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Abstract: This paper proposes a chasing controller to enable a pursuer to chase a high-speed evader
such that the relative distance between the evader and the pursuer monotonically decreases as time
passes. Our controller is designed to assure that the angular rate of Line-of-Sight joining the pair
(the pursuer and the evader) is exactly zero at all time indexes. Assuming that the pursuee can readily
observe optical flow, but only poorly detect looming, this pursuer’s movement is hardly detected by
the pursuee. Consider the terminal phase when the pursuer is sufficiently close to the evader. As we
slow down the relative speed of the pursuer with respect to the evader, we can reduce the probability
of missing the high-speed evader. Thus, our strategy is to make the pursuer decrease its speed in the
terminal phase, while ensuring that the distance between the evader and the pursuer monotonically
decreases as time passes. The performance of our controller is verified utilizing MATLAB simulations.

Keywords: LOS; motion camouflage control; parallel navigation; missile control system; target
tracking; variable speed; high-speed target

1. Introduction

This paper proposes a chasing controller so that a pursuer can chase and capture a maneuvering
evader which moves at high speed. This problem is related to the challenging missile guidance
problem of intercepting a high-speed missile [1-6]. The pursuer must move at high speed to capture
a high-speed evader. Consider the terminal phase when the pursuer is sufficiently close to the
high-speed evader. The accurate control of the pursuer in the terminal phase is crucial, since it is hard
to capture a high-speed evader if the pursuer misses the evader in the terminal phase.

Our strategy in the terminal phase is to slow down the pursuer’s speed. As we slow down the
relative speed of the pursuer with respect to the evader, we can decrease the probability of missing
the high-speed evader. (Consider the case where two spaceships dock each other. It is desirable to
slow down the relative speed for safe and accurate docking). Thus, our strategy is to make the pursuer
decrease its speed in the terminal phase, while ensuring that the distance between the evader and
the pursuer monotonically decreases as time passes. As far as we know, no paper in the literature on
chasing targets considered changing the pursuer’s speed so as to capture a maneuvering evader in
a provably complete manner.

Our controller is designed to assure that the angular rate of Line-of-sight joining the pair
(the pursuer and the evader) is exactly zero at all time indexes. This type of movement is called
the motion camouflage with respect to a fixed point at infinity [7-9].

This motion camouflage is employed by various visual insects and animals to achieve prey
capture, mating, or territorial combat [8,10-12]. This movement is a time-optimal solution to capture
a pursuee moving with a constant velocity (speed and heading) [10]. In addition [10], argued that this
motion minimizes time-to-capture of an unpredictably moving pursuee. Assuming that the pursuee
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can readily observe optical flow, but only poorly detect looming, this pursuer’s movement is hardly
detected by the prey [8].

This paper introduces a chasing controller to enable a pursuer to chase a maneuvering evader
while not rotating the LOS joining the pair (the evader and the pursuer). We make the pursuer decrease
its speed in the terminal phase, while ensuring that the distance between the evader and the pursuer
monotonically decreases as time passes.

The literature is abundant with papers on planning path of robots [8,13-27]. Kim [28] developed
a path planning algorithm for an underwater robot approaching a static target while not being detected
by the target. The path was planned to reduce both the time required to meet the target and the robot’s
sound measured by the static target.

The authors of [29-31] presented the autonomous tracking and following of a marine vessel by
an Unmanned Surface Vehicle (USV) in the presence of dynamic obstacles. In [29,30], the path planning
for the USV with International Regulations for Preventing Collisions at Sea (COLREGS) rules was
achieved. The authors of [31] presented a trajectory planning and tracking approach for following
a differentially constrained target vehicle operating in an obstacle field. Svec [31] predicted the target
state several time steps forward in time and generated a collision-free trajectory to allow the USV
to safely reach the predicted target state. As far as we know, no paper on chasing targets handled
changing the pursuer’s speed so as to capture a maneuvering evader in a provably complete manner.

Many controllers have been developed to mimic motion camouflage in nature. To capture an
evader [7-9,32] presented a chasing controller based on biologically plausible sensing. Galloway and
Raju [9,32] developed a motion camouflage controller in noisy environments. Note that [7-9] only
considered a pursuer which moves with a constant speed.

As missile controllers, Proportional Navigation Guidance (PNG) controls and their variations
were widely used to let the pursuer capture the evader [1,3-6]. PNG laws enable the pursuer to capture
the evader by driving the angular rate of LOS near zero as time passes [4]. But, PNG laws do not
make the angular rate of LOS stay at zero at every time index. Note that PNG laws only considered
a pursuer which moves with a constant speed.

This paper proves that utilizing our chasing controller, the distance between the evader and the
pursuer monotonically decreases, regardless of evader’s maneuver or acceleration, if the following
assumptions are satisfied: (1) the pursuer speed is bigger than the evader speed; (2) the pursuer can
predict the evader’s location within two time steps in the future.

Our controller works as follows. The locations of both the pursuer and the evader are accessed
at every time index. Considering a robot control system, the location of the pursuer is estimated
in real time, since a robot (pursuer) can access the movement of itself utilizing Inertial Navigation
Sensor (INS) or Global Positioning System (GPS). The pursuer uses sensor measurements, such as
radar, to measure the evader’s location in real time.

Based on the accessed evader locations, the pursuer predicts the evader’s location two steps
forward in time. We acknowledge that sensor measurement noise exists as the pursuer measures the
evader’s location in real time. Moreover, predicted evader location is related to evader maneuvers and
is not easy to conjecture in an accurate manner. The effect of prediction error on the performance of
our motion camouflage controller is analyzed in Section 4.2.

Since the maximum acceleration of the evader is bounded, we can assume that the evader’s
motions are smooth, so the evader’s trajectory curves are derivative. Under this assumption, Section 4
presents a fitting method to predict the evader’s location two steps forward in time.

After predicting the evader’s location two steps forward in time, the pursuer calculates its velocity
command, while ensuring that the LOS does not rotate at the next time index. Using deduction,
the angular rate of LOS is zero at every time index. In Section 5, the effectiveness of our chasing
controller is demonstrated utilizing MATLAB simulations.

This paper is organized as follows. Section 2 presents several definitions and assumptions before
presenting our main results. Section 3 presents our chasing controller. Section 4 presents a method
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to predict the evader location two steps forward in time considering noisy environments. Section 5
introduces MATLAB simulation results to demonstrate the performance of our chasing controller.
Section 6 provides Conclusions.

2. The Assumptions and Definitions

2.1. Definitions

Several definitions and assumptions are introduced before presenting our main results. Z(vy,v,)
is the angle formed by two vectors v; and v,. Mathematically, Z(vy,v;) = arccos( %)
Here, Z(vq,vy) exists between 0 and 71. T is the sampling interval of our chasing controller in
discrete-time systems.

r{ is the evader’s location at time index k. r,’: is the pursuer’s location at time index k. The pursuer
is in the motion camouflage state at time index k + 1 in the case where Z(r}, IRt ARY r, — 1) =0.

v,’f is the pursuer’s speed at time index k. v} is the evader’s speed at time index k. The subscript k
implies the time index k.

The pursuer’s motion model is
rZ_H = rlf + Tvlfuk. 1)

Here, uy is a unit vector and indicates the pursuer’s heading at time index k. uy is determined at
every time index k so that the pursuer is in the motion camouflage state at time index k.
In addition, the evader’s motion model is

riH =1} + Tvj. ()

Here, vi indicates the evader’s velocity vector at time index k.

In order to capture the evader, it is necessary that the evader’s speed is slower than the pursuer’s
speed ([1,2] introduced a variation of PNG controls to capture evaders that are of higher speeds than
the pursuer. But, considering a high-speed evader which moves away from a slowly moving pursuer,
it is impossible to capture the evader). We control the pursuer’s speed so that it is always bigger than
that of the evader. This implies that v] < v,f at every time index k.

Let a;, denote the pursuer’s maximum acceleration. In addition, let € > 0 denote a small constant.
The required time interval to decrease the pursuer’s speed from v} to v¢ + € is

Ty = (o] — v —€)/am. 3)
The traversal distance of the pursuer as it decreases its speed from v,f toof +€is
Dk:vf*Tr—O.S*am*Tr*Tr. (4)
We say that the pursuer is in the terminal phase in the case where
I =l < D 5)

is met.

Ly is the infinite line (LOS) intersecting both rf and r{. We draw one infinite line (LOS) Ljq
intersecting r{_ ;, such that Ly 1 is parallel to L. Note that there exists only one infinite line intersecting
1}, ¢, such that the line is parallel to Ly.

¢ is the point on Ly 1, which is the closest to r{. Let d§ = ||t} — c||, and let x§ = Z(x¢ — 1}, Y~
r7). Let dy = ||rZ — 17]|. See Figure 1 for an illustration of these concepts.
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Figure 1. df < v{T,and di < va.
As depicted in Figure 1, df = v{Tsin(x}) < v{T. Since v}, < Uf , we have
di <ol'T. (6)

Utilizing (6), we define J; > 0 as follows.

5 = \/ (O T)2 — (d5)>. @)

-1
he = o+ %5 ®)
Hrk - rk||

Here, Jy satisfies that ||h; — r,’z || is v,f T. See Figure 1.

At every time index k, the pursuer heads towards the heading point hy. Consider a circle centered
at rZ, whose radius is U,f T. Due to (6), Ly, intersects this circle at two points. Between these two
points, the heading point hy is the point which is the closest to r{_ ;. This way, the pursuer maneuvers
to decrease the distance between the pursuer and the evader, while not rotating the LOS.

Let us draw both x-axis and y-axis satisfying the following conditions:

e  Both x-axis and y-axis are normal to each other, and they intersect at c;. ¢ is set as the origin.
e the coordinate of r]fﬂ = hy is (6%, 0).
e  The coordinate of rlf is (0, d5).

First, we handle the case where )(i > 71/2. This case, the evader maneuvers to decrease the
distance between the pursuer and the evader. Utilizing the geometry in Figure 1, the coordinate
of r{ 4118

Ccoq (riﬂ) = (dk — K, O). (9)

Here, ay = 4/ (v§T)? — (df)? is positive.

Next, we handle the case where Xi < 7t/2. This case, the evader maneuvers to increase the
distance between the pursuer and the evader. Utilizing the geometry in Figure 2, the coordinate
ofry ;is

COZ(I‘i_H) = (dk + g, O). (10)
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L1

Figure 2. xj < 71/2.
2.2. Assumptions

In this paper, we assume that the pursuer’s location is estimated in real time. In addition,
the pursuer can estimate the evader’s location at every time index. Therefore, the pursuer can access
Ly at every time index k. Since the maximum acceleration of the evader is bounded, we assume that
the evader’s motions are smooth, so the evader’s trajectory curves are derivative. We further assume
that the pursuer can predict the evader’s location two steps forward in time, which implies that the
pursuer at time index k can estimate the evader’s velocities vi and vi_ ;.

3. Control Law

We introduce how to control the pursuer’s speed. We assumed that the pursuer at time index k

can estimate the evader speed 5. v,’(’ can change with respect to k as long as

ol > o} (11)

is met at each time step k.
Our strategy in the terminal phase is to slow down the pursuer’s speed as long as (11) is met.
This implies that in the terminal phase, we update the pursuer’s speed using

vl q = max(v} — anT, 05,4 +€). (12)

Here, € > 0 is a small constant. Note that vi 1 is available, since the pursuer at time index k can
estimate the evader’s velocities vi and vy _ ;. (12) implies that (11) is met at each time step.

We next introduce the heading control u to achieve motion camouflage. uy is chosen so that the
pursuer moves to hy. At every time index k, the heading controller is given as follows. At every time

. . -
index k, the pursuer selects the new heading command uy, as H hk :k T
k k
Consider the situation where the distance between rk and r} 4118 less than v} PT. In this situation,
h _
the pursuer moves towards r;_ ; directly, while not using u; = ﬁ In this way, the evader is

captured at time index k + 1.
In practice, the pursuer cannot turn with infinite acceleration. Suppose that the maximum turn
rate of the pursuer is q radians per second. In the case where the angle formed by uk 1 and the new

— P
heading command, p K , is bigger than ¢T radians, then the heading command p i cannot be

Hh Hh -
achieved within one samphng interval. This case, we select uy using the following method
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cos(qT)  sin(qT)

Let up = R(qT)u;_;, where R(qT) = <—sin(qT) cos(qT)

) . In addition, let u% =
L S he—rp o oyl : 2
R(—qT)uy_q. If || TheedT ~ w | < ||m — ug||, then we set uy = u;. Otherwise, we set u; = ug.
In this manner, the heading command u;, can be achieved within one sampling interval.
In the following sections associated with analysis (Sections 3.1, 3.2, and 4), it is assumed that
g = inf. This implies that we analyze the performance of our chasing controller, not considering the
maximum turn rate of the pursuer. In the Simulation section, we set 4 = 71/6 radians per second.

3.1. Stability Analysis

Next, the stability of our chasing controller is analyzed. It is derived that Z(r,’i7 1 Yt rz —17) =
0 at every time index k > 1 under our chasing controller. This implies that the motion camouflage state
is achieved at every time index k > 1.

Theorem 1. Under our heading controller uy, L(r,’f - r 1 r,’j — ri) = 0 at every time index k > 1.

Proof. At every time index k, the pursuer sets uy, as Utilizing the pursuer’s motion model

-
H H
in (1), we further get

h _
i (13)

P
r =1 +
k+1 = "k ||hk_rkH Uk

The heading point hy is set utilizing (8). In (8), J satisfies that ||y — 1, Pl is (g8 PT. By substituting
by — 1{|| in (13) for v T, we obtain

., =he (14)

Here, hy is on L, by its definition. Since rf 41 ison Ly, which is parallel to Ly, we obtain

p e p e\
Ly 1 ) =0 0O

3.2. Capturability Analysis
Besides achieving motion camouflage, the pursuer must capture the evader in finite time. We prove

that the distance between the evader and the pursuer monotonically decreases as time passes.

Theorem 2. Under our chasing controller, the distance between the evader and the pursuer monotonically
decreases until the evader is captured.

Proof. Before proving the capturability of our chasing controller, the relationship between dy and dj
is introduced.

First, we handle the case where x; > 71/2. This case, the evader at time index k maneuvers to
decrease the distance between the evader and the pursuer. See Figure 1 for an illustration of dy and
dy 1. Since Ly is parallel to Ly 1, the geometry in Figure 1 leads to

dgy1 = d — o — O (15)
This results in

dk+1 < dg. (16)
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Next, we handle the case where Xi < 71/2. This case, the evader at time index k maneuvers to
increase the distance between the evader and the pursuer. See Figure 2 for an illustration of dj and
dy, 1. Since Ly is parallel to Ly 1, we get

dgq = dy + ax — O (17)
Since v]’: > v, & — 0 in (17) is negative. Hence, Ref. (16) is obtained.
Utilizing (16), d; monotonically decreases as k increases. Therefore, there exists a time index

k" such that d > 0 and that di 1 < 0. We next prove that the distance between r,]z, and rj, ; is

less than v} T.
First, handle the case where x{, > 7/2. Utilizing both dy 1 < 0 and (15), the following equation
is derived.

dp — g < Opr. (18)
ZJZ > v} leads to
o — O < 0. (19)
Since dy is positive, Ref. (19) further results in
Ay — gy > —Op. (20)
Utilizing (18) and (20),
(dy — ar)* < (60)? (21)

is derived.
Utilizing (9), the distance between r]’:/ and rj, , is calculated as

Hrlf’ _I']i/+1|| = H(dk/ —D(k/,—d]i,)H, (22)
Utilizing (7), (22) and (21),
6 = tsall < ok T (23)

is calculated.
Next, we handle the case where x}, < 7r/2. Utilizing both dj; < 0 and (17), we obtain

dp 4 o < Sy (24)
Since dy + ay is positive,
(dp + ap)? < (6p)? (25)

is calculated.
Utilizing (10), the distance between r]f, and rf{, 1 is calculated as

I =t [l = [ (de + o, —tf). 26)
Utilizing (7), (26), and (25),

||I'£, - ri/JrlH < U]F;T (27)
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is derived.
We proved that the distance between rlf, and rj, , is less than v,’z T. At time index K, the pursuer
heads towards the evader directly. Thereafter, the pursuer captures the evader at time index k' + 1. O

4. Predict the Evader Position Two Steps Forward in Time Considering Noisy Environments

The pursuer utilizes sensor measurements to estimate the evader’s location. To implement our
chasing controller, the pursuer at time index k must estimate 1{, 1 1 and rf 4o Let i; denote an
estimate of r{.

4.1. Estimate ri and riH

We discuss how to estimate 1y, r{,,, and r{ ,. Let (x(k),y(k)) denote the evader’s location
measured at time index k.

Recall we assumed that the evader’s motions are smooth, so the evader’s trajectory curves
are derivative. Curve fitting methods are used to predict the target’s position within two steps in
the future. We utilize curve fitting methods for recent measurements: (x(k —K+1),y(k —K+1)),
(x(k —K+2),y(k — K+2)), ..., (x(k),y(k)). Here, K > 2. This implies that we require more
than two measurements.

Recent x coordinate measurements are as follows. x(k — K+ 1),x(k — K+ 2),...,x(k). We fit
x(k—K+1),x(k — K+2),..., x(k) using the second order polynomials x(1) = ay * n> + by * 1 + cy.
This second order polynomials represent the x coordinate trajectory of the evader within the recent K
time indexes. (Similarly, we can use higher order (3 or more) polynomials to represent the x coordinate
trajectory of the evader within the recent K time indexes. But, using higher order polynomials does
not assure accurate prediction of the evader’s position).

To solve this fitting problem, we utilize the following matrix form.

A*xS=B. (28)
(k—K+1)? k—K+1 1

_ 2
Here, A — (k—K+2)* k—K+2 1

T

, B = ( Xk—K+1 Xk—K+2 - Xk ) ,and S =
K2 k 1
T
( ay by ¢y ) . We solve for S using pseudo-inverse methods.
S=(AT«A)" '« AxB. (29)
Let #;[i] denote the ith element in ;. We estimate the x coordinate of ry.

#[1] =Q1%S (30)

where Q1 = ( K k1 ) In addition, we estimate the x coordinate of 1}, tw where w < 2.

fli+zu[1] = *S5 (31)

where Qy = ( (k+w)? k+w 1 )

Similarly, we estimate the y coordinates of 1, rj_ |, and r{_ , using the second order polynomials
y(n) = ay *n® + by x n + ¢,. Recall that this curve fitting method requires that we have more than
two measurements, i.e., K > 2.

If we have only one measurement, then we set

t =1 = (x(1),y(1)). (32)
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If we have only two measurements, then we set

= (x(2),5(2)). (33)
In addition, we set
B3 = (2% x(2) = x(1),2xy(2) —y(1)). (34)
Ref. (34) implies that we fit two measurements using the first order polynomials.

4.2. The Relationship Between the Estimate Error and the Controller Performance

We next show the relationship between the estimate error and the performance of our chasing
controller. Usually, locations can be measured rather accurately. Hence, we assume that ri = fi in
this subsection.

In this subsection, we assume that g = inf. This implies that we analyze the relationship between
the estimate error and the performance of our chasing controller, not considering the maximum turn
rate of the pursuer.

Due to the estimate error, motion camouflage state (é(r]i7 — 17, r,’; 41— Y54q) is zero) cannot
be achieved at every time index. We derive the equation for é(rz -1y, r,f 41 — If,q) under our
chasing controller.

Theorem 3. The pursuer moves by applying uy at every time index k. Consider the case where the pursuer at
time index k cannot access 1{_ | accurately. Let #_ | denote an estimate of 1{_ ;. m 1 = 17,y — ¥, is the error
in the estimate. Let pyq denote Z(% ; —1{ 4, rZH — #,1) for convenience. sin(é(r]f - 1"3,137?+1 —1,q)) =

sin(p [ || . P
7(”‘;;31 k1l Hepe, drp1 s 11y — 7504l
Proof. See Figure 3 for an illustration of p 1. Utilizing the geometry in this figure, we derive

_ sin(pgr1) || 041 . (35)

sin{{ A

L1~

2 P

Bt M1 ~ Tee1))
Since the pursuer at time index k can only access #{_, ; instead of r{  ;, we draw L, intersecting
#, such that L is parallel to L. See Figure 3 for an illustration. Utilizing our chasing controller uy,

,’z 1 is the heading point on Ly ;. Utilizing the same argument as in Theorem 1, we obtain

r
é(r,’:_H —#. 1 —1) =0. (36)
Utilizing (35) and (36), we derive

: sin (per1) ([ My |
sm(Z(rz -1, rZH —T1q)) = u ;kH =5 (37)

O

Theorem 3 depicts that in the case where dj. ; is too small compared to sin (1) |[ng1 |, Z(x} 1
AR r,’; — 1) is large. In other words, the rotation rate of LOS is large. This implies that the pursuer
may leave the motion camouflage state as the distance between the evader and the pursuer is too small.
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Hk+1] ‘ =

e

Figure 3. An illustration of piy 1.
5. MATLAB Simulation Results

In this section, we demonstrate the effectiveness of our chasing controller utilizing simulations.

(x(k),y(k)) — 1 represents sensor measurement noise and is a vector with two elements.
Each element in this vector has a Gaussian distribution with mean 0 and covariance 0.01. To predict
the evader’s location two steps forward in time, we utilize recent K = 5 measurements.

Initially, the evader is at (0, 5000), and the pursuer is at the origin. T = 2 s. In addition, the initial
speed of the pursuer is 150 m/s. In the terminal phase, v,f decreases with respect to k until v,f converges
to 110 m/s. The pursuer’s maximum acceleration is a,, = 10 m/s?.

Initially, the pursuer’s heading is up = (1,0). In the simulations, we set the maximum turn rate of
the pursuer as g = 71/6 radians per second.

MATLAB simulation runs for finite time, at the end of which the distance between the pursuer
and the evader is less than 100 m. Recall that the evader’s motion model is presented in (2).

The authors of [8] introduced Frenet-Serret frames [33] to model the movement of an evader.

o = 1 +Txopxxg
x,e<+1 = Xx{+ T*0}p xuj xyg
y,tcJrl = yi— T*0o{ xup*xi, (38)

where u; is the steering (i.e., curvature) control of the evader at time index k, and vy is the speed of
the evader at time index k. Recall that r{ is the location of the evader at time index k. Moreover, x; is
the unit tangent vector to the trajectory of the evader at time index k, and y; is the corresponding unit
normal vector at time index k. We utilize (38) to simulate the motion of the evader.

As the first scenario, we set the evader’s speed as vi = 100 in m/s. In addition, the evader does
not maneuver, i.e., uf = 0. Figure 4 shows pursuer and evader trajectories. In this figure, the pursuer
is depicted with red points, and the evader is depicted with blue points. Initially, the pursuer turns
towards the evader with the maximum turn rate 4. Thereafter, the pursuer converges to the motion
camouflage state.

Progosed Control Law

5000 ©000000000000000000000g%
o

4500 o

4000 o

3500 [

Y axis[m]
N w
a o
o o
o o
o

2000 o
1500 -
1000 o
500 o

1 1 1 1 1 1

0 1000 2000 3000 4000 5000
X axis[m]

Figure 4. The system behavior for a constant velocity evader with u; = 0 and v}, = 100.
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In Figure 5,1 = ﬁ is plotted. UnitX — proj and UnitY — proj indicate the projection of
1 on the x-axis and y-axis respectively. The change of these values with respect to time indicates the
rotation rate of LOS at every time index. For a pursuit-evasion system in the motion camouflage state,
1 converges. Hence, UnitX — proj and UnitY — proj also converge.

Figure 5 depicts that a pursuit-evasion system converges to the motion camouflage state.
The chasing controller is designed to converge to the motion camouflage state at time index 0. But,
we set ¢ = 7t/6 radians per second in the simulation. Due to the constraint on the maximum turn rate,
the pursuer cannot converge to the motion camouflage state at time index 0. The pursuer turns with
the maximum turn rate until reaching the motion camouflage state. As the pursuer reaches the motion

camouflage state, it stays in the state.

Proposed Control Law

or O
o
& 0.005
<
5 -0o1 0000000000000 00000000O0O0
-0.015 . L L L !
0 5 10 15 20 25
time(s)
Proposed Control Law
-0.9999 co0o0boooodoooodbooooboooo
T
g -1:0000 | 1
>
= L J
5 -1.0000
» . . . .
0 5 10 15 20 25

time(s)
Figure 5. Plot of 1 for a constant velocity evader.

The top figure in Figure 6 depicts the pursuer’s speed with respect to time. See that in the terminal
phase, the pursuer adjusts its speed so that it can capture the evader with low speed. Since the
relative speed of the evader with respect to the pursuer is low, the probability to the evader is also low.
The bottom figure in Figure 6 depicts the distance between the evader and the pursuer with respect
to time. Even though the pursuer slows down in the terminal phase, the distance monotonically

decreases as time passes.

-
a
o

-
N
o

PursuerSpeed[m/s]
5 g

110 L L
0 5 10 15 20 25
time(s)
— 6000 T T T T
£
Q
2
S 4000 [ .
»
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2 2000 F 1
©
[5)
o, A A A s
0 5 10 15 20 25
time(s)

Figure 6. The (top) figure depicts the pursuer’s speed with respect to time. The (bottom) figure depicts
the distance between the evader and the pursuer with respect to time (constant velocity evader).
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As the second scenario, we set the evader’s speed as v} = 70 + 30 x sin(T x k x 0.01)
inm/s. This implies that the evader changes its speed. In addition, the evader maneuvers using
up =0.005 x sin(T x k/100). Figure 7 shows pursuer and evader trajectories.

Proposed Control Law
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Figure 7. We set the evader’s speed as vf =70 + 30 x sin(T x k x 0.01) in m/s. In addition, the evader

maneuvers using uj = 0.005 x sin(T x k/100).

In Figure 8,1 = ﬁ is plotted. UnitX — proj and UnitY — proj indicate the projection of 1 on
the x-axis and y-axis respectively. In the motion camouflage state, 1 converges. Hence, UnitX — proj
and UnitY — proj also converge. Figure 8 depicts that a pursuit-evasion system converges to the
motion camouflage state. But, the pursuer leaves the motion camouflage state as the distance between

the evader and the pursuer is too small. This phenomenon can be explained using Theorem 3.

Proposed Control Law
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Figure 8. Plot of 1 for a maneuvering evader.
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The top figure in Figure 9 depicts the pursuer’s speed with respect to time. See that in the terminal
phase, the pursuer adjusts its speed so that it can capture the evader with low speed. The bottom figure
in Figure 9 depicts the distance between the evader and the pursuer with respect to time. Even though
the pursuer slows down in the terminal phase, the distance monotonically decreases as time passes.
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Figure 9. The (top) figure depicts the pursuer’s speed with respect to time. The (bottom) figure depicts
the distance between the evader and the pursuer with respect to time (maneuvering evader).

Analysis

We analyze the computational load of our control law. To compute the pursuer’s heading vector
uy at each time index k, it takes 0.03 s. This is negligible compared to the sampling time interval
T = 2s. Hence, we can argue that latency due to the computational load is negligible.

Next, we run simulations while varying the initial heading angle of the pursuer. We set the
evader’s speed as vf = 100 in m/s. In addition, the evader does not maneuver, i.e., u; = 0.

We introduce two metrics, Ty and Ef. Ty = k(T is the spent time(seconds) to capture the evader.

Here, k is the time index when the pursuer captures the evader. Ef = Z:f: 1 ||v£ Z(ug,ux_1)/T|. Here,
Z(ug, ug_1)/T is the pursuer’s angular acceleration at time index k. E¢ can be regarded as the energy
(acceleration sum in m/s?) required to capture the evader.

The pursuer’s initial location is the origin. We calculate both Ty and E; while changing the initial
heading angle, say H = atan2([0,1] x uy,[1,0] X up), of the pursuer from 0 to 180 degrees. Here,
the initial heading angle is measured counter-clockwise from the x-axis. Table 1 shows Ty and E; while
changing H. See that the evader is captured regardless of the initial heading angle of the pursuer.

Table 1. Results.

H (degrees) Ty (s) Ef(m/s?)

0 47 238
30 49 321
60 49 242
90 49 164
120 49 242
150 49 321

180 51 405
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6. Conclusions

This paper introduces a chasing controller to capture a high-speed evader with variable velocity.
We handle the case where the pursuer moves with a variable speed and the angular acceleration of the
pursuer is controllable. In the terminal phase, we slow down the pursuer’s speed, while assuring that
the distance between the evader and the pursuer monotonically decreases as time passes. By slowing
down the relative speed of the pursuer with respect to the evader, we can reduce the probability of
missing the high-speed evader. We demonstrate the performance of our chasing controller utilizing
simulations. As our future works, we will verify the performance of our controller using experiments
with mobile robots.

In this paper, we handled motion camouflage with respect to a fixed point at infinity. As our
future works, we will develop control laws to handle motion camouflage with respect to a fixed point
which is not at infinity. Assuming that the evader can readily observe optical flow, but only poorly
detect looming, this pursuer’s movement is hardly detected by the evader.

Conflicts of Interest: The author declares no conflict of interest.
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