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Featured Application: The paper presents a novel approach for the identification of deficient
source code, based on applying a majority function upon the combination of software metrics.

Abstract: Different challenges arise while detecting deficient software source code. Usually a large
number of potentially problematic entities are identified when an individual software metric or
individual quality aspect is used for the identification of deficient program entities. Additionally, a lot
of these entities quite often turn out to be false positives, i.e., the metrics indicate poor quality whereas
experienced developers do not consider program entities as problematic. The number of entities
identified as potentially deficient does not decrease significantly when the identification of deficient
entities is carried out by applying code smell detection rules. Moreover, the intersection of entities
identified as allegedly deficient among different code smell detection tools is small, which suggests
that the implementation of code smell detection rules are not consistent and uniform. To address these
challenges, we present a novel approach for identifying deficient entities that is based on applying the
majority function on the combination of software metrics. Program entities are assessed according to
selected quality aspects that are evaluated with a set of software metrics and corresponding threshold
values derived from benchmark data, considering the statistical distributions of software metrics
values. The proposed approach was implemented and validated on projects developed in Java, C++
and C#. The validation of the proposed approach was done with expert judgment, where software
developers and architects with multiple years of experiences assessed the quality of the software
classes. Using a combination of software metrics as the criteria for the identification of deficient source
code, the number of potentially deficient object-oriented program entities proved to be reduced. The
results show the correctness of quality ratings determined by the proposed identification approach,
and most importantly, confirm the absence of false positive entities.

Keywords: software quality; software metrics; metric thresholds; object-oriented; smells in source
code; smelling entities; reliable identification; majority function; expert judgment

1. Introduction

Delivering a high-quality product should be the main goal of every software project. The quality
of software depends on activities within the software development process [1], part of which is the
quality assessment phase, including source code analysis. Quality in software engineering is usually
understood as an absence of errors within the software [2]. In addition to this, it is also important to
consider deficient source code. Fowler et al. [3] list several smells within a source code. Code smell is a
structural characteristic of software that can indicate code or design problems and can have an impact
on software maintenance and growth [3,4]. Additionally, it indicates the presence of anti-patterns and
the use of inappropriate development practices [5]. Though code smells do not cause an interruption
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in execution, they can present a challenge at a certain step of further evolution. Additionally, when
ignored, it can result in the occurrence of defects [6].

Since deficient code impacts different parts of the development process, it is important that we
treat it properly. This starts with the reliable identification of a deficient code, which, as a result,
offers a manageable number of potentially deficient program entities. Different strategies for detecting
code smells exist, among others it can be detected with software metrics [7]. However, only a single
dimension of quality is evaluated when using an individual software metric or criterion within the
identification. This usually results in a large number of potentially deficient program entities and
many of them turn out to be false positives [7–9], meaning, software metrics indicate a deficient quality
in the evaluated program entity but developers do not perceive the entity as problematic.

Code smell detection rules are an attempt at combining different software metrics. In related
work [8,10], these rules present a prevailing way of identifying deficient code, aimed at finding different
types of code smells. Although many studies are available, it is hard to detect a generally accepted
composition and validation of detection rules. This presents a challenge for the reliable identification of
deficient entities. Also, different interpretations of detection rules exist [11] and a comparison between
potentially deficient entities identified with different code smell detection tools reveals very small
intersections in resulting sets of potentially deficient program entities [12].

A very large number of allegedly deficient program entities are identified [12] using existing code
smell detection tools. This represents a challenge, especially within the context of the manual review
that follows. To be precise, the automatic validation of identified entities is not possible as confirmed
by Fontana et al. [8]. Therefore, the inclusion of experts to perform a manual review is necessary.
It is crucial to develop an approach that would provide a manageable number of detected potentially
deficient program entities and would reduce false positive cases to a minimum.

To address the above-mentioned challenges, we propose a novel approach for the identification of
deficient source code, that is based on applying a majority function upon the combination of software
metrics. Although attempts at combining multiple software metrics within software evaluation can be
found within the context of code smell detection rules, the use of majority functions for the quality
evaluation of program entities has not been used yet. The proposed identification is based on the
assumption that the overall quality of a program entity that exceeds the threshold value of an individual
software metric is not necessarily deficient. However, when the assessed program entities exceed
threshold values for more software metrics, evaluating different quality aspects, the probability that an
evaluated program entity really contains a deficient code, increases. The presented research study was
guided by the following research question: Does the identification approach based on the majority function
applied on the combination of software metrics identify a deficient source code in a reliable way? The aim is
to identify program entities with deficient overall quality and not on identifying particular types of
code smells or even faulty classes. The proposed approach was implemented and evaluated on the
three major object-oriented programming languages Java, C++ and C#. The process of identifying
deficient source code and the quality rating of detected software classes was performed with the
proposed approach. Expert judgment was used in order to validate the proposed approach. For this
purpose, software developers and software architects with multiple years of experience assessed
selected program entities within a performed study. Their evaluation was compared to the results,
obtained by the proposed novel approach for the identification of deficient source code based on a
combination of software metrics using a majority function. The comparison confirmed the correctness
of the proposed approach.

The rest of the paper is organized as follows. The research background and related work
are presented first. Next, the proposed novel approach is described in detail, followed by its
implementation on object-oriented programming languages. The division of software metrics within
different quality aspects for evaluating object-oriented software classes are proposed next. Afterwards,
the identification of deficient classes is illustrated and the results of the validation of the performed
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identification based on expert judgment is presented. Furthermore, a reliability analysis of the proposed
approach is provided. Finally, limitations and threats to validity are presented.

2. Research Background and Related Works

Software metrics are functions that use software data as an input, provide independent numeric
values as an output and can be interpreted as the level at which software suits the chosen quality
attribute [13]. The measurement of software metrics is carried out within a quality assurance
process [14] and constitutes a key component in successful software engineering [15]. In the latter case,
it is recommended to follow the prescribed guidelines and by using software metrics it is possible to
control the achieved level of software product quality [16].

Different types of metrics quantify different aspects of software development [16]. Misra et al. [17]
list several object-oriented software metrics collections, like Chidamber and Kemerer (CK) metrics,
Lorenz and Kidd metrics and MOOD software metrics. A variety of software metrics is used in
practice and it is essential to know the connection between each metric and different software quality
aspects. Furthermore, the meaningful use of software metrics is possible only with reliable threshold
values [16,18]. The more reliable the thresholds are, the more accurately the quality can be evaluated.

Evaluating quality with software metrics thresholds is a known and accepted strategy [19].
The main motivation of deriving threshold values is to identify those program entities that can
represent a potential risk [20–22]. In the literature, many different approaches are proposed for
deriving metrics thresholds. The majority of studies identify threshold values with the goal of finding
errors, such as in [23–27]. Only some of them, like the study by Fontana et al. [8], focus on finding code
smells. Among methods that are used for calculating metrics thresholds there are also approaches that
derive thresholds based on software metrics values acquired from benchmark data. Those approaches
are used in [8,10,16,20,28–30] and as a result offer concrete threshold values that can be used in the
process of software quality evaluation. Furthermore, with derived threshold values, it is possible to
find and evaluate code smells adequately [8].

The detection of deficient program entities is a commonly discussed topic, but usually in the
context of finding errors, like in [23–25,31]. Studies that identify code smells based on exceeding
threshold values of software metrics can be found; however, they mostly detect code smell types
presented by Lanza and Marinescu [16] with the use of code smell detection rules. Code smells are
detected in a study by Fontana et al. [8], where also the calculation of threshold values for selected
software metrics is presented. Identification is done with detection rules which are presented in [16]
and no validation of acquired results is presented. Vale and Figueiredo [10] present the detection of
code smells for software product lines. Ferreira et al. [18] identify poor classes within the context of
experimental validation of the proposed threshold values. They also combine derived metrics within
identification and point to a decreasing number of detected classes. However, no rules or more detailed
proposal are available. Other papers presenting code smell detection strategies are listed by Sharma
and Spinellis [7]. Among the classified detection methods there are also strategies based on software
metrics, like [32–35]. However, again, studies focus on the identification of code smells using manually
defined code smell detection rules.

Among the most known code smells are Brain Class, God Class, Brain Method and Feature Envy
presented by Lanza and Marinescu [16]. They also present identification rules and some of them
are implemented in Jdeodorand [36] and JSpIRIT [34]. The results of the conducted identification
presented in [12], shows that the intersection between identified entities, using different detection
methods and/or tools, is very small. The intersection within Jdeodorand, JSpIRIT and SonarQube
was 2.70% when identifying God Class/Brain Class code smell and 6.08% when detecting Long
Method/Brain Method. This can be the case due to the varying and nontransparent implementation of
detection rules, which occurs despite the provided definitions. A study about code smell detection
tools was also done by Paiva et al. [37]. It concluded that the comparison between tools is difficult,
since each is based on a different but similar informal definition of code smells made by researchers or
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developers. This is the main reason an identification based on rules at this point does not present a
reliable method for identifying code smells .

To the previously outlined problems we can also add challenges related to expert perceptions of
defined code smells, which was a research domain in [11,38]. Therefore, our research moves away from
frequently used types of code smells presented by Fowler et al. [3] and Lanza and Marinescu [16], and
focuses on detecting deficient entities as program entities with a deficient overall quality. By examining
an overall quality evaluated with a set of software metrics that assess different quality aspects and
using a majority function, true positive program entities that indeed contain deficient code should
be detected in a more reliable way, and, consequentially, the identification of false positive examples
should be significantly reduced.

3. Proposed Theoretical Framework for the Identification of Deficient Source Code

Based on the presented challenges we propose a novel approach for identifying deficient source
code with a combination of software metrics and by applying the majority function. The main steps of
the proposed approach are presented in Figure 1 in the colored shape, joined with other commonly
used activities performed within the identification of deficient source code.

Selection of software metrics

Derivation of software metrics' threshold values

 Gathering software metrics values of program entities 

Evaluation and quality rating of program entities 

Identification of potentially deficient program entities

Manual evaluation of potentially deficient 
program entities

List of deficient program entities

Determination of quality aspects

Figure 1. Identification of deficient program entities including steps of the proposed identification approach.

After setting the criteria, i.e., determining the quality aspects and selecting the individual software
metrics, the proposed approach starts by deriving the threshold values for the selected software
metrics. Then the actual values of selected software metrics are gathered for all the program entities.
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The evaluation and quality rating of program entities is done next, based on the gathered software
metrics values and the derived thresholds. The last step of our proposed approach is the identification
of entities that potentially include deficient source code, after which the identification of deficient
entities may continue by manually reviewing the identified potentially deficient entities, providing
a final list of assuredly deficient program entities. Although the first two and the last two steps
are not a part of the proposed approach itself, they contribute to overall understanding of the
identification approach.

The proposed approach arises from challenges connected to the identification of deficient
program entities based on an individual software metric. The challenge was also recognized by
Bouwers et al. [39] and Lanza and Marinescu [16]. If software metrics are used in isolation, it is
difficult to characterize the software as a whole since each metric evaluates only a certain aspect of
software [16]. As they noted, a balanced overview of the current state of software can be achieved by
combining multiple metrics [39]. Consequently, it makes sense to combine related single metrics into
categories, expressing different quality aspects. Finally, all these categories, each representing a special
quality aspect of a software, can be combined into a single quality score.

This division constitutes a starting point for the proposed approach. After the determination of
quality aspects that need to be covered during the evaluation, the appropriate software metrics are
selected and assigned to each aspect. In general, the selection of software metrics and their division
into quality aspects are not fixed and can be tailored to one’s needs. Specific software metrics could
be added and/or existing metrics could be changed for the purpose of evaluating different aspects
of software. After a set of specific software metrics is determined, their threshold values are derived
which serve as a measure of whether a program entity can be considered as potentially deficient
regarding a specific metric.

With the selected set of software metrics, divided into certain quality aspects, the identification
of deficient source code can begin. After gathering software metrics values for program entities we
want to evaluate, they are compared to the derived thresholds. If an actual value of a single software
metric for a program entity exceeds the derived threshold, the entity is considered to be potentially
deficient with regard to this single metric. The combined quality rate of each quality aspect, which is
composed of several single metrics, is determined by the use of the majority function, based on the
majority voting principle.

The majority function is defined by Equation (1):

Majorityyj =

[
(∑n

i=1 xi)

n

]
, xi ∈ (0, 1) (1)

where xi stands for a single component value, contributing to a combined measure yj.
When the majority function is used for calculating the majority within a certain quality aspect, yj

stands for that quality aspect, and xi stands for a single software metric within the respected aspect.
If the software metric value exceeds the threshold value, the xi is 1, otherwise xi is 0.

Based on the calculated majority measure, the quality rate of a single quality aspect is determined
by Equation (2), and can be evaluated as either 1 or 0:

QualityRateyi =

{
1; Majorityyi > 0.5
0; Majorityyi 6 0.5

, (2)

where yi stands for the quality aspect. In this manner, the quality rate 1 represents a poor and 0
represents a good quality aspect. If the calculated value of the majority function is more than 0.5 the
final quality rate is evaluated as 1 (poor) and if the value is less than or equal to 0.5, the quality rate is
evaluated as 0 (good).

Similarly, for determining an overall quality of a program entity, which includes all different
quality aspects, the same majority function (Equation (1)) and quality rate (Equation (2)) equations
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are used. In this manner, when the majority function (Equation (1)) is used for calculating the overall
quality of program entities, yj stands for the specific program entity and xi stands for the quality rate
of an evaluated quality aspect, as determined based on Equation (2). In the end, the overall quality of
the program entity is determined as poor if the quality rate of the program entity is 1 and as good if
the quality rate of the program entity is 0.

The detailed steps of the proposed approach are summarized by Algorithm 1. As proposed with
the approach, the identification of potentially deficient program entities is done based on the calculated
majority function and determined quality rate. First, for each program entity the majority function is
applied within every quality aspect, considering single software metric values, and afterwards , the
majority function is calculated for the program entity considering quality ratings of all quality aspects.
Each evaluated program entity, the overall quality rate of which is determined as poor, is identified as
potentially deficient. The list of such potentially deficient program entities constitutes a final output of
the proposed identification approach.

Algorithm 1 Detailed structure of the proposed approach for the identification of deficient program
entities

1: derive thresholds for selected software metrics M1...j
2: for each program entity E1...k do

3: gather software metrics
4: execute evaluation
5: for each quality aspect Q1...i do

6: calculate majority function based on software metrics M1...j
7: define quality rate
8: end for
9: calculate majority function based on quality aspect Q1...i

10: define quality rate
11: if quality rate equals poor then

12: add program entity E1...k to list of potentially deficient program entities
13: end if
14: end for

4. Identification of Deficient Classes Within Object-Oriented Programming Languages

The novel identification approach, presented in Section 3, was implemented and evaluated within
the context of three major object-oriented programming languages. The main goal was to detect
deficient classes within the software developed in Java, C++ and C#. Following the steps of the
approach presented in Figure 1 and with Algorithm 1, the identification of deficient classes is presented
in three parts. Within the Section 4.1, the criteria for evaluation was set, whereas the evaluation and
identification of potentially deficient classes is presented in Section 4.2, and the manual assessment
of potentially deficient classes with expert judgment, that also validates the proposed identification
approach, is presented in Section 5.

4.1. Determination of Quality Aspects, Selection of Software Metrics and Derivation of Corresponding
Threshold Values

The evaluation of software classes was done based on four different categories reflecting
different quality aspects within object-oriented software. Lanza and Marinescu [16] proposed an
overview pyramid that includes three quality aspects: size and complexity, coupling and inheritance.
We expanded and adjusted the proposed aspects and evaluated software classes based on (1) source
code size; (2) class complexity; (3) coupling with other classes and (4) class cohesion.

Each of the presented quality aspects was evaluated with one or more software metrics.
The software metrics used to evaluate each aspect were chosen from the list of available metrics
supported by the Understand tool [40], which was used to collect software metrics values.
The Understand tool [40] enables the collection of software metrics values for multiple programming
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languages. With the use of a single tool we eliminated the risk arising from the challenge presented by
Lincke et al. [41], claiming that different software metric tools provide inconsistent values of the same
software metric. This can be attributed to different implementations of the same software metric [30].
Therefore, we used a tool that allows collecting software metrics values for Java, C++ and C#. Among
the available software metrics in the Understand tool [40], eight of them were chosen.

Quality aspects of size and complexity combine three metrics each, whereas coupling and cohesion
were each evaluated by a single software metric. The chosen metrics are presented in Table 1. The table
lists software metrics as named within the used tool together with the abbreviation for each metric
that is used later in the paper.

Table 1. Derived threshold values of selected software metrics grouped into quality aspects.

Software Metric Threshold Value
Java C++ C#

CountLineCode SLOC 197 235 278
AvgLineCode AMS 19 18 20

CountDeclMethodAll NOM 51 90 60

SumCyclomatic WMC 33 45 36
AvgCyclomatic ACC 3 4 3

MaxNesting NS 3 3 4

CountClassCoupled CBO 11 14 23

PercentLackOfCohesion LCOM 71 90 74

Source code size and complexity are probably the most frequently used aspects when evaluating
software quality [16]. The easiest way to determine the size of software is by counting lines [42].
Different software metrics count different types of lines, like the total number of lines, blank lines or
comment lines. We decided to use the most expressive type: lines of code. Therefore, CountLineCode
(SLOC) is the first metric within our study that evaluates the quality aspect of source code size. Since
just a large number of lines of code does not mean that the program entity is problematic, we also
assessed the average size of methods in the evaluated class. This is rated with a software metric
AvgLineCode (AMS). As claimed by Lorenz and Kidd [43], when large methods prevail in a class, this
can be a sign of deficiency. Therefore, with a combination of metrics CountLineCode and AvgLineCode,
large classes which appropriately distribute source code into methods do not represent risky entities
and are not identified as potentially problematic. The size of a program entity can also be evaluated
with the software metric CountDeclMethodAll (NOM) which represents several methods in a class,
including inherited ones. A large number of methods is usually reflected in a large number of source
code lines.

Another basic aspect of quality is the complexity of the program entities. One of the most
frequently used software metrics that measures complexity is cyclomatic complexity [16]. To evaluate
the aspect of class complexity we use the metric SumCyclomatic (WMC) that expresses the sum of
cyclomatic complexities of all the methods in a class and the metric AvgCyclomatic (ACC) that represents
the average value of cyclomatic complexities of all methods. Again, with the use of the average value,
only the software classes that have a large number of very complex methods are identified. The sum
alone is not a reliable measure by itself, since we do not know how the complexity is distributed in the
methods. Another aspect that has an impact on complexity is nesting level [44], which is measured by
the software metric MaxNesting (NS).

An aspect that represents how methods and variables of a certain class are used in other
classes [45] is coupling. High coupling causes extensive dependencies among classes and prevents
reuse. Within our research, it is measured by the metric CountClassCoupled (CBO) that counts the classes
coupled to a treated class. Another object-oriented quality aspect is class cohesion. It is evaluated with
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the metric PercentLackOfCohesion (LCOM) that measures the lack of cohesion in a class. A large number
means that methods and variables cooperate and form a logical whole [46]. If the class lacks cohesion it
means that it should be reorganized in a way that the parts, which do not fit, become a separate entity.
Within the Understand tool [40] the metrics is expressed in a percentage, where a higher percentage
indicates lower cohesion and vice-versa [47].

Derivation of Threshold Values

In our study, we calculated threshold values using the derivation approach proposed by
Ferreira et al. [18]. The approach takes into account a statistical distribution of software metric
values [48] and derives thresholds based on the most common value of a software metric [18].
To provide repeatability and objectivity, we designed a reusable suite of software products in three
selected programming languages: Java, C++ and C#. For each language we gathered 100 open source
software products from the SourceForge [49] online repository, chosen systematically from different
domain categories. Software metrics were collected for all 300 software products and a repository of
software metrics values for each of the three selected programming languages was composed.

The used derivation approach consider frequency of occurrence of specific software metric
value [18]. By starting with an analysis of the statistical distributions of the gathered values, the
appropriate way for deriving threshold values is determined. As the majority of software metrics
values follow a power law distribution [18,28,50], we cannot derive thresholds using approaches that
apply to normal distribution; in this manner, the mean and standard deviation cannot represent a
reliable threshold value. When we fitted the data to the most suitable distribution, the calculation of
thresholds was performed.

For seven out of eight selected metrics, the thresholds were determined with the 90th percentile,
since they followed a power law distribution. The only exception was the metric PercentLackOfCohesion,
which measures the lack of cohesion within a software class. As its values followed a normal statistical
distribution, the threshold was derived using an arithmetic mean and standard deviation. Interestingly,
this metric received a lot of attention in the literature and consequently many variations of the metric
exist [51]. Within the study we used the definition where the value can be between 0 and 100, expressing
a lack of cohesion within the class in terms of percentages.

All the derived threshold values are presented in Table 1. The thresholds were determined for
eight software metrics in three different programming languages. For example, the C++ classes,
in which the sum of cyclomatic complexity of all methods exceed 45, express a very high risk for
containing deficient source code according to the complexity aspect. Whereas in Java the threshold
value for the same metric is 33 and within C# it is 36. On the other hand, a class in C# that contains
more than 278 lines of source code means that there is a high risk that a class is too big in terms of the
size quality aspect. Within Java, the threshold for this same metric is determined at 197 and within C++
at 235 lines of code. As indicated by the numbers in Table 1, the threshold values among programming
languages differ.

4.2. Evaluation and Quality Rating of Deficient Classes

The evaluation of software classes was done using the criteria composed of different quality
aspects and corresponding software metrics with their threshold values. The aim of the evaluation
was finding program entities with deficient overall quality and not on finding particular types of code
smells or even faulty classes.

The evaluation of classes within object-oriented programming languages started by gathering the
values of selected software metrics using the Understand tool [40]. We evaluated the software solutions
developed in Java, C++ and C#, since object-orientation is nowadays a widely adopted approach in
software engineering [17]. Table 2 lists the evaluated software. Participating software projects are open
source and are available in the SourceForge [49] online source code repository. They have been chosen
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using the most frequently used criteria and following best practices used in related work; the prevailing
criterion was software size, whereby the participating projects vary in size and the number of classes.

Table 2. Evaluated software within the implemented study.

ID Title # Classes

Java201 Alfresco Repository 6879
Java202 JasperReports Library 2720
Java203 JHotDraw 627
Java204 Apache Tomcat 3314
Java205 Jenkins 3160
Java206 Gradle 8647
Java207 Liferay Portal 19297

C++201 Notepad++ 449
C++202 MoneyManager 206
C++203 7-Zip 521
C++204 TortoiseSVN 1162
C++205 FileZilla 372
C++206 MySQL Server 4643

C#201 KeePass 523
C#202 OpenCBS 920
C#203 iTextSharp 2815
C#204 OnlyOffice 5410
C#205 Git Extensions 76

After the values of the software metrics were collected, the evaluation of software classes was
conducted. The thresholds of the considered software metrics are presented in Section 4.1 in Table 1.
The evaluation of software classes was performed in three steps, with each step combining related
criteria. First, software classes were evaluated based on an individual software metric and the results
can be seen in Tables 3–5. In the second and third steps, the classes were evaluated using selected
combinations of software metrics, wherein the third step covers combinations of criteria that result
in poor quality rate according to the proposed approach using the majority function. The results are
presented in Tables 6–8.

Within the evaluation, seven different software products in Java were analyzed. The size of the
analyzed software varies. The JasperReports Library consists of 2720 classes, Alfresco Repository
has 6879 classes, Apache Tomcat 3314 classes, Gradle consist of 8647 classes, Liferay Portal includes
19,297 classes, Jenkins 3160 classes and JHotDraw has 627 classes. The latter software was included
in the evaluation since it is known as a practical example of using design patterns [52], and therefore
is expected to be well designed. Additionally, it was also used in other studies, like in [18,53,54].
Table 3 presents the number and percentage of potentially deficient classes evaluated with each of the
eight selected software metrics independently. This evaluation step presents the number of identified
potentially deficient software classes using an individual software metric as a criterion. For example,
it can be seen that JasperReports Library includes 9.9% of classes that exceed the threshold value of
metric SLOC (counting lines of code) and 10.9% of classes that exceed the threshold value of metric
AMS (representing an average number of lines of code in a method within a class). These entities
represent the highest risk that identified classes include problematic source code regarding their
size. The identified value coincides with the average values of used benchmark data, since the used
methodology for deriving thresholds identifies the top 10% of identified classes as the most risky
ones. Within the Tables 3–5, values greater that 10% are bold, meaning that they exceed the average
number of identified classes set by a benchmark data. For example, when evaluating the Liferay Portal,
the number of classes exceeds 10% in five out of eight software metrics, whereas within Gradle the
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number of identified classes exceeds 10% of all classes only for the metric LCOM (measuring the lack
of cohesion).

Table 3. Number of potentially deficient classes within Alfresco Repository (1); JasperReports
Library (2); JHotDraw (3); ApacheTomcat (4); Jenkins (5); Gradle (6) and Liferay Portal (7) identified by
using each software metric separately.

1 2 3 4 5 6 7

# % # % # % # % # % # % # %

SLOC 615 8.9 271 9.9 47 7.5 410 12.4 132 4.2 205 2.4 2819 14.6
AMS 922 13.4 296 10.9 31 5.1 331 9.9 118 3.7 236 2.7 1815 9.4
NOM 208 3.0 184 6.8 20 3.2 300 9.1 329 10.4 310 3.6 2904 15.1

WMC 436 6.3 241 8.9 55 8.8 402 12.1 100 3.2 217 2.5 2640 13.7
ACC 396 5.8 233 8.6 52 8.3 341 10.3 123 3.9 227 2.6 979 5.1
NS 433 6.3 228 8.4 63 10.1 330 9.9 152 4.8 141 1.6 774 4.0

CBO 366 5.3 418 15.4 37 5.9 281 8.5 160 5.1 741 8.6 3220 16.7

LCOM 1364 19.8 926 34.0 219 34.9 906 27.3 526 16.6 976 11.3 4752 24.6

Table 4. Number of potentially deficient classes within Notepad++ (1); Money Manager (2); 7-Zip (3);
TortoiseSVN (4); FileZilla (5) and MySQL Server (6) identified by using each software metric separately.

1 2 3 4 5 6

# % # % # % # % # % # %

SLOC 90 20.0 46 22.3 108 20.7 199 17.1 16 4.0 508 10.9
AMS 91 20.3 55 26.7 113 21.7 182 15.7 15 21.7 491 10.6
NOM 35 7.8 1 0.5 34 6.5 49 4.2 16 4.0 674 14.5

WMC 92 20.5 38 18.5 141 27.1 169 15.5 24 6.5 474 10.2
ACC 65 14.5 16 7.8 122 23.4 121 10.4 13 3.5 340 7.3
NS 115 25.6 31 15.1 138 26.5 210 18.1 24 6.5 493 10.6

CBO 21 4.7 26 12.6 80 15.4 54 4.7 9 2.4 322 6.9

LCOM 36 8.0 22 10.7 19 3.6 127 10.9 156 41.9 550 11.4

Table 5. Number of potentially deficient classes within KeePass (1); OpenCBS (2) iTextSharp (3);
OnlyOffice (4) and Git Extensions (5) identified by using each software metric separately.

1 2 3 4 5

# % # % # % # % # %

SLOC 75 14.3 136 14.8 178 6.3 341 6.3 100 13.0
AMS 59 11.3 121 13.2 185 6.6 372 6.9 94 12.3
NOM 19 3.6 85 9.2 158 5.6 411 7.6 66 8.6

WMC 105 20.1 126 13.7 240 8.5 348 6.4 79 10.3
ACC 90 17.2 55 6.0 236 8.4 355 6.6 36 4.7
NS 35 6.7 56 6.1 124 4.4 235 4.3 29 3.8

CBO 114 21.8 126 13.7 212 7.5 398 7.4 122 15.9

LCOM 171 32.7 273 29.7 479 17.0 1,140 21.1 302 39.4

The evaluation with an individual metric was also done for software in the programming
languages C++ and C#. The analyzed software in C++ results in more potentially deficient classes



Appl. Sci. 2018, 8, 1902 11 of 24

when compared to Java software. As shown in Table 4, within Money Manager 22.3% of classes exceed
the threshold value of metric counting lines of code. Also, within the same software, 18.5% classes
exceed the threshold of the metric expressing the sum of cyclomatic complexity of all methods within a
class. In 7-Zip there are 15.4% of classes that exceed the threshold value measuring coupling with other
classes and within Notepad++, 25.6% of classes exceed the threshold of metric evaluating nesting level.
In the context of C# we analyzed in detail five software products: KeePass with 523 classes, iTextSharp
with 2815 classes, OpenCBS with 920 classes, Only Office with 5410 classes and Git Extensions with
767 classes. The results of the evaluation are presented in Table 5. When identifying classes based on
an individual metric, OpenCBS results in 14.8% of classes that exceed the threshold value of metric
counting lines of code, whereas only 6.3% of classes exceed the same threshold within iTextSharp and
OnlyOffice. KeePass has 21.8% of classes that exceed the threshold value of metric measuring coupling
with other classes and 20.1% of classes that have the sum of cyclomatic complexities of all methods
within a class higher then specified with the threshold.

Table 6. Number of identified classes within Alfresco Repository (1); JasperReports Library (2);
JHotDraw (3); ApacheTomcat (4); Jenkins (5); Gradle (6) and Liferay Portal (7) using a combination of
software metrics.

SLOC 3 3 3 3 3 3 3 3 3 3
AMS 3 3 3 3 3 3 3 3 3 3
NOM 3 3 3 3 3 3

WMC 3 3 3 3 3 3 3 3 3 3
ACC 3 3 3 3 3 3 3 3 3 3
NS 3 3 3 3 3 3

CBO 3 3 3 3 3 3

LCOM 3 3 3 3 3 3

# classes (1) 254 30 78 63 67 11 295 20 53 26 19 9 10 9
# classes (2) 84 21 60 55 56 17 243 47 45 19 37 16 16 15
# classes (3) 14 1 18 14 11 0 32 1 6 0 3 0 0 0
# classes (4) 99 16 117 91 65 14 198 41 45 13 47 14 13 13
# classes (5) 13 0 8 6 2 0 81 2 1 0 1 0 0 0
# classes (6) 8 1 15 9 3 1 327 2 2 0 3 0 1 0
# classes (7) 669 228 230 140 208 62 2128 154 170 205 96 55 62 55

Table 7. Number of identified classes within Notepad++ (1); Money Manager (2); 7-Zip (3);
TortoiseSVN (4); FileZilla (5) and MySQL Server (6) using a combination of software metrics.

SLOC 3 3 3 3 3 3 3 3 3 3
AMS 3 3 3 3 3 3 3 3 3 3
NOM 3 3 3 3 3 3

WMC 3 3 3 3 3 3 3 3 3 3
ACC 3 3 3 3 3 3 3 3 3 3
NS 3 3 3 3 3 3

CBO 3 3 3 3 3 3

LCOM 3 3 3 3 3 3

# classes (1) 50 13 36 35 33 6 10 9 2 3 2 4 2 2
# classes (2) 26 1 6 5 6 0 3 4 1 1 1 0 0 0
# classes (3) 76 5 87 84 72 3 8 52 2 2 3 1 1 1
# classes (4) 88 19 67 59 57 10 21 24 12 13 11 10 8 8
# classes (5) 7 1 7 6 6 1 4 0 1 0 0 0 1 0
# classes (6) 242 58 189 160 159 44 82 110 37 32 39 40 26 25
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Table 8. Number of identified classes within KeePass (1); OpenCBS (2); iTextSharp (3); OnlyOffice (4)
and Git Extensions (5) using a combination of software metrics.

SLOC 3 3 3 3 3 3 3 3 3 3
AMS 3 3 3 3 3 3 3 3 3 3
NOM 3 3 3 3 3 3

WMC 3 3 3 3 3 3 3 3 3 3
ACC 3 3 3 3 3 3 3 3 3 3
NS 3 3 3 3 3 3

CBO 3 3 3 3 3 3

LCOM 3 3 3 3 3 3

# classes (1) 32 3 50 18 18 2 88 16 16 3 12 2 2 2
# classes (2) 61 13 24 6 14 1 114 9 8 12 2 1 1 1
# classes (3) 64 7 107 65 50 5 122 24 33 5 29 4 5 4
# classes (4) 102 16 108 64 67 6 252 41 43 12 26 5 5 4
# classes (5) 46 22 9 4 4 0 117 2 2 20 0 0 0 0

Evaluation of Software Classes With a Combination of Software Metrics and by Applying the Majority
Function

When we evaluate software according to an individual software metric, as presented with
Tables 3–5, this quite often results in a large number of potentially deficient program entities.
For example, if we want to identify classes that are big and complex within the JasperReports Library,
assuming we evaluate it with an individual metric, we would have to assess 271 classes that exceed
threshold values measuring SLOC (number of lines) and 241 classes that exceed the threshold value
according to the metric WMC (representing the sum of cyclomatic complexities of all the methods
within a class). 512 classes would have to be assessed manually for the purpose of determining their
relevance, which represents a very large volume of input data in the review phase.

Regarding a very large number of potentially problematic classes, we can assume that the quality
of the majority of identified classes is adequate, meaning that when evaluating program entities using
criterion based on an individual software metric, a lot of false positive cases are identified. Therefore,
by combining different software metrics to evaluate the same quality aspect and, in the next phase, by
combining different quality aspects in one overall quality rate, we can reduce the number of incorrectly
identified classes, resulting in a significant reduction of false positive entities. With the combination of
software metrics and by applying the majority function when determining quality ratings of evaluated
program entities, the number of identified classes should thus be reduced, while the reliability that an
identified entity indeed includes a deficient source code should increase. In this manner, if we identify
a class that is big, complex, coupled with a lot of other classes and has bad cohesion, it is very likely
that it in fact contains a deficient source code and represents a real candidate for refactoring.

Since the main goal of the proposed identification approach is to determine whether a program
entity contains a deficient source code or not, it is crucial that we are able to rate the quality of every
program entity within an evaluated software project. Each class quality can be determined as good
or poor. This is done based on the majority function applied on the used combination of software
metrics. Tables 6–8 present the number of identified classes when an evaluation is done using different
combinations of software metrics, and according to the proposed approach each of these combinations
can be determined as good or poor by applying the majority function.

When the quality of all the quality aspects are evaluated, the overall class quality has to be
determined. If the majority of quality aspects are evaluated as poor, the class quality is poor, otherwise
the quality is classified as good. For example, if we have four quality aspects, size, complexity,
cohesion and coupling and three of those quality aspects are evaluated as poor, the class is classified as
poor. If we want to calculate the majority function of the evaluated aspect, e.g., class complexity, we
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have to consider three software metrics evaluating the quality aspect, SumCyclomatic, AvgCyclomatic
and MaxNesting. If software metric values are 30 for SumCyclomatic, 5 for AvgCyclomatic and 6 for
MaxNesting, the calculation of the majority function and quality rate is presented by Equation (3):

MajorityComplexity =

[
(0 + 1 + 1)

3

]
= 0, 67→ QualityRateComplexity = 1 (3)

In the example, the value of the metric SumCyclomatic does not exceed the threshold value, so
the input into the majority function is 0. The other two metrics exceed the threshold, so the input is 1
for both metrics. When we sum the input values, 2 is divided by 3, where 3 represents the number of
all metrics that evaluate the quality aspect. The result is 0.67. Because the calculated value is greater
than 0.5, the quality rate of the complexity aspect is 1. The value is prepared for the calculation of
the majority function and quality rate of the evaluated program entity. The example is presented by
Equation (4):

MajorityJava0−0 =

[
(0 + 1 + 1 + 1)

4

]
= 0, 75→ QualityRateJava0−0 = 1 (4)

In the calculation of the majority function four quality aspects are included: size, complexity,
coupling and cohesion. Based on the majority function presented by Equation (3), the complexity
quality aspect is determined to be poor, and is marked as 1. As seen with Equation (4), the quality
aspects evaluating coupling and cohesion are also evaluated as poor, therefore the input is 1, and the
quality aspect evaluating the size of a entity is determined as good, which provides 0 as an input.
The calculated majority function is 0.75. Converted into quality rating, the program entity quality
is considered to be poor, meaning the overall quality of the evaluated source code is deficient and
subsequently it is very likely that a program entity contains deficient source code. Within Equation (4),
the naming of the evaluated program entity is composed of a software project identifier represented by
the programming language and number of the evaluated software project, in our case Java0, followed
by the number of the evaluated class, 0.

Tables 6–8 present the number of identified classes using different combinations of quality aspects
and corresponding software metrics. Each of the participating criteria is evaluated by applying the
majority function as proposed within the approach, determining the overall quality of identified
classes as good or poor. The left part of the table presents the number of identified classes using the
combination of quality aspects and software metrics that are determined as good, whereas the right,
bold, part of the table presents the number of program entities identified using the combination of
quality aspects and software metrics whose overall quality is determined as poor according to the
majority function.

An evaluation of Java software using a combination of software metrics, is presented within
Table 6. The number of results varies according to different combinations of quality aspects and
software metrics. As shown, combining metrics and quality aspects results in a decreased number
of identified classes. When quality aspects evaluating size, complexity, cohesion and coupling are
considered, along with all corresponding software metrics, 15 classes are identified as potentially
problematic within the JasperReports Library. The Liferay Portal results in a large number of potentially
deficient classes using the same criterion, with 55 classes identified, but with respect to its size the
percentage of identified entities coincides with other evaluated software. Within Apache Tomcat,
13 classes were identified when using the criterion composed of four quality aspects and all software
metrics evaluating those quality aspects. In the case of Gradle, Jenkins and JHotDraw, no class is
identified as deficient when we use the same criterion.

The results of the evaluation of C++ software projects, based on different combinations of criteria,
are presented in Table 7. Within Notepad++, which contains 449 classes, two of them exceed threshold
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values for the combination of metrics measuring size, complexity, coupling and cohesion, taking into
account all of the metrics that evaluate these quality aspects. For the same criterion, 7-Zip with 521
classes identified 1 class, Money Manager with 206 classes found 0 classes, TortoiseSVN with 1162
classes uncovered 8 classes, FileZilla with 372 classes located 0 classes and MySQL Server with 4643
classes identified 25 classes.

The results within C# software are presented in Table 8. Within Git Extensions, no class exceeded
the threshold values of all the metrics evaluating quality aspects of size, complexity, coupling and
cohesion taking into account all the metrics evaluating those quality aspects. Within OpenCBS only
1 class exceeded the thresholds of all metrics evaluating size, complexity, coupling and cohesion.
Considering the same criterion, within KeePass, two classes were identified as potentially deficient
and within iTextSharp and OnlyOffice 4 software classes.

5. The Validation of the Proposed Approach With Expert Judgment

In Section 3 the approach for identifying deficient classes is presented and in Section 4 the
implementation within object-oriented programming languages was illustrated. To evaluate the
proposed approach, we validated it by comparing the obtained results with the expert judgment upon
the same set of software classes. Within the approach, potentially deficient classes were first identified
using the proposed combination of eight software metrics, organized within four quality aspects, and
corresponding threshold values and quality ratings were provided in accordance with the majority
function. In real-world software development, each of the potentially problematic classes is usually
assessed manually. Therefore, it is important that the results do not include too many false positive
results. In this manner, the main goal of our approach was not necessarily to detect all deficient classes,
but to significantly reduce the number of false positive cases within the identified classes, whose
quality is determined as poor based on the majority function. To objectively evaluate the proposed
approach, an expert judgment was conducted.

The main goal of the expert judgment in the scope of our study was to validate the reliability
of identification using the proposed approach, based on a combination of software metrics and by
applying the majority function, and correctness of the identified potentially deficient program entities.
The reliability and correctness are reflected in occurrences of true positive and false positive examples.
The experts evaluated if the identified software classes really contain deficient source code that reflects
in deficient code quality. The conception of deficient code was left to the participating experts, since
they have multiple years of experience as software developers and software architects. The classes
used within the study were selected based on the research question: Do classes that exceed the threshold
values for the majority of used quality aspects really contain deficient code or does the proposed approach for
identification result in false positive examples?

The validation was carried out for projects developed in three programming languages: Java, C++
and C#. Using the developed tool, experts assessed the selected software classes. Our tool enables
source code evaluation based on collaboration between participating experts. First, each entity is
assessed independently by each assessor and next, the assessment has to be coordinated between
the pair of assessors. If the pairs are not formed, the coordination step is not performed. Because
of the cooperation between assessors the results are more reliable and the bias is reduced. Each
assessor evaluates four quality aspects for each entity. The main aspect is the assessment of overall
quality, whereas the other three quality aspects represent three out of four selected quality aspects. The
assessment was done on a four level scale: very poor - poor - good - very good. The scale was set based on
the quality rating steps defined within the proposed approach, where each class quality is determined
as good or poor.

In the performed study, 18 experts participated, each with multiple years of experience.
Participating experts assessed 93 software classes, evaluating overall quality and quality aspects
of size, complexity, cohesion and coupling. The quality of assigned classes differed, and assessors
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were not aware of whether the selected program entity was evaluated as good or poor. A profile of
participants is presented in Table 9.

Table 9. Profiles of participating experts.

Number of experts 18
Experiences with software

development (1–10) 8.4

Knowledge of Java (1–10) 8.6

Years of experience more than 10 years (81%)
from 6 to 10 years (19%)

Knowledge C++ (1–10) 9
Years of experience more than 10 years (100%)

Knowledge C# (1–10) 8.2
Years of experience more than 10 years (100%)

As presented, participants evaluated their experiences in software development with an average
of 8.4 on a scale from 1 to 10. The same scale was also used for evaluating their knowledge of the
programming language they assessed. Knowledge of the programming language Java was rated
with an average of 8.6, knowledge of C++ with 9 and knowledge of C# with 8.2. All the experts
that evaluated C++ and C# have more than 10 years of experience with the mentioned programming
languages. The same amount of experience was also recorded by 81% of the experts evaluating Java
software classes.

To answer the research question, we selected different classes from the evaluated software
products presented in Section 4.2. Classes were assessed by the participating experts and the assessment
was compared to evaluations done using the proposed approach presented in Section 3. It was analyzed
if expert assessment coincides with the quality rating determined using the majority function. With
this, the correctness and reliability of the proposed novel approach can be researched.

The expert judgment in the programming language Java was done for 33 software classes from 3
different software projects. Classes were selected from the identified potentially deficient classes that
are listed in Section 4.2. With the proposed identification using combination of software metrics and
by applying the majority function, 28 out of 33 classes were determined as poor and 5 as good. Within
classes with poor quality, all 9 classes from the Alfresco Repository exceed the threshold values of
all eight software metrics. Also, 10 out of 15 classes corresponding to the same condition within the
JasperReports Library were used within the evaluation. Five classes were skipped due to detected
similarities. The numbers of identified classes can be seen in Table 6. The results of the expert judgment
are presented in Table 10. The entity column presents an identifier of the evaluated class and the next
two columns present the number of evaluations made and the number of pairs that were formed
within those evaluations. As can be seen, each class was assessed multiple times, usually with two
pairs of experts. The expert judgment confirmed the evaluation of overall quality determined by the
proposed approach for all of the evaluated classes. The evaluation also confirmed the proposed quality
rating for quality aspects measuring size, complexity and coupling. Only in 2 cases was the evaluation
of cohesion not confirmed by experts. The results also confirmed the complete absence of false positive
program entities within the identified software classes.

For the expert judgment of C++ software classes, 6 software projects were included that are
presented in Section 4.2. 32 classes were evaluated as poor and 10 as good using the proposed quality
rate based on the majority function. From Notepad++ and 7-Zip, all classes that were identified as
exceeding the thresholds of all eight software metrics, participated. The numbers can be seen in
Table 7. The results of the expert assessment are presented in Table 11. In all of the assessed classes,
the evaluated overall quality was confirmed. Also, the quality aspects evaluating source code size and
complexity were confirmed. For one class, the quality aspect of coupling was not confirmed and in
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the case of cohesion, for three classes the experts did not confirm the proposed evaluation. Again, the
results also confirmed the non-existence of false positive results.

Table 10. Results of expert judgment for classes in Java programming language, with assessed quality
aspects, overall quality (1); source code size (2); class complexity (3); class cohesion (4) and class
coupling (5); based on an evaluation using a combination of software metrics.

Entity # ev. Pairs (1) (2) (3) (4) (5)

Java201-1 4 1 3 3 3 3
Java201-2 5 2 3 3 3 3
Java201-3 5 2 3 3 3 7
Java201-4 4 1 3 3 3 3
Java201-5 4 1 3 3 3 3
Java201-6 6 3 3 3 3 3
Java201-7 5 2 3 3 3 3
Java201-8 4 1 3 3 3 3
Java201-9 4 2 3 3 3 3

Java201-10 5 2 3 3 3 3
Java201-11 6 3 3 3 3 3
Java201-12 4 2 3 3 3 3
Java201-13 5 2 3 3 3 3
Java201-14 4 1 3 3 3 3
Java201-15 5 2 3 3 3 3
Java201-16 3 1 3 3 3 3
Java201-17 5 1 3 3 3 3
Java201-18 3 1 3 3 3 3
Java202-19 7 3 3 3 3 3
Java202-20 4 2 3 3 3 3
Java202-21 4 2 3 3 3 3
Java202-22 4 2 3 3 3 3
Java202-23 5 2 3 3 3 3
Java202-24 4 2 3 3 3 3
Java202-25 4 2 3 3 3 3
Java202-26 4 2 3 3 3 3
Java202-27 6 3 3 3 3 3
Java202-28 4 2 3 3 3 3
Java202-29 4 2 3 3 3 3
Java203-30 4 2 3 3 3 3
Java203-31 4 2 3 3 3 3
Java203-32 2 1 3 3 3 3
Java203-33 4 2 3 3 3 7

Within the programming language C#, 3 software products were analyzed and in total 18 classes
were assessed, 13 of them were assessed as poor and 5 as good using the proposed identification
approach. With the software KeePass and iTextSharp all classes corresponding to the criterion of
exceeding the thresholds of all eight software metrics were included. The numbers are presented in
Table 8. Classes were assessed by experts who were teamed into pairs, which is presented in the third
column in Table 12. All of the entities were assessed by two pairs of experts and some of the classes
were additionally assessed by an individual assessor to confirm the results. As shown in Table 12,
the proposed overall quality was confirmed for all of the evaluated classes. Also, the evaluation was
confirmed for quality aspects of size, complexity and coupling. The evaluation of cohesion was not
confirmed for one software class. The results also confirmed the absence of false positive results.

The goal of the expert judgment was to answer the research questions presented at the beginning
of the section. As the results show, the overall quality was confirmed for all classes in all three
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programming languages by all of the experts. With this, the correctness of the identification is
confirmed. The important part of the validation is also how reliable the proposed identification is.
This is especially vital in comparison with the evaluation based on an individual software metric.
As the results of the experts’ judgment show, no example of false positive identification was found.
The correctness and reliability of the proposed identification approach based on the combination of
software metrics and the use of the majority function was evaluated by using the confusion matrix,
presented in Table 13.

Table 11. Results of expert judgment for classes in C++ programming language, with assessed quality
aspects, overall quality (1); source code size (2); class complexity (3); class cohesion (4) and class
coupling (5); based on an evaluation using a combination of software metrics.

Entity # ev. Pairs (1) (2) (3) (4) (5)

C++201-1 2 1 3 3 3 3
C++201-2 2 1 3 3 3 3
C++201-3 2 1 3 3 3 3
C++201-4 2 1 3 3 3 3
C++201-5 2 1 3 3 3 3
C++201-6 2 1 3 3 3 3
C++201-7 2 1 3 3 3 3
C++201-8 2 1 3 3 3 3
C++202-9 2 1 3 3 3 3

C++202-10 2 1 3 3 3 3
C++202-11 2 1 3 3 3 3
C++202-12 2 1 3 3 3 3
C++202-13 2 1 3 3 3 7
C++203-14 2 1 3 3 3 3
C++203-15 2 1 3 3 3 7
C++203-16 2 1 3 3 3 3
C++203-17 2 1 3 3 3 3
C++203-18 2 1 3 3 3 3
C++203-19 2 1 3 3 3 3
C++203-20 2 1 3 3 3 3
C++203-21 2 1 3 3 7 3
C++203-22 2 1 3 3 3 7
C++203-23 2 1 3 3 3 3
C++203-24 2 1 3 3 3 3
C++204-25 2 1 3 3 3 3
C++204-26 2 1 3 3 3 3
C++204-27 2 1 3 3 3 3
C++204-28 2 1 3 3 3 3
C++204-29 2 1 3 3 7 3
C++204-30 2 1 3 3 3 3
C++204-31 2 1 3 3 3 3
C++205-32 2 1 3 3 3 3
C++205-33 2 1 3 3 3 3
C++205-34 2 1 3 3 3 7
C++205-35 2 1 3 3 3 3
C++206-36 2 1 3 3 3 3
C++206-37 2 1 3 3 3 7
C++206-38 2 1 3 3 3 3
C++206-39 2 1 3 3 3 3
C++206-40 2 1 3 3 3 3
C++206-41 2 1 3 3 3 3
C++206-42 2 1 3 3 3 3
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Table 12. Results of expert judgment for classes in C# programming language, with assessed quality
aspects, overall quality (1); source code size (2); class complexity (3); class cohesion (4) and class
coupling (5); based on an evaluation using a combination of software metrics.

Entity # ev. Pairs (1) (2) (3) (4) (5)

C#201-1 5 2 3 3 3 3
C#201-2 5 2 3 3 3 3
C#201-3 5 2 3 3 3 3
C#201-4 5 2 3 3 3 3
C#202-5 5 2 3 3 3 3
C#202-6 4 2 3 3 3 3
C#202-7 5 2 3 3 3 3
C#202-8 5 2 3 3 3 3
C#202-9 4 2 3 3 3 3

C#202-10 5 2 3 3 3 3
C#202-11 5 2 3 3 3 3
C#203-12 5 2 3 3 3 3
C#203-13 5 2 3 3 3 3
C#203-14 4 2 3 3 3 3
C#203-15 4 2 3 3 3 3
C#203-16 4 2 3 3 3 7
C#203-17 5 2 3 3 3 3
C#203-18 5 2 3 3 3 3

Table 13. Confusion matrix.

Population: X True Condition
Positive Negative

Predicted state Positive true positive false positive
Negative false negative true negative

The confusion matrix is a two dimensional matrix that summarizes the performance of a
classification [55]. It consists of a predicted and true condition and divides cases into four quality
aspects: true positive (TP), false positive (FP), false negative (FN) and true negative (TN). Based on the
provided data, it is also possible to calculate accuracy, precision, recall and F-Measure, presented with
Equations (5)–(8). Accuracy measures how a prediction matches the reality [56], whereas precision and
recall present values for how well relevant entities are retrieved [57]. Finally, the F-Measure presents
information retrieval performance [58].

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F-Measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(8)

To calculate accuracy, precision, recall and F-Measure for the proposed identification based on
a combination of software metrics and by applying the majority function, we used the results of the
validation of the proposed identification, presented in Section 5. We considered only the part of the
study where the evaluation of Java classes was performed.
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Table 14 shows the confusion matrix and the calculated measures of predictive performance.
28 classes were identified as true positive and five classes as true negatives. No classes were detected
as a false positive or false negative. Consequently, the accuracy, precision and recall for the presented
identification is 100%. The same is also true for the value of the F-Measure.

Table 14. Reliability analysis of identification based on combination of software metrics.

Population: 33 Actual State
Poor Class Good Class

Predicted state Poor class 28 0
Good class 0 5

Accuracy 1
Precision 1

Recall 1

F-Measure 1

The proposed approach addresses multiple quality aspects of the evaluated program entities.
On the other hand, if the quality of a program entity is evaluated using an individual software metric,
only one aspect of the program entity is assessed. If the entity exceeds the threshold according to an
individual software metric and is in good shape according to other metrics, it is hard to generalize
that the evaluated entity really contains deficient code. This can result in many false positive and false
negative results.

If we assume that a class that exceeds the threshold value of at least one of the evaluated software
metrics is rated as poor, the number of potentially deficient classes would be very large. This can be
seen from Tables 3–5. For the purposes of studying the reliability and occurrence of false positive
and false negative results, we selected 40 software classes in the programming language Java for
another expert judgment with 6 other Java experts with multiple years of experiences. Detailed profiles
of the participants are presented in Table 15 and are similar to the profiles of participants in the
previously presented assessment. The process of assessment was the same as previously described in
Section 5, but the quality evaluation of the chosen software classes that experts assessed was based on
an individual software metric. They were asked to determine if a class contained a deficient source
code. If yes, it should be evaluated as poor, otherwise as good.

Table 15. Profiles of participating experts.

Number of experts 6
Experiences with software

development (1–10) 8.3

Knowledge of Java (1–10) 8.5

Years of experience more than 10 years (83%)
from 6 to 10 years (17%)

The results of expert judgment that confirms or rejects the proposed evaluation of overall quality
which is based on an individual software metric, are presented in Table 16. Among 40 classes the
evaluation of overall quality was confirmed for 21 classes, where 14 classes were evaluated as poor
and 7 as good. The results were transferred to the confusion matrix presented in Table 17. Sixteen
classes were identified as false positive and 3 classes as false negatives.

Table 17 also presents the calculated values of accuracy, which is 52.5%; precision, with 46.7%;
and recall which is 82.4%. The F-Measure is calculated as 59.6%.

If we compare the results in Table 17, that represent measures based on an evaluation with an
individual software metric, with the results in Table 14 that presents measures based on an evaluation
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with the proposed approach, we can see that software metrics combined into quality aspects and
rated according to the majority function provide a more reliable identification of deficient source code
than an evaluation based on individual software metrics. This can also be seen from the numbers
in the confusion matrix, as well as by comparing the F-Measure that increased from 59.6% to 100%.
In addition, most importantly, the number of identified false positive cases dropped significantly
using the proposed approach, as the precision of identification deficient classes increased from 46.7%
to 100%.

Table 16. Results of expert judgment of assessed Java classes evaluated based on an individual
software metric.

Entity # ev. Pairs Overall Quality Entity # ev. Pairs Overall Quality

Java201-34 4 2 3 Java201-54 4 2 3
Java201-35 4 2 7 Java201-55 4 2 7
Java201-36 4 2 3 Java201-56 4 2 7
Java201-37 4 2 7 Java201-57 4 2 3
Java201-38 4 2 3 Java202-58 4 2 7
Java201-39 4 2 7 Java202-59 4 2 7
Java201-40 4 2 3 Java202-60 4 2 7
Java201-41 4 2 7 Java202-61 4 2 3
Java201-42 4 2 7 Java202-62 4 2 3
Java201-43 4 2 7 Java202-63 4 2 7
Java201-44 4 2 3 Java202-64 4 2 3
Java201-45 4 2 3 Java203-65 4 2 7
Java201-46 4 2 3 Java203-66 4 2 7
Java201-47 4 2 3 Java203-67 4 2 3
Java201-48 4 2 7 Java204-68 4 2 7
Java201-49 4 2 3 Java204-69 4 2 3
Java201-50 4 2 7 Java204-70 4 2 3
Java201-51 4 2 3 Java204-71 4 2 7
Java201-52 4 2 7 Java204-72 4 2 3
Java201-53 4 2 3 Java204-73 4 2 3

Table 17. Reliability analysis of identification based on an individual software metric.

Population: 40 Actual State
Poor Class Good Class

Predicted state Poor class 14 16
Good class 3 7

Accuracy 0.525
Precision 0.467

Recall 0.824

F-Measure 0.596

6. Limitations

Despite careful planning of the presented study and its previous research, the results can be
affected by different factors. Hereinafter, the limitations and potential threats to validity are presented.

The study was limited to object-oriented programming languages and evaluating quality at the
class level. We did not identify specific types of code smells defined by Fowler et al. [3] and classified
by Mantyla et al. [59], but deficient source code in general. We are aware of the definitions of different
code smells and their detection, but since they are not unified they were not used in the presented
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study. We identified classes as poor or good, where poor classes are classes that are exposed to a high
risk for containing deficient source code.

The results can be affected by the derived threshold values of the software metrics. We calculated
thresholds by ourselves, using a carefully selected method, systematically collected benchmark data
and a single tool used for collecting metric values. The results can also depend on the chosen software
metrics that evaluate each quality aspect.

Calculated F-Measure , accuracy, precision and recall may be affected by the selection of software
classes. Two different expert judgments were performed in order to evaluate the proposed novel
identification approach. Number of identified potentially deficient classes differ if a majority rule
is applied on a combination of software metrics or identification is based on an individual software
metric. For example, within Alfresco Repository, 441 out of 3314 classes were identified as potentially
deficient, when considering the combination of all software metrics, which were evaluated as poor
when applying the majority function. On the other hand, 2293 out of 3314 classes were identified as
potentially problematic when evaluation was done using an individual software metric. Since each
expert judgment assessed only a subset of identified classes using a certain approach, the used program
entities vary.

The execution and results of the expert judgment can also be influenced by the expertise
of the participating experts. Since we chose experts with many years of experience, we do not
doubt their knowledge. However, the bias was also limited by forming a different pair within the
participating assessors.

7. Conclusions

This paper presents a novel approach to the identification of deficient source code using a
combination of software metrics and applying the majority function. The approach was implemented
and evaluated in the context of object-oriented programming languages. The selected software metrics
were synthesized into four quality aspects, wherein each aspect was evaluated with one or more
software metrics. The evaluation was based on the threshold values of the selected software metrics
derived for three programming languages using 300 software projects presenting benchmark data.

We investigated whether the application of the majority function on the combination of software
metrics can detect deficient source code in a more reliable way than an identification based on an
individual software metric or criterion. Based on the reliability analysis presented in Section 5, we can
conclude that the proposed identification approach outperformed the detection performed using an
individual software metric. The accuracy, precision, recall and F-Measure of the proposed identification
approach was significantly improved. The suitability of the presented identification was validated
with expert judgment, where 18 participants assessed 93 classes in Java, C++ and C#. They confirmed
that classes exceeding the threshold values of the majority of proposed quality aspects and also for the
majority of software metrics within those aspects, indeed contain deficient source code. Even more,
for the vast majority of cases, they also confirmed the quality rate of an individual quality aspect.
Some deviation was detected only within the quality aspect evaluating class cohesion, which can be
associated with various definitions of the corresponding software metric. Additionally, the expert
judgment confirms that the proposed identification does not result in a false positive identification,
which is especially important when performing a manual review.

Since our study was not focused on one specific code smell, we plan to research more precisely
the area of code smell detection rules and the connection of rules with software metrics. We will
therefore be able to associate the specific types of code smell to a software metric, whereas exceeding
the threshold value of this metric could indicate the existence of a specific code smell. The presented
study was limited to software classes and class level metrics. In future work we intend to extend our
research to method level software metrics that would allow for the identification of deficient methods.
We also plan to expand our research to other object-oriented programming languages and to use the
proposed identification in an industrial environment and with proprietary software.
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