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Abstract: The purpose of this paper is to elucidate a generalized singularity analysis of a snake-like
robot. The generalized analysis is denoted as analysis of singularity of a model which defines all
designable parameters such as the link length and/or the position of the passive wheel as arbitrary
variables. The denotation is a key point for a novelty of this study. This paper addresses the above
new model denotation, while previous studies have defined the designable parameters as unique
one. This difference makes the singularity analysis difficult substantively. To overcome this issue,
an analysis method using redundancy of the snake-like robot is proposed. The proposed method
contributes to simplify singularity analysis concerned with the designable parameters. The singular
configurations of both the model including side-slipping and the one with non side-slipping are
analyzed. As the results of the analysis, we show two contributions. The first contribution is that a
singular configuration depends on designable parameters such as link length as well as state values
such as relative angles. The second contribution is that the singular configuration is characterized
by the axials of the passive wheels of all non side-slipping link. This paper proves that the singular
configuration is identified as following two conditions even if the designable parameters are chosen
as different variables and the model includes side-slipping link. One is that the axials of passive
wheels of all non side-slipping links intersect at a common point. Another one is that axials of passive
wheels of all non side-slipping links are parallel.

Keywords: snake-like robot; singularity analysis; system design

1. Introduction

A real snake has simple figure like a string, and can locomote by using difference between friction
in the propulsive direction and one in the normal direction. It can locomote not only flatland but
also irregular terrain such as desert, wildland and grassland, by choosing its motion and posture
depending on environments/tasks. Moreover, it can realize skilled locomotions such as swimming,
climbing, and squeezing. That is, the real snake possesses highly adaptability corresponding to the
environments/tasks. A snake-like robot mimics such highly adaptability of the real snake, and is
expected to be an adaptable robot corresponding to the environments/tasks.

Many literatures have reported with respect to locomotion controls of snake-like robots. Hirose,
who is a pioneer of the studies for snake-like robots, has found that a curvature of a snake changes
sinusoidally along its body axis. He has named it “Serpenoid Curve”, and applied it to a trajectory
generation for snake-like robots [1]. Endo et al. have implemented a propulsive locomotion control
of snake-like robots by using the Serpenoid Curve [2]. As studies extending the Serpenoid Curve,
Yamada et al. have proposed the kinematics to stabilize head direction during tracking the robot to the
Serpenoid Curve, and have implemented the kinematics on the robot [3]. Ma et al. have implemented
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slope climbing control by adjusted amplitude of the Serpenoid Curve via a simulator [4]. In our
previous study, we have designed a servo control system for tracking to the Serpenoid Curve [5].
Relative researches with respect to propulsive control use difference of the friction forces between the
propulsive direction and the normal direction also have been reported [6,7]. In our previous study,
a head position control [8–10], a force control [11] and a slope climbing control [12] have been designed.

These researches [6–12] have been based on a dynamical model of the snake-like robot.
The discussions on it has been reported in order to avoid singular configurations as well. In these
researches, the model is generally assumed to install non side-slipping passive wheels on its links.
Prautsch et al. have derived the dynamical model of the snake-like robot without side-slipping, and
have proven some theories and lemmas regarding the dynamics [13,14]. As one of the results of the
analyses, they have referred the snake-like robot takes the singular configuration as long as it poses
either straight line or arc shape. The result has been shared by a lot of researchers. For example,
Date et al. have also reported that the snake-like robot becomes singular when the robot poses straight
line or arc shape [15–17]. In addition, Ye et al. have also stated that straight line or arc shape are
singular [18]. Matsuno et al. [19] and Tanaka et al. [20–22] also have mentioned that the postures of
straight line or arc shape are the singular configuration as well. They [15–22] have led the same results
based on the analysis by Prautsch et al. [13,14]. In addition, Dear et al. [23,24] and Guo et al. [25]
have reported the snake-like robot is the singular configuration when all relative angles are equivalent.
It indicates the posture under this situation is either straight line or arc shape. Liljebäck et al. have
addressed a dynamical model supposing the snake-like robot with side-slipping, and have derived the
model with viscous friction forces working at the center of each link. They have analyzed nonlinear
controllability of the models, and finally have also proven that straight line and arc shape are singular
configurations [26–29].

While these studies [13–28] have addressed the either fully non side-slipping or fully side-slipping
model, Tanaka et al. have addressed a model including both side-slipping and non side-slipping
links [30]. They have referred that either the straight line or the arc shape are still the singular
configuration with respect to the fully non side-slipping model based on Prautsch’s analysis [14].
Nevertheless, they have concluded that following two conditions are the singular configuration
regarding to the model including side-slipping.

Condition

• Axials of passive wheels of all non side-slipping links intersect at a common point.
• Axials of passive wheels of all non side-slipping links are parallel.

These researches [13–30] have a common assumption that the robot has either the passive wheel
or the center of gravity located at the center of each link. This common assumption means link length
and/or position of the passive wheel are defined as common variable. Hence, the common assumption
contributes the analysis simple, because each element of its Jacobian matrix can be factorized by link
length or position of passive wheel as common variable. Accordingly, each element is able to be
formulated by summation of the trigonometric functions with link length or position of passive wheel
as the common variable. For example, Tanaka et al. have defined the length from a front joint to a
passive wheel and the one from a passive wheel to hind joint as a same variable for all link. To satisfy
this definition, they have supposed that the link length of lifted links is not changed by limiting lifting
height infinitesimally, even though their robot allows to lift up it to enough height [30]. Thus, the
analyses of previous studies subject to the limitation regarding to the common variable, although
these variables could be designable. Conversely, effects of link position of the passive wheel and/or
length to its behavior have never discussed yet.—i.e., the analysis without any limitation has never
been discussed.

This paper elucidates a generalized singularity analysis of the snake-like robot. The generalized
analysis is denoted as analysis of singularity of a model which defines all designable parameters such
as the link length and/or the position of the passive wheel as arbitrary variables. From a viewpoint
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of system design, revealing a relationship between the designable parameters and system behavior
affects behavior of the whole system including the locomotion control system as well. In the case of the
inverted pendulum for example, it has been reported that changing its designable parameters such as
link length results in extending stability margin of the system [31–33]. In another instance, the Jansen
linkage mechanism, a representative example of closed link mechanism, is capable of transitioning its
gaits significantly by changing length ratio of all link [34,35]. In addition, its characteristic influences
robot’s morphology as well [36]. The snake-like robot is a kind of non-holonomic system, and its
non-holonomic constraints come from the characteristic of the non side-slipping passive wheels.
Hence, the position of the passive wheel affects the system behavior. Thus, discussion on effect of the
designable parameters is expected to provide some advantages in this area as well.

This paper addresses two main issues. The first main issue is to elucidate dependent relationship
between the singular configuration of the snake-like robot and the designable parameters such as link
length and position of the passive wheel. As discussed above, the previous studies have identified that
the singular configuration of the snake-like robot is either straight line or arc shape. This identification
is equivalent to that the singular configuration depends on only its state vector. Tanaka et al. have
referred that the postures of straight line or arc shape are the singular configuration regarding to the
model with non side-slipping while they have referred that the Conditions are the singular configuration
regarding to the model including side-slipping [30]. In addition, they have defined all link length as
unique parameter. On the other hand, this paper addresses the model which defines the designable
parameters as non-unique variables in order to reveal the relation between the singular configuration
and the designable parameters. This difference of the assumptions results in a substantial increase
of the analysis complexity, because the link length and the position of the passive wheel defined as
different parameters are unable to factorized as common variables.

Therefore, in this paper, an analysis method using redundancy of the snake-like robot is proposed.
The singular configuration of the snake-like robot is analyzed based on the method. The proposed
method contributes to simplify singularity analysis concerned with the designable parameters such as
link length. An epitomization of the method is to resolve the snake-like robot into subsystems every
three links. Applying the same analysis to all subsystem leads to singularity analysis of whole system.
Since the subsystem is absolutely smaller than the whole system, the epitomization reduces complexity
coming from different parameters. The subsystem is also able to be composed corresponding to the
model including side-slipping as well as the one with non side-slipping. Consequently, the singular
configurations of both the model including side-slipping and the one with non side-slipping are
analyzed in this paper.

The second main issue is to characterize the singular configuration of the snake-like robot by the
axials of the passive wheels of all non side-slipping link. Tanaka et al. [30] have proven that the singular
configuration is characterized by the axials of the passive wheels as the Conditions. The Conditions
is novel characteristic to identify the singular configuration. However, they had a limitation for
maintaining the uniform link length. By clearing the limitation, this paper proves effectiveness of the
novel characteristic even if the designable parameters are defined as different values and the model
includes side-slipping links.

This paper is organized as follows: Section 3 derives both kinematics and Jacobian matrices of the
snake-like robot. Four kinds of kinematics around a joint are derived corresponding to side-slipping
patterns. The Jacobian matrices of both the snake-like robot including side-slipping and the one with
non side-slipping are formulated by composing the four kinds of kinematics redundantly. By applying
the analysis method using redundancy, Section 4 analyzes the singular configuration of the snake-like
robot. Two theories and one lemma are proven with respect to the model with non side-slipping. Also,
two theories and two lemmas are proven with respect to the model including side-slipping. Section 5
visualizes the analysis results via two numerical simulations. Section 6 concludes this paper.
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2. Notation

Notations used in this paper are defined here for simplicity of description. The first is regarding
to representation of side-slipping on schematic figures of the snake-like robot. The second is regarding
to product of matrices. The last one is regarding to a relative angle.

Notation 1. The passive wheel depicted on the schematic figure distinguishes between side-slipping and non
side-slipping of a link. Figure 1a represents a non side-slipping link. Figure 1b represents a side-slipping link.

�������

����	

(a) (b)

Figure 1. The distinction between a side-slipping link and a non side-slipping link. (a): a non
side-slipping link. (b): a side-slipping link.

Notation 2. In this paper, production of matrices is represented as follows:

n

∏
i=1

Ai := An An−1 An−2 · · · A2 A1,
n

∏
i=1

AiB := An An−1 An−2 · · · A2 A1B,

where, Ai ∈ Rn×n, B ∈ Rn×m.

Notation 3. The relative angle of adjacent ith link and i− 1th link is represented as follow:

φi := θi − θi−1.

Whereas, the relative angle of non adjacent ith link and jth link is represented as follow:

iφj := θi − θj.

3. Kinematics of the Snake-Like Robot

A kinematics of n-link snake-like robot including some side-slipping links is formulated in
this section by deriving velocity relations around each joint. Since the snake-like robot is a kind of
redundant robots, its kinematics is also able to be represented by redundant relation. Thus, to derive
the kinematics of n-link snake-like robot is equivalent to derive it between adjacent links. In particular,
a kinematics around a joint between adjacent non side-slipping links is derived, also, ones including
side-slipping link is derived from the derived kinematics. Finally, Jacobian matrices of both the
n-link snake-like robot including side-slipping and the one with non side-slipping are formulated,
respectively.

3.1. Kinematics around a Joint Adjacent Two Links with Non Side-Slipping

A schematic figure of a joint between adjacent non side-slipping links is shown in Figure 2.
Physical parameters and state variables are denoted in Tables 1 and 2, respectively.
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Figure 2. The schematic figure of the joint of two adjacent links both without side-slipping.

Table 1. Physical Parameters(i = 1, · · · , n).

Parameters Notation

Link length Li [m]
Length from COG to end li [m]
Length from extremity to COG di [m]

Table 2. State Variables(i = 1, · · · , n).

Variables Notation

Position in x-coordinate xi [m]
Position in y-coordinate yi [m]
Absolute angle of each link θi [rad]
Relative angle between ith link and i− 1th link φi [rad]
Velocity in the propulsive direction vxi [m/s]
Velocity in the normal direction vyi [m/s]
Angular velocity of each link ωi [rad/s]

From Figure 2, the passive wheel, which represents that the link is non side-slipping, is installed on
arbitrary position of each link. θi (i = 1, · · · , n) represents absolute angle of each link, φi (i = 2, · · · , n)
represents relative angle between ith link and i− 1th link, and (xi, yi) (i = 1, · · · , n) represent position
of the passive wheel of each link on generalized coordinate. Also, di and li (i = 1, · · · , n) represent
length from extremity to center of gravity (COG) and length from COG to end, respectively.

The generalized coordinate and the quasi-velocity coordinate are defined. From Figure 2,
the generalized coordinate of the system xpi is defined as:

xpi :=
[
θi xi yi

]T
.

Also, the quasi-velocity of the system vi is defined as:

vi :=
[
ωi vxi vyi

]T
.

From Figure 2, the velocity transform matrix Ti transforms the generalized coordinate xpi to the
quasi-velocity coordinate vi as below:

ẋpi = Tivi,

Ti =

1 0 0
0 cos θi − sin θi
0 sin θi cos θi

 .
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From Figure 2, ith link is related to i− 1th link as follows:
θi = θi,

xi = xi−1 + li−1 cos θi−1 + di cos θi,

yi = yi−1 + li−1 sin θi−1 + di sin θi.

Its derivations are: 
θ̇i = θ̇i,

ẋi = ẋi−1 − li−1 sin θi−1θ̇i−1 − di sin θi θ̇i,

ẏi = ẏi−1 + li−1 cos θi−1θ̇i−1 + di cos θi θ̇i,

(1)

Equation (1) is reformulated as (2) by using the generalized velocity ẋpi = dxpi/dt.

ẋpi = Λ̄i−1 ẋpi−1 + ∆̄i θ̇i, (2)

Λ̄i−1 =

 0 0 0
−li−1 sin θi−1 1 0
li−1 cos θi−1 0 1

 , ∆̄i =

 1
−di sin θi
di cos θi

 .

By transforming (2) to the quasi-velocity coordinate using the velocity transform matrix Ti, and
we obtain:

Tivi = Λ̄i−1Ti−1vi−1 + ∆̄iωi.

Please note that the relative angle of each link is defined as φi = θi − θi−1, (i = 2, · · · , n)
(Notation 3). Then,

vi = Λi−1vi−1 + ∆iωi,

where,

Λi−1 = T−1
i Λ̄i−1Ti−1 =

 0 0 0
li−1 sin φi cos φi sin φi
li−1 cos φi − sin φi cos φi

 ,

∆i = T−1
i ∆̄i =

 1
0
di

 .

Since adjacent link is supposed non side-slipping, vyi = vyi−1 = 0. Hence,

ωi = −
li−1

di
cos φiωi−1 +

1
di

sin φivxi−1.

Therefore, the kinematics around a joint of two adjacent links both non side-slipping is obtained as:

vi = A′ivi−1, i = 2, · · · , n, (3)

A′i =

−
li−1
di

cos φi
1
di

sin φi 0
li−1 sin φi cos φi 0

0 0 0

 ,

where, A′1 = I3×2, and Im×n represents the identity matrix ∈ Rm×n.
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3.2. Kinematics around a Joint Adjacent Two Links with Side-Slipping

From (3) and its derivation process, the kinematics around a joint including side-slipping links
are derived as well. In this paper, the passive wheel represents that the link is side-slipping or non
side-slipping in order to distinguish clearly (Notation 1). Combinations of side-slipping of two adjacent
link regarding around a joint are shown in Figure 3.
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(a) (b) (c) (d)

Figure 3. Combinations of side-slipping of ith link and i− 1th link. (a): Both adjacent links are non
side-slipping. (b): Only hind link is side-slipping. (c): Both adjacent links are side-slipping. (d): Only
front link is side-slipping. A link with the passive wheel represents a non side-lipping link.

The kinematics of Figure 3 are formulated as follows:

(a) Both adjacent links are non side-slipping (Figure 3a).

vi = A′ivi−1, (4)

A′i =

−
li−1
di

cos φi
1
di

sin φi 0
li−1 sin φi cos φi 0

0 0 0

 .

(b) Only hind link is side-slipping (Figure 3b).

vi = A′′hivi−1 + ∆iφ̇i, (5)

A′′hi = A′hi I2×3

A′hi =

 0 0
li−1 sin φi cos φi
li−1 cos φi − sin φi

+

 1 0
0 0
di 0

 .

(c) Both adjacent links are side-slipping (Figure 3c).

vi =A′sivi−1 + ∆iφ̇i, (6)

A′si =

 0 0 0
li−1 sin φi cos φi sin φi
li−1 cos φi − sin φi cos φi

+

 1 0 0
0 0 0
di 0 0

 .

(d) Only front link is side-slipping (Figure 3d).

vi = A′′f ivi−1, (7)

A′′f i =

−
li−1
di

cos φi
1
di

sin φi − 1
d1

cos φi

li−1 sin φi cos φi sin φi
0 0 0

 =

[
A′f i
0T

]
.
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Submatrices are defined as follows:

Ai :=

[
− li−1

di
cos φi

1
di

sin φi

li−1 sin φi cos φi

]
, δi :=

[
0
di

]
,

Ahi :=

[
li−1 sin φi cos φi
li−1 cos φi − sin φi

]
, ahi :=

[
sin φi
cos φi

]
,

Asi :=

[
cos φi sin φi
− sin φi cos φi

]
, asi :=

[
li−1 sin φi
li−1 cos φi

]
,

A f i :=

[
1
di

sin φi − 1
di

cos φi

cos φi sin φi

]
, a f i :=

[
− li−1

di
cos φi

li−1 sin φi

]
.

3.3. Jacobian Matrices

The Jacobian matrices of both the n-link snake-like robot including side-slipping and the one with
non side-slipping are formulated by using (4)–(7) redundantly. First, the Jacobian matrix Jg of the
n-link snake-like robot with non side-slipping is formulated. A tangent speed q is defined as:

q :=
[
ω1 vx1

]T
.

The relative angular velocity vector φ̇ is defined as:

φ̇ :=
[
φ̇2 · · · φ̇n

]T
.

Thus, the Jacobian matrix Jg of n-link snake-like robot with non side-slipping is formulated
as follow:

φ̇ =Jgq,

Jg =


eT

1 (A2 − I)A1

eT
1 (A3 − I)A2 A1

...
eT

1 (An − I)∏n−1
m=1 Am

 ∈ Rn−1×2, (8)

where, eT
1 =

[
1 0

]
.

Next, the Jacobian matrix Js of the n-link snake-like robot including side-slipping is formulated.
While combinations of side-slipping exist infinite on the n-link snake-like robot, the Jacobian matrix Js

consists of (4)–(7) due to its redundancy, since product of the kinematics formulates it. We denotes a
set of non side-slipping links as:

G :=
(

g1, · · · , gη

)
∈ N,

N := (1, · · · , n) .

φ is decomposed into φ =
[
φT

s φT
g

]T
, where φg and φs are a relative angle vector of non

side-slipping links and an one of side-slipping links respectively, and denoted as follows:

φg :={φg(i)|g(i) = G∩ 1, g(i + 1) > g(i)},

φs :={φs(i)|s(i) = G∩N, s(i + 1) > s(i)},
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where φ̇1 := vy1, since φ1 is unable to be defined as angle. Subscripts with respect to the set of non
side-slipping links g(i) are denoted as follow:

g(i− 1) := ζ, g(i) := ι, g(i + 1) := κ.

The Jacobian matrix of the n-link snake-like robot including side-slipping is formulated as follows:[
φ̇s

φ̇g

]
=

[
0n−η×2 In−η×n−η

Js ∗η−1×n−η

] [
q

φ̇s

]
, (9)

Js =


eT

1 (B2 − I)B1

eT
1 (B3 − I)B2B1

...
eT

1 (Bη − I)∏
η−1
m=1 Bm

 ∈ Rη−1×2, (10)

Bi =


Aι if ι− ζ = 1,

A′f ι A′hζ+1, if ι− ζ = 2,

A′f ι ∏ι−1
m=ζ+2 A′sm A′hζ+1, if ι− ζ > 2,

where ∗ represents an element of the matrix.
This section has derived the kinematics around a joint corresponding to 4 patterns of side-slipping.

By using the derived kinematics redundantly, the Jacobian matrices of both the n-link snake-like
robot including side-slipping and the one with non side-slipping have been formulated as (9) and
(8) respectively.

4. Singularity Analysis

This section analyzes singularity of n-link snake-like robot. Since elements of matrix to be
analyzed is unable to factorize to summation of trigonometric function, it is inappropriate to analyze
the singularity by the method of Tanaka et al. [30] in the case of the snake-like robot supposed to
non-uniform designable parameters addressed in this paper. The key point of our proposed method is
in redundancy of the system which is one of big reason to make the snake-like robot popular. Using
redundancy results in avoidance of complexity as well as systematic solution. Our proposed method
provides the analysis results as same as Tanaka’s analysis [30]. In addition, the singular configuration
of the snake-like robot is identified as follows:

• Axials of passive wheel of all non side-slipping links intersect at a common point.
• Axials of passive wheel of all non side-slipping links are parallel.

The singular configuration of the snake-like robot with non side-slipping is analyzed first in order
to propose our analysis method using redundancy as well as to prove that the analysis results in the
above two conditions. The analysis proves as well that the singular configuration of the snake-like
robot depends on the designable parameters. The singular configuration of the snake-like robot
including side-slipping is analyzed next. The analysis also proves that the singular configuration of
the snake-like robot is identified as the above two even if the side-slipping links are included.

4.1. Snake-Like Robot with non Side-Slipping

The singular configuration of the snake-like robot with non side-slipping is analyzed first.
The previous studies have reported that the singular configuration is either straight line or arc
shape—i.e., it depends on only state vector. This analysis proves that the singular configuration
of the snake-like robot depends on the designable parameters (such as link length and/or the position
of the passive wheel) as well as the state vector. With respect to the snake-like robot with non
side-slipping, following 2 theories and 1 lemma are obtained.
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Theorem 1. Except for ∃φi, li−1 = di ∩ cos φi = −1, (8) is rank deficient if and only if, ∀φi,(
di

li−1
cos φi + 1

)
1

di+1
sin φi+1 −

1
li−1

sin φi

(
li

di+1
cos φi+1 + 1

)
= 0. (11)

Proof. From (8), since Jg ∈ Rn−1×2, rank of (8) drops when rankJg < 2, and the snake-like robot
poses the singular configuration. Row vectors of (8) are denoted as lT

i (i = 1, · · · , n− 1). Since (8)
possesses one independent row vector when rankJg=1, it can be written by using arbitrary constants
αi (i = 2, · · · , n− 1) as follows:

Jg =


lT
1

α2lT
1

...
αn−1lT

1

 , (12)

where, ∀αi 6= 0. Rank of (12) equals 1 even if any 2 row vectors are chosen.—i.e., if submatrices
Ji (i = 2, · · · , n− 1), consisting of adjacent two row vectors, satisfy ∀rankJi=1, rankJg=1 and Jg is rank
deficient. Ji is

Ji =

[
eT

1 (Ai − I)∏i−1
m=1 Am

eT
1 (Ai+1 − I)∏i

m=1 Am

]
=

[
eT

1 (I − A−1
i )

eT
1 (Ai+1 − I)

]
i

∏
m=1

Am = J̄i

i

∏
m=1

Am.

From ∣∣∣Ai

∣∣∣ = − li−1

di
cos2 φi −

li−1

di
sin2 φi = −

li−1

di
,

since Ai is rank safficient,
rankJi = rank J̄i.

By finding rank deficient conditions of J̄i, that is, solving | J̄i| = 0, the conditions of which the
snake-like robot poses the singular configuration are identified.

Please note that if ∃αi, αi = 0, it might be able to rank rankJg = 2 even if ∀rankJi = 1 in (12).
In particular, when

Jg =



lT
1

α2lT
1

...
αj−1lT

1
0T

lT
j+1

αj+2lT
j+1

...
αn−1lT

j+1



,

rankJg = 2, if lT
1 and lT

j+1 are linear independent. However, it is determined as rank deficient in above
mentioned condition, because rankJj = rankJj+1 = 1. Since ∀Ai 6= 0, lj = 0 only when eT

1 (Aj− I) = 0T .
Because

eT
1 (Aj − I) =

[
− lj−1

dj
cos φj − 1 1

dj
sin φj

]
, (13)

eT
1 (Aj − I) 6= 0T as long as lj−1 6= dj. Furthermore, eT

1 (Aj − I) 6= 0T as long as cos φj 6= −1 even if
lj−1 = dj.
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Finally, since

∣∣∣ J̄i

∣∣∣ = ∣∣∣∣∣
di

li−1
cos φi + 1 − 1

li−1
sin φi

− li
di+1

cos φi+1 − 1 1
di+1

sin φi+1

∣∣∣∣∣
=

(
di

li−1
cos φi + 1

)
1

di+1
sin φi+1 −

1
li−1

sin φi

(
li

di+1
cos φi+1 + 1

)
,

except for li−1 = di ∩ cos φi = −1, (8) is rank deficient if and only if ∀φi, (11).

Equation (11) clearly shows that the singular configuration of the snake-like robot depends on
the designable parameters as well as the state vector. Thus, it is limited into neither straight line nor
arc shape. Equation (11) indicates to be unable to factorize to summation of trigonometric function
due to different coefficients in the premise of different parameter definition. Furthermore, complexity
of | J̄i Ai| is more apparent than (11). This predisposition points difficulty of analyzing the Jacobian
matrix at a time, and the method using redundancy has an advantage for avoiding the complexity.

Lemma 1. li−1 = di ∩ cos φi = −1, —i.e., eT
1 (Aj − I) = 0T if and only if the axials of the passive

wheel overlap.

Proof. In (13),

−
lj−1

dj
cos φj − 1 = − 1

dj

(
lj−1 cos φj − dj

)
,

and equation in parentheses equals x coordinate of jth link corresponding to j − 1th link. Hence,
the wheels of jth link and j− 1th link overlap when li−1 = di ∩ cos φi = −1. Thus, the axials of the
passive wheel clearly overlap if eT

1 (Aj − I) = 0T .

The proposed analysis method is capable of analyzing simply even though the designable
parameters of each link are defined as different ones. On the other hand, it has been shown the
analysis method outputs uncertain result if the special condition (li−1 = di ∩ cos φi = −1) is satisfied.
It also has been proven that the condition is satisfied when the axials of the adjacent passive wheels
overlap. Since it is pose of which the links wholly overlaps, the actual snake-like robot generally never
take that pose.

Theorem 2. The snake-like robot is singular if and only if the axials of all passive wheel intersect at a common
point or are parallel.

Proof. ith link is focused on. A coordinate is set the origin at position of the passive wheel of ith link,
and let the X axis and the Y axis are on its propulsive direction and normal direction of the passive
wheel respectively. Let bi−1 and bi+1 are an intercept of the axial of the passive wheel of i− 1th link
and the one of i + 1th link respectively. The axials of the passive wheels of all i− 1th, ith and i + 1th
link intersect at a common point, if bi−1 = bi+1. It is proven that equations of the intercepts on that
situation equals to (11). Figure 4 depicts the axials of all i− 1th, ith and i + 1th link.

The position of the passive wheel of i− 1th link is{
xi−1 = −di − li−1 cos φi,

yi−1 = li−1 sin φi.

Since a slope of the i− 1th link equals − tan φi, a slope of the axial of the passive wheel is follow:

ai−1 =
1

tan φi
=

cos φi
sin φi

.
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Hence, the intercept of the passive wheel of the i− 1th link bi−1 is

bi−1 =
1

sin φi
(li−1 + di cos φi).

Also, the intercept of the passive wheel of the i + 1th link bi+1 is

bi+1 =
1

sin φi+1
(di+1 + li cos φi+1).

If bi−1 = bi+1,

li−1

sin φi

(
di

li−1
cos φi + 1

)
=

di+1

sin φi+1

(
li

di+1
cos φi+1 + 1

)
,

By multiplying 1
li−1di+1

sin φi sin φi+1 to the both side,(
di

li−1
cos φi + 1

)
1

di+1
sin φi+1 =

1
li−1

sin φi

(
li

di+1
cos φi+1 + 1

)
. (14)

The axials of all passive wheel intersect at a common point when ∀φi, (14). Since (14) equals (11),
the axials of all passive wheel intersect at a common point when the snake-like robot is singular.

When φi = φi+1 = 0, (11) equals (14) at 0. Since φi = φi+1 = 0 represents the axials of the passive
wheel are parallel, the axials of all passive wheel are parallel when the snake-like robot is singular.

��

����

����

����

�
�

�

�����������

�����������
��� ����

Figure 4. Schematic figure of the axials of the passive wheels in i− 1th and i + 1th link, when ith link
is focused on.

4.2. Snake-Like Robot with Side-Slipping

The singular configuration of the snake-like robot including side-slipping is analyzed next. It also
analyzed as same as the one with non side-slipping as well. An analysis result shows that it satisfies the
two conditions mentioned at beginning of this section. With respect to the snake-like robot including
side-slipping, following 2 theories and 2 lemmas are obtained.

Theorem 3. Except for eT
1 (Bi − I) = 0T , (9) is rank deficient if and only if ∀φi,

(
dι

lζ
cos ιφζ +

ι−1

∑
m=ζ+1

Lm

lζ
cos ζ φm + 1

)
1
dκ

sin κφζ −
1
lι

sin ιφζ

(
lι
dκ

cos κφι +
κ−1

∑
m=ι+1

Lm

dκ
cos κφι + 1

)
= 0. (15)
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Proof. From (9), since columns after 3rd column are clearly rank sufficient and Js ∈ Rη−1×2, rank of
(9) drops and the snake-like robot is singular, when rankJs< 2. (10) is analyzed as well as (8). Thus,
conditions of which rank J̄si drops are formulated. Where,

J̄si =

[
eT

1 (I − B−1
i )

eT
1 (B−1

i+1 + I)

]
.

Bi is expanded with supposing ι− ζ > 2 as the most complex case.

Bi =

[
− lζ

dι
cos ιφζ −∑ι−1

m=ζ+1
Lm
dι

cos ιφm
1
dι

sin ιφζ

lζ sin ιφζ + ∑ι−1
m=ζ+1 Lm sin ιφm cos ιφζ

]
.

Thus,

B−1
i =

[ cos ιφζ

|Bi |
− sin ιφζ

dι |Bi |
∗ ∗

]
,

∵
∣∣∣Bi

∣∣∣ = − lζ
dι
−

ι−1

∑
m=ζ+1

Lm

dι
cos ζ φm. (16)

J̄si is transformed as:[
− cos ιφζ

|Bi |
+ 1 sin ιφζ

dι |Bi |
− lι

dκ
cos κφι −∑κ−1

m=ι+1
Lm
dκ

cos κφm − 1 1
dκ

sin κφι

]

→


dι
lζ

(
cos ιφζ − |Bi|

) dι sin ιφζ

lζ dι

− lι
dκ

cos κφι −
κ−1

∑
m=ι+1

Lm
dκ

cos κφm − 1 1
dκ

sin κφι



=


dι
lζ

cos ιφζ +
ι−1

∑
m=ζ+1

Lm
lζ

cos ζ φm + 1 − 1
lι

sin ιφζ

− lι
dκ

cos κφι −
κ−1

∑
m=ι+1

Lm
dκ

cos κφm − 1 1
dκ

sin κφι

 .

Therefore, except for eT
1 (Bi − I) = 0T , (10) is rank deficient if and only if ∀φi, (15).

Equation (15) also indicates as well as (11) that the singular configuration of the snake-like robot
depends on the designable parameters as well as the state vector.

Lemma 2. Bi is singular if and only if the joint of next non side-lipping link is placed on a axial of the passive
wheel of current non side-slipping link (see Figure 5).

Proof. In (16), ∣∣∣Bi

∣∣∣ = − 1
dι

(
lζ +

ι−1

∑
m=ζ+1

Lm cos mφζ

)
,

and an equation in the parentheses equals the x coordinate of the joint of ιth link corresponding to
ζth link.

Lemma 3. eT
1 (Bi − I) = 0 if and only if the axials of both current and next non side-slipping link overlap

(see Figure 6).
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Figure 5. An example of singularity of Bi.
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(a) ιφζ = 0 (b) ιφζ = π

Figure 6. Examples of configurations of eT
1 (Bi − I) = 0.

Proof.

eT
1 (Bi − I) =

[
− lζ

dι
cos ιφζ −

ι−1

∑
m=ζ+1

Lm
dι

cos ιφm − 1 1
dι

sin ιφζ

]
,

θι =

{
θζ , if ιφζ = 0,

θζ + π, if ιφζ = π,
∵

1
dι

sin ιφζ = 0.

Thus,

−
lζ
dι

cos ιφζ −
ι−1

∑
m=ζ+1

Lm

dι
cos ιφm − 1 = ∓ 1

dι

(
lζ +

ι−1

∑
m=ζ+1

Lm cos mφζ ± dι

)
.

An equation in the parentheses equals x coordinate of the passive wheel of next non side-slipping
link (ζth link) of when ιφζ = 0, π. Hence, the axials of the passive wheel of both current and next non
side-slipping link overlap.

Theorem 4. The snake-like robot is singular if and only if the axials of passive wheel of all non side-slipping
links intersect at a common point or are parallel.

Proof. ιth link is focused on. A coordinate is set the origin at position of the passive wheel of ιth link,
and let the X axis and the Y axis are on its propulsive direction and normal direction of the passive
wheel respectively. Let bζ and bκ are an intercept of the axial of the passive wheel of ζth link and the
one of κth link respectively. The axials of the passive wheels of all ζth, ιth and κth link intersect at a
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common point, if bζ = bκ . It is proven that equations of the intercepts on that situation equals to (15).
Figure 7 depicts the axials of all ζth, ιth and κth link.

�� �
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�����������
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Figure 7. Schematic figure of the axials of the passive wheels in ζth and κth link, when ιth link is
focused on.

The position of the passive wheel of κth link is
xκ = lι +

κ−1

∑
m=ι+1

Lm cos mφι + dκ cos κφι,

yκ =
κ−1

∑
m=ι+1

Lm sin mφι + dκ sin κφι.

Since a slope of the κth link equals tan κφι, a slope of the axial of the passive wheel is follow:

aκ = − 1
tan κφι

= −cos κφι

sin κφι
.

Hence, the intercept of the passive wheel of the κth link bκ is

bκ =
1

sin κφι

(
lκ cos κφι +

κ−1

∑
m=ι+1

Lm cos κφm + dκ

)
.

Also, the intercept of the passive wheel of the ζth link bζ is

bζ =
1

sin ιφζ

(
dι cos ιφζ +

ι−1

∑
m=ζ+1

Lm cos ζ φm + lζ

)
.

If bζ = bκ ,

1
sin ιφζ

(
dι cos ιφζ +

ι−1

∑
m=ζ+1

Lm cos ζ φm + lζ

)
=

1
sin κφι

(
lκ cos κφι +

κ−1

∑
m=ι+1

Lm cos κφm + dκ

)
.

By multiplying 1
lζ dκ

sin ιφζ sin κφι to the both side,

(
dι

lζ
cos ιφζ +

ι−1

∑
m=ζ+1

Lm

lζ
cos ζ φm + 1

)
1
dκ

sin κφζ =
1
lι

sin ιφζ

(
lι
dκ

cos κφι +
κ−1

∑
m=ι+1

Lm

dκ
cos κφι + 1

)
(17)



Appl. Sci. 2018, 8, 1873 16 of 22

The axials of all passive wheel intersect at a common point when ∀φi, (17). Since (17) equals (15),
the axials of passive wheel of all non side-slipping links intersect at a common point when the
snake-like robot is singular.

When ιφζ = κφι = 0, (15) equals (17) at 0. Since ιφζ = κφι = 0 represents the axials of the passive
wheel of non side-slipping link are parallel, the axials of passive wheel of all non side-slipping links
are parallel when the snake-like robot is singular.

5. Numerical Simulation

It has been so far identified as following two conditions. One is that the axials of all passive wheel
intersect at a point. Another is that the axials of all passive wheel are parallel. To show the singular
configuration particularly, this section visualizes the singular configuration via two simulations.
According to the analysis process in this paper, first simulation verifies that the singaular configuration
of the snake-like robot depends on the designable parameters as well as the state vector. Second
simulation verifies that the singular configuration of the snake-like robot is able to be characterized by
axials of the passive wheels of all non side-slipping links. Both simulations analyze both the snake-like
robot including side-slipping and the one with non side-slipping, and performed by MaTX VC version
5.3.45 [37]. The designable parameters used in the both simulations is shown in Table 3.

The first simulation visualizes the state vectors of the singular configuration in the state coordinate
space. The state vectors of the singular configuration of the both 3-link and 4-link snake-like robot
with non side-slipping are calculated by solving (11). In addition, the state vectors of the singular
configuration of the 4-link snake-like robot including side-slipping are calculated by solving (15).

Table 3. Parameters in Numerical Simuations (i = 1, 2, 3, 4).

Parameters Case 1 Case 2 Case 3

di [m] 1.0 0.7 0.2
li [m] 1.0 0.5 0.8

Simulation results are shown in Figures 8–11.

-π

-π/2

0

π/2

π

-π -π/2 0 π/2 π

φ
3
 [

ra
d

]

φ2 [rad]

di=1.0 li=1.0
di=0.7 li=0.5
di=0.2 li=0.8

Figure 8. Singular configuration of the 3-link snake-like robot with non-sideslipping. Red: Singular
configuration with di = 1.0 m and li = 1.0 m (Case 1 in Table 3). This configuration has been defined
as singular configuration in the previous studies. Green: Singular configuration with di = 0.7 m and
li = 0.6 m (Case 2 in Table 3). Blue: Singular configuration with di = 0.2 m and li = 0.8 m (Case 3 in
Table 3).
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π/2

π -π -π/2
0

π/2
π

-π

-π/2

0

π/2

π

φ4 [rad]

di=1.0 li=1.0
di=0.7 li=0.5
di=0.2 li=0.8

φ2 [rad]

φ3 [rad]

φ4 [rad]

Figure 9. Singular configuration of the 4-link snake-like robot with non-sideslipping. Red: Singular
configuration with di = 1.0 m and li = 1.0 m (Case 1 in Table 3). This configuration has been defined
as singular configuration in the previous studies. Green: Singular configuration with di = 0.7 m and
li = 0.6 m (Case 2 in Table 3). Blue: Singular configuration with di = 0.2 m and li = 0.8 m (Case 3 in
Table 3).
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Figure 10. Singular configuration of the 4-link snake-like robot including side-slipping with di = 0.7 m
and li = 0.6 m (Case 2 in Table 3). The third link is supposed as slipping link.
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Figure 11. Singular configuration of the 4-link snake-like robot including side-slipping with di = 0.2 m
and li = 0.8 m (Case 3 in Table 3). The third link is supposed as slipping link.

Figures 8 and 9 show the relative angles on the singular configuration in the state coordinate space.
Red shows singular configuration with di = 1.0 m and li = 1.0 m (Case 1 in Table 3). This configuration
has been defined as singular configuration in the previous studies. In fact, red shows state values of
either straight line or arc shape. If the singular configuration is either straight line or arc shape—i.e.,
it depends on the state values only, the relative angles in the state coordinate space are unchanged
even if the designable parameters are changed. However, green and blue in both Figures 8 and 9
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are absolutely discord. That is, Figures 8 and 9 clearly show that the singular configuration of the
snake-like robot depends on the designable parameters as well as the state values. Figures 10 and 11
show the relative angles on the singular configuration including side-slipping in the state coordinate
space, and these are absolutely discord. Hence, Figures 10 and 11 also clearly show that the singular
configuration of the snake-like robot depends on the designable parameters as well as the state values.
Thus, the designable parameters affect dynamics of the snake-like robot.

Second simulation shows the axials of the passive wheel of all non side-slipping links intersect at
a common point when the snake-like robot is singular. The singular configuration of 4-link snake-like
robot is analyzed. Case 2 and Case 3 in Table 3 are chosen as the designable parameters. Let φ2 = 1.2
rad for Case 2 and φ2 = π/3 for Case 3, and the intercepts of the axials of the passive wheel and
the singular configurations are obtained by solving (11) and (14). Simulation results are shown in
Figures 12–15.

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1

y
 [

m
]

x [m]

Axials

Figure 12. Case 2: The singular configuration of 4-link snake-like robot without side-slipping when
setting φ2 = 1.2 rad, di = 0.7 m and li = 0.5 m. φ3 = 1.38 rad and φ4 = 1.69 rad on this situation.
Brack: The axial of the passive wheel. The posture is not arc shape, however, these intersect at a point.
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 2
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Figure 13. Case 3: The singular configuration of 4-link snake-like robot without side-slipping when
setting φ2 = π/3 rad, di = 0.2 m and li = 0.8 m. φ3 = 0.81 rad and φ4 = 0.68 rad on this situation.
Brack: The axial of the passive wheel. The posture is not arc shape, however, these intersect at a point.
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Axials

Figure 14. Case 2: The singular configuration of 4-link snake-like robot including side-slipping when
setting φ2 = 1.2 rad, φ3 = −1.2 rad as slipping link, di = 0.7 m and li = 0.5 m. φ4 = 1.98 rad on this
situation. Brack: The axial of the passive wheel. The posture is not arc shape, however, these intersect
at a point.
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Figure 15. Case 3: The singular configuration of 4-link snake-like robot including side-slipping when
setting φ2 = π/3 rad, φ3 = −1.2 rad as slipping link, di = 0.2 m and li = 0.8 m. φ4 = −1.50 rad on this
situation. Brack: The axial of the passive wheel. The posture is not arc shape, however, these intersect
at a point.

Figures 12–15 shows that the axials of the passive wheel intersect at a common point, when the
snake-like robot is singular. Since φ3 = 1.38 rad and φ4 = 1.69 rad in Figure 12, φ3 = 0.81 rad and
φ4 = 0.68 rad in Figure 13, φ4 = 1.98 rad in Figure 14 and φ4 = −1.50 rad in Figure 15, the singular
configuration of the snake-like robot is not limited to either straight line or arc shape.

This two simulations has proven that the singular configuration of the snake-like robot depends
on the designable parameters as well as the state values, and it is characterized by the intersection of
the axials rather than the state values.

6. Conclusions

This paper has elucidated the generalized singularity analysis of the snake-like robot affected by
the designable parameters such as the link length and/or the position of the passive wheel. This paper
has addressed the model installing the passive wheel on arbitrary position, while the previous studies
had addressed the model installing the wheel on the center of each link.
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By applying the method using redundancy of the snake-like robot, we have reduced high
complexity due to different set-up corresponding to the non-unique designable parameters such
as link length and/or the position of the passive wheel. First, the kinematics around a joint of two
adjacent links installing the passive wheel on arbitrary position have been derived corresponding to
four patterns of side-slipping. By composing the joint kinematics redundantly, the kinematics of whole
snake-like robot is formulated. Second, the Jacobian matrices of both the one including side-slipping
and the one with non side-slipping have been formulated by using the kinematics. Finally, the rank
deficient conditions of the Jacobian matrices—i.e., the singular configuration of the snake-like robot
have been analyzed.

The analysis creates two contributions. The first contribution is that the singular configuration
depends on the designable parameters such as link length and/or the position of the passive wheel
as well as the state vector consisted of the relative angles. Theorem 1 and 3 have revealed the
relation between the singular configuration of the snake-like robot and the designable parameters,
while the previous studies have reported that the singular configuration depends on only the state
vector. The second contribution is that the singular configuration of the snake-like robot is able to
be characterized by the axials of the passive wheel of all non side-slipping link. Theorem 2 and 4
have proven that the singular configuration of the snake-like robot is identified as the following two
conditions regardless of whether the side-slippings actually exist.

• Axials of passive wheels of all non side-slipping links intersect at a common point.
• Axials of passive wheels of all non side-slipping links are parallel.

These analyses lead shows discussions on the system design in the previous studies was
insufficient. Conversely, this paper has shown importance, necessity and possibility of the discussion
with respect to the system design including the locomotion control system as well as the designable
parameters in the area of the snake-like robot. The discussion of the system design has a lot of
possibilities to be a new index of mechanical design. For example in the area of the snake-like robot,
we will be able to design a robot which is unlikely to result in the singular configuration as well as
a novel locomotion control system. For another instance, the discussion will lead to invent a novel
snake-like robot which can control the position of passive wheels actively. Also for another robotic
system, the discussion helps robot’s mechanical design corresponding to its intended use. Especially
for unstable system, the discussion contributes to maximize its stability region.
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