UV-Driven Harmonic Generation for Time-Resolved Photoelectron Spectroscopy of Polyatomic Molecules
Abstract
:1. Introduction
2. Experimental Setup
2.1. UV Driving Laser
2.2. Generation and Isolation of the 9th Harmonic
2.3. Time-Resolved Photoelectron Spectroscopy (TRPES) Apparatus
3. TRPES Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stolow, A.; Bragg, A.E.; Neumark, D.M. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 2004, 104, 1719–1757. [Google Scholar] [CrossRef] [PubMed]
- Corkum, P.B.; Krausz, F. Attosecond science. Nat. Phys. 2007, 3, 381–387. [Google Scholar] [CrossRef]
- Nugent-Glandorf, L.; Scheer, M.; Samuels, D.A.; Mulhisen, A.M.; Grant, E.R.; Yang, X.; Bierbaum, V.M.; Leone, S.R. Ultrafast time-resolved soft X-ray photoelectron spectroscopy of dissociating Br2. Phys. Rev. Lett. 2001, 87, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, F.; Cacho, C.; Froud, C.A.; Turcu, I.C.E.; Villoresi, P.; Bryan, W.A.; Springate, E.; Poletto, L. Single-grating monochromator for extreme-ultraviolet ultrashort pulses. Opt. Express 2011, 19, 19169–19181. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S.; Horio, T.; Suzuki, T. Generation of intense single-order harmonic pulse in the vacuum ultraviolet region using a deep ultraviolet driving laser. Opt. Lett. 2012, 37, 2118–2120. [Google Scholar] [CrossRef] [PubMed]
- Marceau, C.; Hammond, T.J.; Naumov, A.Y.; Corkum, P.B.; Villeneuve, D.M. Wavelength scaling of high harmonic generation for 267 nm, 400 nm and 800 nm driving laser pulses. J. Phys. Commun. 2017, 1, 015009. [Google Scholar] [CrossRef] [Green Version]
- Boguslavskiy, A.E.; Schalk, O.; Gador, N.; Glover, W.J.; Mori, T.; Schultz, T.; Schuurman, M.S.; Martínez, T.J.; Stolow, A. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy. J. Chem. Phys. 2018, 148, 164302. [Google Scholar] [CrossRef] [PubMed]
- Oesterling, S.; Schalk, O.; Geng, T.; Thomas, R.D.; Hansson, T.; de Vivie-Riedle, R. Substituent effects on the relaxation dynamics of furan, furfural and β-furfural: A combined theoretical and experimental approach. Phys. Chem. Chem. Phys. 2017, 19, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Fuji, T.; Suzuki, Y.-I.; Horio, T.; Suzuki, T.; Mitrić, R.; Werner, U.; Bonačić-Koutecký, V. Ultrafast photodynamics of furan. J. Chem. Phys. 2010, 133, 234303. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Hockett, P.; Stolow, A. Time-resolved photoelectron spectroscopy: From wavepackets to observables. Phys. Chem. Chem. Phys. 2011, 13, 18447–18467. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S.; Sato, M.; Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 2015, 6, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Adachi, S.; Suzuki, T. Photoisomerization of Vibrationally Hot Tetramethylethylene Produced by Ultrafast Internal Conversion from the Excited State. J. Phys. Chem. A 2016, 120, 5099–5102. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.I.; Karashima, S.; Adachi, S.; Suzuki, T. Wavelength Dependence of UV Photoemission from Solvated Electrons in Bulk Water, Methanol, and Ethanol. J. Phys. Chem. A 2016, 120, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Suzuki, Y.; Suzuki, T.; Adachi, S. Pump–probe photoelectron spectroscopy by a high-power 90 nm vacuum-ultraviolet laser. Appl. Phys. Express 2016, 9, 022401. [Google Scholar] [CrossRef]
- Adachi, S.; Sato, M.; Suzuki, T.; Grebenshchikov, S.Y. Unexpectedly broad photoelectron spectrum as a signature of ultrafast electronic relaxation of Rydberg states of carbon dioxide. Phys. Rev. A 2017, 95. [Google Scholar] [CrossRef]
- Adachi, S.; Kohguchi, H.; Suzuki, T. Unravelling the Electronic State of NO2Product in Ultrafast Photodissociation of Nitromethane. J. Phys. Chem. Lett. 2018, 9, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S.; Schatteburg, T.; Humeniuk, A.; Mitrić, R.; Suzuki, T. Probing ultrafast dynamics during and after passing through conical intersections. Phys. Chem. Chem. Phys. 2018. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S.; Suzuki, T. Self-compression of femtosecond deep-ultraviolet pulses by filamentation in krypton. Opt. Lett. 2017, 42, 1883–1886. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, E.J.; Nabekawa, Y.; Mashiko, H.; Hasegawa, H.; Suda, A.; Midorikawa, K. Generation of Strong Optical Field in Soft X-Ray Region by Using High-Order Harmonics. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 1315–1328. [Google Scholar] [CrossRef]
- Hellmann, S.; Rossnagel, K.; Marczynski-Bühlow, M.; Kipp, L. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79. [Google Scholar] [CrossRef]
- Feldstein, M.J.; Vöhringer, P.; Scherer, N.F. Rapid-scan pump–probe spectroscopy with high time and wave-number resolution: Optical-Kerr-effect measurements of neat liquids. J. Opt. Soc. Am. B 1995, 12, 1500–1510. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adachi, S.; Suzuki, T. UV-Driven Harmonic Generation for Time-Resolved Photoelectron Spectroscopy of Polyatomic Molecules. Appl. Sci. 2018, 8, 1784. https://doi.org/10.3390/app8101784
Adachi S, Suzuki T. UV-Driven Harmonic Generation for Time-Resolved Photoelectron Spectroscopy of Polyatomic Molecules. Applied Sciences. 2018; 8(10):1784. https://doi.org/10.3390/app8101784
Chicago/Turabian StyleAdachi, Shunsuke, and Toshinori Suzuki. 2018. "UV-Driven Harmonic Generation for Time-Resolved Photoelectron Spectroscopy of Polyatomic Molecules" Applied Sciences 8, no. 10: 1784. https://doi.org/10.3390/app8101784
APA StyleAdachi, S., & Suzuki, T. (2018). UV-Driven Harmonic Generation for Time-Resolved Photoelectron Spectroscopy of Polyatomic Molecules. Applied Sciences, 8(10), 1784. https://doi.org/10.3390/app8101784