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Abstract: In order to solve the control problem of the solid oxide fuel cell(SOFC), a novel adaptive
tracking constrained control strategy based on a Wiener-type neural network is proposed in this
paper. The working principle of SOFC is introduced, and the dynamical model of SOFC is studied.
Besides, a Wiener model formulation for SOFC is proposed to approximate the nonlinear dynamics of
the system, and an adaptive Wiener model identification method is utilized to identify the parameters
of the model. Moreover, an adaptive exponential PID controller is designed to keep the stack
output voltage stable. Meanwhile, the saturation problem is considered in the paper including input
magnitude and rate constraints. Additionally, an anti-windup compensator is employed to eliminate
the abominable influence of the saturation problem. Then, the stability of the control plant is analyzed
and proven via the Lyapunov function. Finally, the simulation based on the MATLAB/Simulink
environment is carried out, and the conventional PID controller is added and simulated as a contrast
to verify the control performance of the proposed control algorithm. The results indicate that the
proposed control algorithm possesses favorable control performance when dealing with nonlinear
systems with complex dynamics.

Keywords: adaptive tracking control; Wiener-type neural network model identification; dynamic
anti-windup; exponential PID control; solid oxide fuel cells

1. Introduction

In recent years, with the gradual scarcity of non-renewable energy resources, people have been
eager to find alternatives to fossil fuel. Against this background, many researchers have considered
fuel cell electricity generation with higher energy efficiency, which produces water, heat, less noise,
no radiation and negligible amounts of pollutants [1–5]. The solid oxide fuel cell (SOFC) is a type
of fuel cell that uses solid oxide material as the electrolyte to send negative oxygen ions from the
cathode to the anode, where a chemical reaction related to the electrochemical oxidation occurs [6–10].
SOFCs have many advantages, such as flexibility in selecting fuel, long-term stability and no need
for an expensive catalyst. However, some serious problems due to sluggish dynamics, nonlinearity,
fuel starvation, external disturbance, unavailability of some key measurements and tight operating
constraints often occur in the actual control process of an SOFC [11]. Therefore, the control strategy of
the SOFC system is still a challenging problem.

The complex dynamical system of an SOFC is often subject to imprecise models and a priori
unknown disturbances. Therefore, some model-based control methods cannot satisfy the control
objective due to the model-reality discrepancy [12,13]. To obtain an approximate model of the SOFC
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under unknown parameters, many algorithms based on the neural network model [14–16] have been
proposed. In this paper, a Wiener-type neural network is employed to achieve the identification of the
model of SOFC. On the one hand, neural networks are widely used in identification and control of
nonlinear systems with complex dynamics due to their ability to approximate any nonlinear function.
They have several advantages, for example, the unique learning ability of a neural network makes it
able to adapt to the changes of the system and environment. The powerful parallel computing ability
makes it possible to carry out a large number of complex operations quickly. Besides, the multi-input
multi-output model structure makes it possible to facilitate identification and control of multivariable
systems. In [14], a fuzzy neural network controller was proposed for the control of active and reactive
power of an SOFC-based system. In [15], an artificial neural network was used to establish the
model of SOFC and predict the performance and parameters of SOFC. In [16], a nonlinear predictive
controller based on an improved radial basis function neural network identification model was
designed to guarantee the fuel utilization to operate within a safe range. On the other hand, the Wiener
model composed of a linear dynamic system and a static nonlinear system in series has a clear
internal structure and can be used to express the nonlinear characteristics of common systems in
most cases. Besides, the model is often employed based on some intelligence algorithms like a neural
network [17,18]. It has attracted wide attention for a long time and has been applied in many research
fields. In [17], the authors gave a method of the Wiener identification model in series connected by
a linear dynamic neuron and static BP neural network. In [18], a nonlinear Wiener model combined
with the Laguerre function and a BP network was presented, which had strong robustness due to the
information of the model being non-essential.

In addition, the problem of input constraints, which can impact the system performance and
stability, is ignored by many researchers. Notice that in terms of preventing fuel from being
overused in an SOFC system, the expected scope of fuel utilization must be maintained from 0.7–0.9,
which should further take the input constraints into consideration. Then, various constraint problems
have been considered in closed-loop control systems [19–23]. At present, most of the constrained
control approaches for the SOFC system focus on model predictive control (MPC) [5,24–27]. In [26],
the researchers used a new offset-free input to design a fuzzy controller. A predictive control method
based on the fuzzy Hammerstein model was shown in [27]. However, MPC has some typical drawbacks
in actual industrial processes. Firstly, it is difficult to obtain a reliable first-principles model for an object
with highly nonlinear characteristics. Secondly, the stability analysis of MPC is often hard to obtain and
yet can be easily achieved via other control methods like model-free adaptive control [22,23]. Finally,
the cost of calculation for MPC is quite large [26,28,29]. To avoid the disadvantages of MPC, an adaptive
tracking constrained control method is proposed in this paper. The proposed control method depends
on the modified PID control algorithm, whose exponential parameters can be estimated by an adaptive
law based on a back-propagation training algorithm. Moreover, the complex dynamics of SOFC can
be approximated via the Wiener-type neural network, and stability analysis of the proposed control
algorithm can be easily completed by the Lyapunov function. Furthermore, its calculation is reduced
in contrast with MPC.

In this paper, we first present an innovative, novel adaptive constrained control design based
on the Wiener-type neural network identification for SOFCs. There are various amplitudes and
rate constraints of the control inputs in the SOFC control system; based on the online Wiener-type
neural network model identification and exponential PID control, an innovative dynamic anti-windup
compensator is added to eliminate the negative effects of control input constraints. Furthermore,
a stability analysis of the SOFC is given for the presented adaptive constrained approach via the
Lyapunov function. Simulations of the SOFC prove that our adaptive tracking constrained control
strategy based on Wiener model identification is highly effective. The main innovation points in this
paper are as follows:

1. An innovative method based on the Wiener-type neural network model can be used to identify
the system dynamics of an SOFC.
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2. A new dynamic anti-windup compensator combined with an exponential PID control method
is proposed to eliminate the influence of amplitude and rate constraints for control input in the
SOFC system.

3. The Lyapunov function is used to verify that the SOFC closed-loop control system is stable.

The rest of this paper is as follows. The problem formulation of the SOFC voltage control system
is illustrated in Section 2. In Section 3, the description of the constrained adaptive tracking control
based on the Wiener model is presented. Simulation results for the SOFC voltage control system are
given in Section 4. Some conclusions for the whole paper are drawn in Section 5.

2. Problem Formulation For SOFC

According to the previous research [7–10], the working principles of fuel cells are essentially
similar. In short, the SOFC system contains the fuel process part and the fuel cell stack. Functions of
the SOFC are the same as those of the inverse device for water electrolysis. The general structure of the
SOFC is depicted in Figure 1. The single cell for the SOFC includes several parts, such as the anode,
the cathode and the solid oxide electrolyte. Fuel oxidation and oxidant reduction occur in the anode
and cathode, respectively. At the same time, the catalyst, which can accelerate the electrochemical
reaction of the electrode, is widely available in the anode and cathode. Based on the above introduction
of the SOFC, it can be speculated that the actual effectiveness of the SOFC is equivalent to a DC voltage
source in that the SOFC system can provide electricity continuously via the electrochemical reactions.
Comparing the structures of the SOFC and DC source, it is indicated that the anode of the SOFC is
equivalent to the negative power supply of the DC source, while the cathode of the SOFC is equivalent
to the positive power supply of the DC source.

Figure 1. The general structure of the solid oxide fuel cell (SOFC).

The basic process of the chemical reaction in an SOFC is introduced in Figure 1. The fuel gas,
similar to hydrogen (H2), methane (CH4) and city gas (CO), must be supplied on the anode side
continuously. Then, the surface of the anode, which has a porous structure, adsorbs the fuel gas and
sends it to the insideof the anode and electrolyte. O2 can be transformed into O2− when the catalytic
action inside the cathode gives O2 an electron. Due to the impact of the chemical potential, O2−

combines with the solid oxygen ion conductor, which can be realized as an electrolyte. Under the
influence of the concentration gradient, O2− can react with the fuel gas when O2− diffuses into the
inside of the electrolyte and anode. Then, all lost electrons return to the cathode to combine with O2.
Overall, this is a cyclic process.

The main electrochemical processes of the SOFC can be described as follows:

Anode : H2 + O2− → H2O + 2e−

Cathode : O2 + 4e− → 2O2−
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In this paper, we adopt the widely-accepted nonlinear dynamical model of the SOFC, which was
presented in [27,30]. This SOFC model is depicted in Figure 2. Taking advantage of Nernst’s equation
with the consideration of ohmic, concentration and activation losses (i.e., ηohmic, ηconc and ηact),
the function of the stack output voltage Vdc associated with the natural gas flow rate q f can be
defined as:

Vdc = V0 − ηohmic − ηconc − ηact (1)

therein

V0 = N0

[
E0 +

R0T0

2F0
ln

pH2

√
pO2 /101, 325
pH2O

]
(2)

pH2 =
1

KH2(1 + τH2 s)

(
1

1 + τf s
q f − 2Kr I

)
(3)

pO2 =
1

KO2(1 + τO2 s)

(
1/τH−O

(1 + τf s)
q f − Kr I

)
(4)

pH2O =
2

KH2O(1 + τH2Os)
Kr I (5)

ηohmic = Ir, ηconc = ∂ + β ln I,

ηact = −
R0T0

2F0
ln I

(
1− I

IL

) (6)

For the nonlinear dynamic system of the SOFC, the parameters and corresponding values are
shown in Table 1 [24].
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Figure 2. SOFC system dynamic model.
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Table 1. Parameters of the SOFC system model.

Parameter Value Parameter Value

T0 1273 τH2 26.1
F0 96,485 τH2O 78.3
R0 8.314 τO2 2.91
E0 1.18 τH−O 1.145
N0 384 r 0.126
Kr 0.996× 10−3 τf 5

KH2 8.32× 10−6 ∂ 0.05
KH2O 2.77× 10−6 β 0.11
KO2 2.49× 10−5 IL 800

In the design process of this dynamic control system for the SOFC, we mainly consider three
aspects, which are described as follows:

1. It is found that the current load I is related to the stack output voltage Vdc based on the above
dynamic model (see Figure 2), and changes of the current load I can influence the output voltage
Vdc directly. Therefore, one of the main control objectives is to eliminate the negative impact due
to changes of the current load to obtain a stable output voltage.

2. Based on the stationary voltage-current characteristics of the SOFC (see Figure 3), it is shown that
the behavior of the SOFC reflects the typical nonlinear characteristic over a wide operating regime.
In addition, the nonlinear characteristic of system responses in the SOFC system at low- and
high-current loads is obvious. Even under the condition of an overloaded current, the operating
stack voltage may deteriorate rapidly, which can also reflect the strong nonlinear characteristic of
SOFCs. Thus, the nonlinear control strategy must be better than the linear method for SOFCs.
In the design of the nonlinear controller, q f , Vdc and I need to be defined as the control input u,
control output y and measurable disturbance d, respectively. This input-output relationship can
be redefined as an unknown discrete-time nonlinear autoregressive exogenous model (NARX):

y(k) = f (y(k− 1), · · · , y(k− na), u(k), u(k− 1), · · · ,

u(k− nb), d(k− 1), · · · , d(k− nc))
(7)

where na, nb and nc denote the orders of dynamics. Moreover, na ≥ nb, na ≥ nc.
3. In practice, the control input q f = u does not change rapidly in a short time with inertia existing

in the SOFC control system. For this SOFC system, the control inputs must be constrained by the
amplitude and rate conditions, which can be written as:

q f min ≤ u(t) ≤ q f max, q̇ f min ≤ u̇(t) ≤ q̇ f max (8)

In addition to the constraints of the control input, fuel utilization is another important operating
condition that impacts the performance of an SOFC. Thus, the fuel utilization needs to be
maintained within a limited scope, which can be described as:

ρ =
qin

H2
− qo

H2

qin
H2

=
qr

H2

qin
H2

=
2Kr I
qin

H2

(9)

The expected utilization must be from ρmin = 0.7 to ρmax = 0.9. The hydrogen flow should
be within

[
qin

H2 min, qin
H2 max

]
from Equation (9) to maintain safe utilization. Then, the result
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[
qin

H2 min, qin
H2 max

]
can be employed to compute the constrained condition

[
q́ f min, q́ f max

]
of the

fuel flow. Finally, the ultimate dynamic amplitude constraint
[
q̄ f min, q̄ f max

]
can be obtained as:

q̄ f min = max
(

q f min, q́ f min

)
q̄ f max = min

(
q f max, q́ f max

) (10)

Therefore, the following relationship can be achieved as:

q̄ f min ≤ u(k) ≤ q̄ f max (11)

Due to the final dynamic magnitude constraint, the change rate of u(t) can be approximated via
the first-order Euler approximation, which is written as:

u̇(t) =
u(k)− u(k− 1)

Ts
(12)

where Ts denotes the sampling time. According to (8) and (12), the following function can be
derived as:

Ts q̇ f min + u(k− 1) ≤ u(k) ≤ Ts q̇ f max + u(k− 1) (13)

From (11) and (13), the final unified input constraint for the SOFC is summarized as:

max
{

q̄ f min,
(

Ts q̇ f min + u(k− 1)
)}
≤ u(k) ≤ min

{
q̄ f max,

(
Ts q̇ f max + u(k− 1)

)}
(14)
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Figure 3. Volt-ampere characteristics for the SOFC system.

Remark 1. It is generally believed that optimal control is the unique comprehensive strategy to address the
problem of multiple constraints for the SOFC due to the inherent capability of this algorithm. Note that MPC
gives us a convenient way to solve the problems of various constraints, including amplitude, rate and higher-order
saturations [31]. However, there is still a problem that cannot be neglected, i.e., the stability analysis of general
optimal control for a nonlinear system with multiple constraints is difficult, and many optimal control methods
require numerous computations, yielding an unsatisfactory performance.
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3. Constrained Adaptive Tracking Control

3.1. Wiener Model Formulation for SOFC

The Wiener model can approach the nonlinear function arbitrarily, so it is designed to identify the
dynamic model. In some literature, the general Wiener model can be composed of the linear dynamic
part and the nonlinear static part [32]; this structure chart of the Wiener model is depicted in Figure 4.

Linear

Dynamic Block

Nonlinear Static 

Block

( )u k

( )d k

( )x k ( )y k

Figure 4. The structure of the Wiener model.

For the SOFC control system (7), the linear dynamic block of the Wiener model can be defined as:

x(k) =
B(q−1)

A(q−1)
u(k) +

C(q−1)

A(q−1)
d(k) (15)

where:
A(q−1) = 1 + a1q−1 + a2q−2 + · · ·+ ana q−na

B(q−1) = b0 + b1q−1 + b2q−2 + · · ·+ bnb q−nb

C(q−1) = c1q−1 + c2q−2 + · · ·+ cnc q−nc

Therein, ai, bj and cl denote the parameters of the orders, i = 1, · · · , na, j = 0, 1, · · · , nb and
l = 1, · · · , nc.

In this paper, the polynomial forms are utilized to describe the dynamic characteristics of the
nonlinear static block [33]. The polynomial function is defined as:

y(k) =
p

∑
m=1

σmxm(k) (16)

where σm is the parameter of the nonlinear static block and m = 1, · · · , p; therein, m and p are the
power of the intermediate variable x(k) and the degree of the polynomial function, respectively.

3.2. Adaptive Wiener Model Identification

The scheme of the training Wiener model can easily identify the parameters ai, bj, cl and σm.
The Wiener model output ŷ(k) is defined in the following form:

ŷ(k) =
p

∑
m=1

σ̂m x̂m(k) (17)

In the Wiener model, the function of the hidden layer output is described as:

x̂(k) =− â1 x̂(k− 1)− â2 x̂(k− 2)− · · · − âna x̂(k− na)

+ b̂0u(k) + b̂1u(k− 1) + · · ·+ b̂nb u(k− nb)

+ ĉ1d(k− 1) + ĉ2d(k− 2) + · · ·+ ĉnc d(k− nc)

=−
na

∑
i=1

âi x̂(k− i) +
nb

∑
j=0

b̂ju(k− j) +
nc

∑
l=1

ĉld(k− l)

(18)

where the weights âi, b̂j, ĉl and σ̂m are related to the parameters ai, bj, cl and σm in Equation (15)
and (16), respectively.
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Here, the negative gradient method can be employed to adjust the weights of the identified
Wiener model. The identification error can be defined as:

JW1 =
1
2
(y(k)− ŷ(k))2 =

1
2

ê2(k) (19)

Therein, ê(k) = y(k)− ŷ(k). W1 represents a set of âi, b̂j ĉl and σ̂m. The task obviously becomes
an optimization problem, which makes the function Equation (19) about the weighting parameter W1

minimum, which can be:
∂JW1

∂W1
= −ê(k)

∂ŷ(k)
∂W1

(20)

The general update rule can be defined in the following form:

W1(k + 1) = W1(k) + ∆W1(k)

= W1(k) + ηw1 ê(k)
∂ŷ(k)
∂W1

(21)

Therein, ηw1 represents the training rate of the weighting parameter W1 in the Wiener model.
From Equations (17)–(19), the partial derivatives of output ŷ(k) to σ̂m and x̂(k) in the Wiener

model are written in the following form:

∂ŷ(k)
∂σ̂m

= x̂m(k)

∂ŷ(k)
∂x̂(k)

=
p

∑
m=1

mσ̂m x̂m−1(k)
(22)

Therein, x̂(k) is the function of âi, b̂j and ĉl , and the partial derivatives of x̂(k) about parameters
âi, b̂j and ĉl are described as:

∂x̂(k)
∂âi

= −x̂(k− i),
∂x̂(k)

∂b̂j
= u(k− j),

∂x̂(k)
∂ĉl

= d(k− l) (23)

According to Equations (22) and (23), the partial derivatives of ŷ(k) about parameters âi, b̂j and ĉo

are defined in the following form:

∂ŷ(k)
∂âi

=
∂ŷ(k)
∂x̂(k)

· ∂x̂(k)
∂âi

= −
(

p

∑
m=1

mσ̂m x̂m−1(k)

)
x̂(k− i) (24)

∂ŷ(k)
∂b̂j

=
∂ŷ(k)
∂x̂(k)

· ∂x̂(k)
∂b̂j

=

(
p

∑
m=1

mσ̂m x̂m−1(k)

)
u(k− j) (25)

∂ŷ(k)
∂ĉl

=
∂ŷ(k)
∂x̂(k)

· ∂x̂(k)
∂ĉl

=

(
p

∑
m=1

mσ̂m x̂m−1(k)

)
d(k− l) (26)

Because of Equation (21), this update law about parameters âi, b̂j, ĉl and σ̂m can be rewritten
as follows:
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σ̂m(k + 1) = σ̂m(k) + ηw1 ê(k)
∂ŷ(k)
∂σ̂m

âi(k + 1) = âi(k) + ηw1 ê(k)
∂ŷ(k)

∂âi

b̂j(k + 1) = b̂j(k) + ηw1 ê(k)
∂ŷ(k)

∂b̂j

ĉl(k + 1) = ĉl(k) + ηw1 ê(k)
∂ŷ(k)

∂ĉl

(27)

According to these update rules, the output ŷ(k) is determined. At the same time, the parameters
âi, b̂j, ĉl and σ̂m in the Wiener model can be tuned. Based on the above research, the convergence
criterion is proposed to select an adequate learning rate.

Theorem 1. If ηw1 is chosen as:

0 < ηw1 <
2

Ψ̄2
1

(28)

where Ψ̄1 = maxk

∥∥∥ ∂ŷ(k)
∂W1

∥∥∥, the modeling error ê(k) converges asymptotically to zero under the update law (27).

Proof of Theorem 1. Choosing a Lyapunov function as V1(k) = 1
2 ê2(k), from (21), we get:

∆V1(k) = V1(k + 1)−V1(k)

= ∆ê(k)
(

ê(k) +
∆ê(k)

2

)
=

(
∂ê(k)
∂W1

)T
∆W1

[
ê(k) +

1
2

(
∂ê(k)
∂W1

)T
∆W1

]

= −
(

∂ŷ(k)
∂W1

)T
∆W1

[
ê(k)− 1

2

(
∂ŷ(k)
∂W1

)T
∆W1

]

= −ηw1 ê2(k)
∥∥∥∥∂ŷ(k)

∂W1

∥∥∥∥2

+
1
2

η2
w1 ê2(k)

∥∥∥∥∂ŷ(k)
∂W1

∥∥∥∥4

≤ −1
2

ηw1

(
2− ηw1Ψ̄2

1

)
ê2(k)

∥∥∥∥∂ŷ(k)
∂W1

∥∥∥∥2

Notice that ∆V1(k) can be negative definite when ηw1 satisfies Equation (28). Since V1(k) is
reducing and non-negative, this function is converging to the constant V∞

1 ≥ 0, as k→ ∞; therefore,
∆V1(k)→ 0. It can be inferred that limk→∞ ê(k) = 0.

Based on Equations (18) and (22), the Jacobian information algorithm can be derived as follows:

∂y(k)
∂u(k)

∼=
∂ŷ(k)
∂u(k)

=
∂ŷ(k)
∂x̂(k)

· ∂x̂(k)
∂u(k)

= b̂0

p

∑
m=1

mσ̂m x̂m−1(k) (29)

In this part, the presented modified MFACapproach can be used in the SOFC to obtain safe fuel
utilization and meet operating constraint conditions under the condition that its current I and voltage
Vdc can be available.

3.3. Adaptive PID Controller Design with Control Input Constraints

Define tracking error e(k) = r(k)− y(k)− ζ, where ζ denotes a compensation signal, which can
adjust the specified reference r(k) to guarantee u(k) in the pre-determined constraints; this is
designed later.
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According to the basic PID Controller method, the modified PID control algorithm is given,
which is suitable for this paper in the following form:

uc(k) =u(k− 1) + k1xc1(k) + k2xc2(k) + k3xc3(k) (30)

where ki, i = 1, 2, 3 denotes the PID parameters, which can be formed as vector K = [k1, k2, k3]
T .

Additionally:
xc1(k) = e(k)− e(k− 1), xc2(k) = e(k)

xc3(k) = e(k)− 2e(k− 1) + e(k− 2)

Since this PID controller parameters ki, i = 1, 2, 3 are considered as positive or negative,
exponential functions are introduced to map the ki, which are defined as:

ki =

{
αωi if ki ≥ 0
−αωi if ki < 0

i = 1, 2, 3 (31)

where α > 1, ωi, i = 1, 2, 3 are estimated parameters and α is used to change the speed for controller
parameters ki.

Due to the input constraints (14), the presented adaptive constrained controller can be written in
the following form:

u(k) = Sat
{(

u(k− 1) + Sat
{
(uc(k)− u(k− 1)) , Ts q̇ f min, Ts q̇ f max

})
, q̄ f min, q̄ f max

}
(32)

Therein, the Sat(·) function can be defined as:

Sat(z, zmin, zmax) =


zmax z ≥ zmax

z zmin < z < zmax

zmin z ≤ zmin

where zmax and zmin represent the upper and lower Sat(·) function, respectively. Since dynamic
constraints exist in SOFC, an anti-windup compensator needs to be introduced to adjust the specified
trajectory r(k). This compensation signal ζ(k) can be defined in the next form [34]:

ζ(k) = φζ(k− 1) +
∂y(k)
∂u(k)

(uc(k)− u(k)) (33)

Therein, φ < 1.

Remark 2. Since 0 ≤ φ < 1 and we assume ∂y(k)
∂u(k) , uc(k) are bounded, according to the stability criteria

for linear discrete-time systems in [35], the compensation signal ζ(k) is UUBfor all k. As we all know,
the actuator should drive the controlled system with saturation, when the actuator is unable to totally realize
the driving instruction uc(k). The proposed anti-windup compensator is to guarantee the actuator operates at
saturation (magnitude and rate saturation constraint) by adjusting the reference trajectory when the actuator is
unable to realize the driving instruction uc(k) completely. The proposed method can ensure the convergence of
the parameter update laws.

In the process of the adaptive PID constrained control design, this controller parameter can be
adjusted along the negative gradient, and the performance index can be written as:
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JW2 =
1
2

e2(k) (34)

where W2 = [ω1, ω2, ω3]
T . The task obviously becomes an optimization problem, which makes the

performance index (34) about weighting parameter ωi, that is:

∂JW2

∂ωi
= −kixci ln α

∂y(k)
∂u(k)

e(k) (35)

where xci, i = 1, 2, 3 are the defined inputs of the PID controller. Using a back-propagation training
algorithm, due to Equation (35), the adaptation law of ωi is derived as:

ωi(k + 1) = ωi(k) + ∆ωi(k)

= ωi(k)− ηw2
∂JW2

∂ωi

= ωi(k) + ηw2kixci ln α
∂y(k)
∂u(k)

e(k)

(36)

From the update law of (36), we can obtain:

∆W2 = ηw2e(k)
∂y(k)
∂u(k)

∂uc(k)
∂W2

(37)

where:
∂uc(k)
∂W2

= ln α[k1xc1, k2xc2, k3xc3]
T

Theorem 2. Define Ψ̄2 = maxk

∥∥∥ ∂y(k)
∂u(k)

∥∥∥, Ψ̄3 = maxk

∥∥∥ ∂uc(k)
∂W2

∥∥∥. The tracking error e(k) converges
asymptotically to zero if ηw2 is chosen as:

0 < ηw2 <
2

Ψ̄2
2Ψ̄2

3
(38)

Proof of Theorem 2. Define a Lyapunov function as V2(k) = 1
2 e2(k); from (37), we get:

∆V2(k) = V2(k + 1)−V2(k)

= ∆e(k)
(

e(k) +
∆e(k)

2

)
= − ∂y

∂u

(
∂uc(k)
∂W2

)T
∆W2 ×

[
e(k)− 1

2
∂y
∂u

(
∂uc(k)
∂W2

)T
∆W2

]

= −ηw2e(k)
∥∥∥∥ ∂y(k)

∂u(k)

∥∥∥∥2 ∥∥∥∥∂uc(k)
∂W2

∥∥∥∥2

×
[

e(k)− 1
2

ηw2e(k)
∥∥∥∥ ∂y(k)

∂u(k)

∥∥∥∥2 ∥∥∥∥∂uc(k)
∂W2

∥∥∥∥2
]

= −ηw2e2(k)
∥∥∥∥ ∂y(k)

∂u(k)

∥∥∥∥2 ∥∥∥∥∂uc(k)
∂W2

∥∥∥∥2

+
1
2

η2
w2e2(k)

∥∥∥∥ ∂y(k)
∂u(k)

∥∥∥∥4 ∥∥∥∥∂uc(k)
∂W2

∥∥∥∥4

≤ −ηw2

(
1−

ηw2Ψ̄2
2Ψ̄2

3
2

)
× e2(k)

∥∥∥∥ ∂y(k)
∂u(k)

∥∥∥∥2 ∥∥∥∥∂uc(k)
∂W2

∥∥∥∥2

We can find that ∆V2(k) can be negative definite in the variables e(k) when ηw2 satisfies
Equation (38). Since V2(k) is a decreasing and non-negative function, the function is converging to a
constant of zero, i.e., V∞

2 ≥ 0, as k→ ∞; therefore, ∆V2(k)→ 0. We can infer that limk→∞ e(k) = 0.
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To provide a direct view impression of the presented control strategy, the structure chart is shown
in Figure 5.

Constraint

Anti-windup

compensator

( )k

( )u k

( )y k

( )r k

Wiener Model 

Identification

PID

Controller

( )cu k

ˆ( )y k

Jacobian

1z

Figure 5. Structure of the presented control strategy for SOFC.

4. Simulation Results

In this section, the proposed adaptive constrained control method based on the Wiener-type
neural network presented in the above sections is used to obtain safe fuel utilization and make the
SOFC system satisfy the operating constraints under the condition of changing load I. At the same
time, the voltage output Vdc is guaranteed to be steady.

The effective and safe power source will provide stable electric energy for plants; thus, we must
guarantee that output voltage Vdc is the desired constant value as much as possible, while the external
current load may have a negative impact on Vdc for the SOFC for some time. In conventional
working conditions, the current load I is set as 300 A, and our expected stable electric tension Vdc
can be set as 332.8 V. The desired fuel utilization is [ρmin, ρmax] = [0.7, 0.9] [20]. The maintained
operating constraints are magnitude saturation

[
q f min, q f max

]
= [0.6, 1.2]mol/s and rate saturation[

q̇ f min, q̇ f max

]
= [−0.7, 0.7]mol/s2 [20].

For the simulations, the sample time is T = 1s, and we choose orders of na = 2, nb = 1, nc = 2
and p = 2 for the Wiener-type neural network. Notice that open-loop input-output data sequences can
obtain the initial values ai(0), bj(0), cl(0) and σm(0). Moreover, open-loop input-output tested data
samples are achieved by exciting the open-loop SOFC control system using given sinusoidal signals
0.7823+ 0.3 sin(0.5t) sin t and 300+ 50 sin(0.03t) sin(0.04t) for the fuel and the current demand (i.e., q f
and I), respectively. ai(0), bj(0), cl(0) and σm(0) can be obtained as:

a1 a2

b0 b1

c1 c2

σ1 σ2

 =


−0.4573 −0.2286
−0.0018 0.0018
0.1278 0.1278
1.6567 −0.6735


For the proposed control law, α is chosen as mathematical constant e. The learning rates are

selected as ηw1 = [0.7, 0.7, 0.8, 0.8]T and ηw2 = [15, 10, 0.1]T . The initial values of the proposed controller
are the same as the traditional PID parameters Kp, Ki, Kd, i.e., k1(0) = Kp = 10, k2(0) = Ki = 2 and
k3(0) = Kd = 0.01.

The simulation results are given from Figures 6–10. Firstly, the load current is assumed to change
as the curve in Figure 6A with three step signals combined. Under the most stringent step signal
conditions, the proposed control algorithm presents a favorable control performance, which is shown
in Figure 6B. It shows that once there exists a large mutation of the load current, the corresponding
oscillations occur on the stack output voltage, yet disappear soon under the proposed control method,
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and the voltage tends to be stable. The curves of the natural gas flow rate (i.e., the input) and the
acceleration are drawn in Figure 7. As can be seen in Figure 7A, the input magnitude constraint
generates a saturation phenomenon around Step 200, and the acceleration is within the confining scope.
Once the constraints occur, the proposed anti-windup compensator takes effect, as shown in Figure 8A,
at the same time to compensate the performance. The Jacobian information and fuel utilization are
depicted in Figure 8B,C, which indicates that the fuel utilization is satisfactory within the excellent
range under the proposed control strategy. The curves of the exponential PID parameters and the
Wiener-type neural network weight coefficients are presented in Figures 9 and 10, respectively.

Moreover, the conventional PID controller is adopted in the simulation in contrast with the
proposed control method. The comparisons focus on the following points:

1. In Figure 6B, it can be vividly seen that the voltage under PID control has a greater oscillation
amplitude and slower convergence speed than the proposed control method.

2. In Figure 7A, the natural gas flow rate under PID control is not as stable as the one under the
proposed control method when facing the sudden load disturbance.

3. In Figure 8C, the fuel utilization under PID control is beyond the permitted scope, which will
have a bad effect on the cell life, while the one under the proposed control method is within an
appropriate scope.

To summarize, the proposed adaptive tracking constrained control strategy based on the
Wiener-type neural network possesses better control performance on the investigated SOFC system in
contrast with the PID control with a smaller oscillation amplitude and faster convergence speed and
can be applied in the control of nonlinear systems with a complicated dynamics well.
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Figure 6. Current load I (A) and the voltage tracking curves of the SOFC of proposed control method
compared with the conventional PID control (B).
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Figure 10. The curves of the Wiener-type neural network weight coefficients.

5. Conclusions

In this paper, a new adaptive tracking constrained control strategy based on the online-updated
Wiener-type neural network has been proposed for the SOFC, in which we provide a new effective
alternative to overcome the control difficulty of the SOFC. Firstly, the nonlinear dynamical model
of SOFC is investigated, and the volt-ampere characteristics for the SOFC are presented. Secondly,
the dynamic model of the SOFC is approached using the Wiener model formulation, and the parameters
of the model are estimated via adaptive Wiener model identification. Thirdly, an adaptive exponential
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PID controller is designed to achieve the tracking performance of voltage, with an anti-windup
compensator utilized to eliminate the harm of saturation considering the input magnitude and rate
constraints. Fourthly, the stability of the proposed control system is proven via the Lyapunov function.
Finally, the simulation is carried out in the MATLAB/Simulink environment, and the simulation results
are analyzed to show that the proposed adaptive tracking constrained control approach possesses
good effectiveness when dealing with nonlinear systems with complicated dynamics. Future work
will include solving the problem of output constraints, improving our control algorithm to obtain a
better tracking performance, and so on.
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Abbreviations

The following abbreviations are used in this manuscript:

T0 Absolute temperature (K)
F0 Faraday’s constant (C/mol)
R0 Universal gas constant (J/mol ·K)
E0 Ideal standard potential (V)
N0 Number of cells in the stack
Kr Constant, Kr = N0/4F0 (mol/s ·A)
KH2 Valve molar constant for hydrogen (mol/s · Pa)
KH2O Valve molar constant for water (mol/s · Pa)
KO2 Valve molar constant for oxygen (mol/s · Pa)
τH2 Response time of hydrogen flow (s)
τH2O Response time of water flow (s)
τO2 Response time of oxygen flow (s)
τH−O Ratio of hydrogen to oxygen
r Ohmic loss (Ω)
τf Time constant for the fuel processor (s)
∂ Tafel constant
β Tafel slope
IL Limiting current density (A)
pH2 Partial pressure for hydrogen (Pa)
pH2O Partial pressure for water (Pa)
pO2 Partial pressure for oxygen (Pa)
qin

H2
Input flow rate for hydrogen (mol/s)

qin
O2

Input flow rate for oxygen (mol/s)
qr

H2
Reacted flow rate for hydrogen (mol/s)

qo
H2

Output flow rate for hydrogen (mol/s)
Vdc The stack output voltage (V)
q f Natural gas flow rate (mol/s)
I Load current (A)
ρ Fuel utilization
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