability result of the disease-free equilibrium is given as follows.



Proposition 2.

The disease-free equilibrium, [image: there is no content], is locally asymptotically stable for [image: there is no content].





Proof. 

The proof is given in Appendix A. ☐





The local stability of the other steady states is quite similar to the first one. Hence, the rest of the work will be devoted only to the global stability analysis of the problem under consideration.




2.2. Global Stability Results


This subsection deals with the global stability analysis of the disease-free and the endemic equilibria. Our approach involves the construction of appropriate Lyapunov functions. First, we have the following global stability result of the disease-free equilibrium.



Proposition 3.

If [image: there is no content], then the endemic point [image: there is no content] is globally stable.





Proof. 

The proof is given in Appendix B. ☐





For the global stability result of the endemic equilibrium [image: there is no content], we have the following.



Proposition 4.

If [image: there is no content] and [image: there is no content], then the endemic point [image: there is no content] is globally stable.





Proof. 

The proof is given in Appendix B. ☐





Finally, the global stability result concerning the last endemic point [image: there is no content] is given as follows.



Proposition 5.

If [image: there is no content] and [image: there is no content], then the endemic point [image: there is no content] is globally stable.





Proof. 

The proof is given in Appendix B. ☐







3. Numerical Results and Simulations


In order to perform the numerical simulations, system (1.1) will be solved numerically using the fourth order Runge–Kutta iterative scheme. The parameter values or ranges used are presented in Table 1.



Table 1. Parameters, their symbols and default values used in the suggested HIV model.







	
Parameters

	
Meaning

	
Value

	
References






	
[image: there is no content]

	
Source rate of CD4+ T cells

	
[image: there is no content]

	
[16]




	
[image: there is no content]

	
Average of infection

	
[image: there is no content]

	
[14]




	
[image: there is no content]

	
Decay rate of healthy cells

	
[image: there is no content]

	
[14]




	
[image: there is no content]

	
Death rate of exposed CD4+ T cells

	
[image: there is no content]

	
[14]




	
[image: there is no content]

	
The rate that exposed become infected CD4+ T cells

	
[image: there is no content]

	
[14]




	
[image: there is no content]

	
Death rate of infected CD4+ T cells, not by CTL killing

	
[image: there is no content]

	
[14]




	
a

	
The rate of production the virus by infected CD4+ T cells

	
[image: there is no content]

	
[14]




	
[image: there is no content]

	
Clearance rate of virus

	
[image: there is no content]

	
[14]




	
p

	
Clearance rate of infection

	
[image: there is no content]

	
[17]




	
c

	
Activation rate CTL cells

	
[image: there is no content]

	
[17]




	
b

	
Death rate of CTL cells

	
[image: there is no content]

	
[17]










Figure 2 shows the behavior of infection during the first 60 days. For the parameters used in this figure, the basic reproduction number is [image: there is no content]; we clearly see that the solutions of the system converge to the disease-free equilibrium point [image: there is no content]. This numerical result is consistent with the theoretical result concerning the stability of [image: there is no content]. In addition, the plots showing the stability of this disease-free point in phase plane are given in Figure 3.


Figure 2. The behavior of the infection dynamics for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. For the parameters used in this figure, the basic reproduction number is [image: there is no content] Solutions of the system converge to the disease-free equilibrium point [image: there is no content].



[image: Applsci 07 00861 g002]





Figure 3. Selective phase portraits to illustrate the solution behavior of the infection dynamics when [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



[image: Applsci 07 00861 g003]






Figure 4 shows the behavior of the infection for the first sixty days. The chosen parameters in this figure ensure that the basic reproduction number is greater than unity ([image: there is no content]) and the immune response reproduction number is less than unity ([image: there is no content]). It is clearly seen that, in this case, all the solutions converge towards the CTL-free endemic equilibrium [image: there is no content] that agrees with our theoretical finding concerning the stability of [image: there is no content]. Moreover, the plots showing the stability of this CTL-free endemic point in phase plane are given in Figure 5.


Figure 4. The behavior of the infection dynamics for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. For the parameters used in this figure, the basic reproduction number is [image: there is no content] The immune response reproduction number [image: there is no content] In this case, all the solutions converge towards the endemic equilibrium [image: there is no content]



[image: Applsci 07 00861 g004a][image: Applsci 07 00861 g004b]





Figure 5. Selective phase portraits to illustrate the solution behavior of the infection dynamics when [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



[image: Applsci 07 00861 g005]






Finally, Figure 6 illustrates the disease dynamics when both the basic reproduction number and the immune response reproduction number are greater than unity. Indeed, for the chosen parameters in this figure, we have [image: there is no content] and [image: there is no content]. It can be seen that the infection persists and the convergence towards the infection steady state [image: there is no content] is observed. This numerical result is in good agreement with the theoretical result concerning the stability of the last endemic equilibrium. The plots showing the stability of this final endemic point in phase plane are given in Figure 7. In these two last figures, we clearly observe the importance of CTL immune response in maximizing the healthy cells and reducing the viral load. It is also noteworthy that the CTLs do not vanish in this last case, which means that CTL cells will be always present when the infection becomes chronic.


Figure 6. The behavior of the infection dynamics for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. For the chosen parameters in this figure, we have [image: there is no content] and [image: there is no content]. Solutions tending to the infection steady state [image: there is no content] are observed.



[image: Applsci 07 00861 g006]





Figure 7. Selective phase portraits to illustrate the solution behavior of the infection dynamics when [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



[image: Applsci 07 00861 g007a][image: Applsci 07 00861 g007b]







4. Discussion


The HIV dynamics involving the density uninfected cells, the density of the infected cells, the density of HIV virus and the amount of CTL cells have been widely studied by means of a different mathematical model starting from the work in 1996 by Nowak and Bangham [5] and two years later in 1998 by [18]. Later, many mathematical approaches were developed in order to better understand the complex dynamics of the fatal HIV disease.



Recently, in 2015, Conway and Perelson [19] studied the same issue by incorporating the treatment into the HIV model. Motivated by all those previous works treating the dynamics of HIV along with the CTL immune response, we have incorporated the CTL effect to a model suggested recently in 2015 by Sun et al. [14], in which the authors studied HIV dynamics by incorporating into the model the treatment and a more realistic incidence functional that describes the infection rate taking into account the crowd of the free viruses near the uninfected cells. In the latter work, the uninfected cells need time to become infected after HIV virus contact. Indeed, there exists an eclipse phase that is needed for the exposed CD4+ T cells to become infected (see Figure 1). In this paper, we have taken into account this phase and we have added the CTL immune response to the model.



In this paper, we have established the well-posedness of the suggested model that ensures that all the solutions exist and are bounded. This agrees with the biological reality that the total cell amounts of these populations are bounded. Moreover, three steady states of the problem are found and their local and global stability results are determined depending on the basic reproduction number [image: there is no content] and the CTL immune response reproduction number [image: there is no content].



We have also presented some numerical results that confirm our theoretical findings. In addition, several plots of the solutions in phase diagrams have been drawn in order to illustrate the stability of the three steady states.



The model dynamics indicate that the immune response represented by the cytotoxic T lymphocytes is efficient in controlling viral replication. Indeed, our numerical results show that, in the endemic case (see Figure 6), the CTL immune response plays an essential role in maximizing the effect of the uninfected CD4+ T cells, minimizing the amount of the infected cells and reducing the HIV viral load.




5. Conclusions


In this paper, we have studied the model of the HIV dynamics in the presence of the immune response, which is represented by the cytotoxic T lymphocytes (CTL) cells. The model describes the interaction between the healthy cells, the infected cells in eclipse phase, the productively infected cells and the immune cells. The model includes also a saturated rates in order to better describe the viral infection. The positiveness and the boundedness of solutions are established. In addition, we have studied the stability of both disease-free equilibrium and endemic equilibria. The disease free steady state is locally and globally asymptotically stable when the basic reproduction number is less than unity ([image: there is no content]). The existence of two other infection steady states when [image: there is no content] is established. The global stability of these endemic steady states depends on the basic reproduction number [image: there is no content] and the CTL immune response reproduction number [image: there is no content]. Numerical simulations are performed in order to show the behavior of infection during the days of observation. The theoretical and the numerical results are in good agreement. In addition, our model based results suggest that the system immunity represented by CTL can control viral replication and reduce the infection under appropriate conditions.
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Appendix A. Existence and Local Stability Results Proof


The proof of the existence result (Proposition 1) is as follows. First, by the classical differential equations theory, we can confirm that system (1) has a unique local solution [image: there is no content] in [image: there is no content].



First, the solution [image: there is no content] is strictly positive for all [image: there is no content]. Indeed, assume the contrary, and let [image: there is no content] be the first time such that [image: there is no content] and [image: there is no content]. From the first equation of system (1), we have [image: there is no content], which presents a contradiction. Therefore, [image: there is no content] for all [image: there is no content]. We also have the following:


[image: there is no content]










[image: there is no content]










[image: there is no content]








and


[image: there is no content]











This shows that [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] for all [image: there is no content]. On the other hand, for the boundedness of the solutions, assume first that


[image: there is no content]








then, we will have


X˙=λ−d1x−d2s−d3y−pyz,≤λ−δX,








where [image: there is no content]. Therefore,


X(t)≤X(0)e−δt+λδ(1−e−δt)≤X(0)e−δt+λδ.











By the same reasoning, concerning the fourth equation, we will have


[image: there is no content]











For the last equation, we will have


z˙(t)+bz(t)=cy(t)z(t)=cpλ−(x˙(t)+d1x)−(s˙(t)+(d2+k2)s)−(y˙(t)+d3y),








from which, we will have


z(t)=z(0)+cp(x(0)+s(0)+y(0)−λb)e−bt+cpλb+∫0t((b−d1)x+(b−(d2+k2)s)+(b−d3)y)eb(ξ−t)dξ−x−s−y≤z(0)+cp(x(0)+s(0)+y(0))+cp(λb+1bmax(0;b−d1))∥x∥∞+max(0;b−(d2+k2))∥s∥∞+max(0;b−d3)∥y∥∞),








this proves that the solutions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are bounded. Hence, every local solution can be prolonged up to any time [image: there is no content], which means that the solution exists globally.



For the local stability result (Proposition 2), the proof is stated as follows.



At the disease-free equilibrium, [image: there is no content], the Jacobian matrix is given as follows:


[image: there is no content]



(A1)







The characteristic polynomial of [image: there is no content] is


PEf(λ)=−λ5+(−d1−d4−d3−k2−d2)λ4+(−d1(d4+d3+k2+d2)−d4d3−d4k2−d4d2−d3k2−d3d2)λ3+(−d1(d4d3+d4k2+d4d2+d3k2+d3d2)−d4d3k2−d4d3d2+ak2k1)λ2−d1(d4d3k2+d4d3d2−ak2k1)λ.











Therefore,


PEf(λ)=(λ+d1)(λ+b)(λ3+(d4+d3+k2+d2)λ2+(d4d3+d4k2+d4d2+d3k2+d3d2)λ+d4d3k2+d4d3d2−ak2k1),








and the two obvious first eigenvalues of the matrix [image: there is no content] are [image: there is no content] and [image: there is no content], which are non-positive. Denoting


[image: there is no content]



(A2)




it is easy to check that we have always [image: there is no content], [image: there is no content] and [image: there is no content]. In addition, it is easy to see that [image: there is no content] when [image: there is no content]. From the Routh–Hurwitz criterion, it follows that [image: there is no content] is locally asymptotically stable.




Appendix B. Global Stability Result Proof


The global stability proof of the endemic point [image: there is no content] (Proposition 3) is given as follows. Consider the following Lyapunov function:


[image: there is no content]











The time derivative is given by:


L˙(x,y,s,v,z)=s˙+d2+k2k2y˙+d3(d2+k2)ak2v˙+pcd2+k2k2z˙.L˙(x,y,s,v,z)=k1xvx+v−(d2+k2)s+d2+k2k2(k2s−d3y)−d2+k2k2pyz+d3(d2+k2)ak2(ay−d4v)+pcd2+k2k2(cyz−bz)L˙(x,y,s,v,z)=k1xvx+v−d3d4(d2+k2)ak2v−bpcd2+k2k2zL˙(x,y,s,v,z)≤k1v−d3d4(d2+k2)ak2v≤d3d4(d2+k2)ak2R0−1v.











If [image: there is no content], then [image: there is no content]. Moreover, [image: there is no content] when [image: there is no content]. The largest compact invariant is


[image: there is no content]








according to LaSalle’s invariance principle, [image: there is no content], the limit system of equations is


[image: there is no content]











We define another Lyapunov function and for implicity, using the same notation,


[image: there is no content]











Since [image: there is no content], then


[image: there is no content]








since the arithmetic mean is greater than or equal to the geometric mean, it follows that


[image: there is no content]








therefore, [image: there is no content] and the equality holds if [image: there is no content] and [image: there is no content], which completes the proof. ☐



The global stability proof of the endemic point [image: there is no content] (Proposition 4) is given as follows. We employ the following Lyapunov function:


L(x,y,s,v,z)=x−x1−∫x1x(d2+k2)s1k1uv1u+v1du+s−s1−s1lnss1+d2+k2k2(y−y1−y1lnyy1)+d3(d2+k2)ak2(v−v1−v1lnvv1)+pcd2+k2k2z.











We have


L˙(x,y,s,v,z)=x˙−(d2+k2)s1x+v1k1xv1x˙+s˙−s1ss˙+d2+k2k2(y˙−y1yy˙)+d3(d2+k2)ak2(v˙−v1vv˙)+pcd2+k2k2z˙.











On the other hand, we have


λ=d1x1+(d2+k2)s1,k1x1v1x1+v1=(d2+k2)s1,s1v1=d3d4ak2,y1v1=d4a,s1y1=d3k2.











Hence,


L˙(x,s,y,v,z)=λ−d1x−k1xvx+v1−(d2+k2)s1x+v1k1xv1+k1xvx+v−(d2+k2)s−s1sk1xvx+v−(d2+k2)s+d2+k2k2(k2s−d3y−pyz)−d2+k2k2y1y(k2s−d3y−pyz)+d3(d2+k2)ak2(ay−d4v)−d3(d2+k2)ak2v1v(ay−d4v)+pcd2+k2k2(cyz−bz),








and


L˙(x,s,y,v,z)=λ−d1x−(d2+k2)s1x+v1k1xv1λ−d1x−k1xvx+v−s1sk1xvx+v+(d2+k2)s1+d2+k2k2py1z+(d2+k2)d3k2y1−(d2+k2)sy1y−d3d4(d2+k2)ak2v+d3d4(d2+k2)ak2v1−d3(d2+k2)k2v1yv−d2+k2k2bpcz.











Since


λ−d1x=d1x1+(d2+k2)s1−d1x,λ−d1x−(d2+k2)s1x+v1k1xv1λ−d1x−k1xvx+v=d1x11−xx1−x1xx+v1x1+v1+x+v1x1+v1+(d2+k2)s11−x1xx+v1x1+v1+vv1x+v1x+v,−s1sk1xvx+v+(d2+k2)s1=−s1sxvx1v1x1+v1x+v(d2+k2)s1+(d2+k2)s1,








we have


L˙=d1x11−xx1−x1xx+v1x1+v1+x+v1x1+v1+(d2+k2)s11−x1xx+v1x1+v1+vv1x+v1x+v+(d2+k2)s11−s1sxvx1v1x1+v1x+v+(d2+k2)s11−sy1s1y−vv1+(d2+k2)s11−v1yy1v+pzd2+k2k2(y1−bc).











Therefore,


L˙=−d1v1x(x1+v1)(x−x1)2+(d2+k2)s1−1−vv1+vv1x+v1x+v+x+vx+v1+(d2+k2)s15−x1xx+v1x1+v1−s1sxvx1v1x1+v1x+v−sy1s1y−yv1y1v−x+vx+v1+pzd2+k2k2(y1−bc),








which implies that


L˙=−d1v1x(x1+v1)(x−x1)2−(d2+k2)s1x(v−v1)2v1(x+v1)(x+v)+(d2+k2)s15−x1xx+v1x1+v1−s1sxvx1v1x1+v1x+v−sy1s1y−yv1y1v−x+vx+v1+pzd2+k2k2(y1−bc),








since the arithmetic mean is greater than or equal to the geometric mean, it follows that


[image: there is no content]











In addition, when [image: there is no content], we will have [image: there is no content], which means that [image: there is no content], and the equality hods when [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. By the LaSalle invariance principle, the endemic point [image: there is no content] is globally stable when [image: there is no content]. ☐



Finally, the global stability proof of the endemic point [image: there is no content] (Proposition 5) is given as follows. We employ the following Lyapunov function:


L(x,s,y,v,z)=x−x2−∫x2x(d2+k2)s2k1uv2u+v2du+s−s2−s2lnss2+d2+k2k2(y−y2−y2lnyy2)+d3(d2+k2)+(d2+k2)pz2ak2×(v−v2−v2lnvv2)+pcd2+k2k2(z−z2−z2lnzz2).











We have


L˙(x,y,s,v,z)=x˙−(d2+k2)s2x+v2k1xv2x˙+s˙−s2ss˙+d2+k2k2(y˙−y2yy˙)+d3(d2+k2)+(d2+k2)pz2ak2(v˙−v2vv˙)+pcd2+k2k2(z˙−z2zz˙).











Since,


λ=d1x2+(d2+k2)s2,k1x2v2=(x2+v2)(d2+k2)s2,s2y2=d3k2+pz2k2,y2v2=d4a,s2v2=d3d4ak2+d4pz2ak2,








we have


L˙(x,s,y,v,z)=λ−d1x−x2xx+v2x2+v2(λ−d1x)+(d2+k2)s2vv2x2+v2x+v−(d2+k2)s−s2sk1xvx+v−(d2+k2)s+d2+k2k2(k2s−d3y−pyz)−d2+k2k2y2y(k2s−d3y−pyz)+d3(d2+k2)+(d2+k2)pz2ak2×(ay−d4v)−d3(d2+k2)+(d2+k2)pz2ak2v2v(ay−d4v)+pcd2+k2k2(cyz−bz)−pz2czd2+k2k2(cyz−bz).











On the other hand, we have


λ−d1x=d1x2+d2+k2)s2−d1x,λ−d1x−(d2+k2)s2x+v2k1xv2λ−d1x−k1xvx+v=d1x2(1−xx2−x2xx+v2x2+v2+x+v2x2+v2)+(d2+k2)s2(1−x2xx+v2x2+v2+vv2x+v2x+v),−s2sk1xvx+v+(d2+k2)s2=(d2+k2)s2(1−s2sxvx2v2x2+v2x+v),








and


(d2+k2)d3k2y2−(d2+k2)sy2y−(d2+k2)d3d4ak2v=(d2+k2)s21−ss2y2y−vv2+(d2+k2)k2pz2y2vv2−(d2+k2)k2pz2y2,d4d3(d2+k2)ak2v2−d3(d2+k2)k2v2vy=(d2+k2)s21−yy2v2v+(d2+k2)k2pz2yv2v−(d2+k2)k2pz2y2,










(d2+k2)pz2ak2(ay−d4v)−(d2+k2)pz2ak2v2v(ay−d4v)=(d2+k2)pz2yk2−(d2+k2)pz2y2k2vv2−(d2+k2)pz2yk2v2v+(d2+k2)pz2y2k2,(d2+k2)pz2ak2(ay−d4v)−(d2+k2)pz2ak2v2v(ay−d4v)−z2zpcd2+k2k2xyz−bz+(d2+k2)k2pz2y2vv2−(d2+k2)k2pz2y2+(d2+k2)k2pz2yv2v−(d2+k2)k2pz2y2=0.











All of these imply


L˙=−d1v2x(x2+v2)(x−x2)2−(d2+k2)s2x(v−v2)2v2(x+v2)(x+v)+(d2+k2)s25−x2xx+v2x2+v2−s2sxvx2v2x2+v2x+v−sy2s2y−yv2y2v−x+vx+v2.











Again, since the arithmetic mean is greater than or equal to the geometric mean, it follows that


[image: there is no content]








which means that [image: there is no content], and the equality hods when [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. By the LaSalle invariance principle, the endemic point [image: there is no content] is globally stable. ☐
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