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Featured Application: Analysis and optimization of wind farm design in complex terrain.

Abstract: Designing wind farms in complex terrain is an important task, especially for countries
with a large portion of complex terrain territory. To tackle this task, an optimization framework
is developed in this study, which combines the solution from a wind resource assessment tool,
an engineering wake model adapted for complex terrain, and an advanced wind farm layout
optimization algorithm. Various realistic constraints are modelled and considered, such as the
inclusive and exclusive boundaries, minimal distances between turbines, and specific requirements
on wind resource and terrain conditions. The default objective function in this framework is the
total net annual energy production (AEP) of the wind farm, and the Random Search algorithm is
employed to solve the optimization problem. A new algorithm called Heuristic Fill is also developed
in this study to find good initial layouts for optimizing wind farms in complex terrain. The ability of
the framework is demonstrated in a case study based on a real wind farm with 25 turbines in complex
terrain. Results show that the framework can find a better design, with 2.70% higher net AEP than
the original design, while keeping the occupied area and minimal distance between turbines at the
same level. Comparison with two popular algorithms (Particle Swarm Optimization and Genetic
Algorithm) also shows the superiority of the Random Search algorithm.

Keywords: wind farm; layout optimization; design; random search; complex terrain

1. Introduction

In the past two decades, the world has witnessed a remarkable growth of wind energy
development. According to the latest statistics from the Global Wind Energy Council (GWEC), the
global cumulative installed wind capacity has increased from 23.9 GW in 2001 to 439.1 GW in 2017,
representing an average annual increase by 20.4% [1]. Although offshore wind is now attracting a lot of
interests and has grown rapidly in recent years, especially in northern Europe, today it represents only
4.3% of the global installed capacity of wind energy [2]. The dominance of onshore wind is mainly due
to its longer development history, lower cost, and easier deployment.

As a result of the rapid growth of onshore wind, a lot of onshore wind farms have been built
worldwide. Since many suitable sites in flat terrain have already been developed with wind farms,
more and more wind farms are going to be built in complex terrain, especially for countries featured
by a large percentage of topography covered with mountains, such as China.

Compared with a wind farm on flat terrain, a wind farm built on complex terrain benefits
from the possible richer wind resource at certain locations (brought by the speed-up effect due
to the terrain topography change), but it is also more likely to be exposed to more complex flow
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conditions, higher fatigue loads, more expensive installation, operation and maintenance costs,
and other disadvantages [3].

Designing wind farms in complex terrain is not a trivial task, mainly due to the complex
interactions of the boundary layer flow with the complex terrain and wind turbine wakes, and also
due to the multi-disciplinary nature of the wind farm design problem. This problem typically involves
different design and engineering tasks, which may come from technical, logistical, environmental,
economical, legal, and/or even social considerations.

For most industrial practitioners, the design of wind farms conventionally concerns mainly the
micro-siting of wind turbines based on consideration of wind resource, i.e., determining the exact
position for each turbine at a selected wind farm site [4]. Typically, a wind farm developer/designer
uses a wind resource assessment tool, such as WAsP [5] (the industry-standard PC software for wind
resource assessment, siting, and energy yield calculations for wind turbines and wind farms), to
assess the wind resource of the wind farm site based on wind measurement data during a period [6].
Then, the final design of the wind farm, mainly the layout of turbines, is determined for maximizing
the annual energy production (AEP) while considering certain constraints, such as the proximity of
wind turbines. This final layout is usually obtained by either manual adjustments or using some
optimization techniques [7]. After finding the turbine layout, other design tasks related to foundations,
access roads, electrical system, and other components or systems are handled separately, often by
specialized engineering consulting companies.

The general problem of modelling the wind flow over complex terrain has been an important
research field for a very long time. Seventy years ago, Queney published a review of theoretical models
of inviscid flow over hills and mountains [8]. More recently, Wood gave a historical review of studies
(until 2000) on wind flow over complex terrain [9]. Similarly, in the wind energy community, the
problem of wind resource assessment in complex terrain was investigated by many researchers over a
long period [10].

In contrast, wind farm design optimization has only become a hot research area quite recently
and the majority of the published studies in this field deal with wind farms in flat terrain or
offshore [11]. Few studies investigated the wind farm design optimization problems in complex
terrain. Song et al. [12] proposed a bionic method for optimizing the turbine layout in complex terrain.
In this study the objective was to maximize the power output, and the wake flow was simulated by
using the virtual particle wake model. They also developed a new greedy algorithm for this problem
in a later study [13]. Feng and Shen [14] considered the layout optimization problem for a wind farm
on a 2D Gaussian hill, using computational fluid dynamics (CFD) simulations for the background
flow field and an adapted Jensen wake model for the wake effect. They used the random search
algorithm [15,16] to optimize the layout for maximizing the total power. Kuo et al. [17] proposed
an algorithm that couples CFD with mixed-integer programming (MIP) to optimize the layouts in
complex terrain. In this study, the wind farm domain was discretized into cells to use the MIP method.

All the studies mentioned above aimed to maximize either the total power [12–14] or the
total kinetic energy [17] of wind farm, with constraints on wind farm boundary and minimal
distance requirements.

In this paper, we present an optimization framework for wind farm design in complex terrain,
which was developed in the Sino-Danish research cooperation project, FarmOpt [18]. This framework
combines the state-of-the-art flow field solver, a fast engineering wake model, and an advanced
optimization algorithm to solve the design optimization problem of wind farms in complex terrain.
Various realistic objectives, constraints, and requirements that one might encounter in real life wind
farm developments can be considered in this framework.

We will first introduce the modelling methodology in Section 2. Then, the optimization framework
is presented in Section 3. Results of a real wind farm case study will be described and discussed
in Section 4. Section 5 compares the performance of the Random Search (RS) algorithm with two
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popular algorithms, i.e., Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA). Finally,
conclusions are given in Section 6.

2. Wind Farm Modelling

A reliable estimation of AEP is crucial for wind farm design, since AEP represents the amount of
electricity that a given wind farm can generate in a year, which in turn determines the annual income
that the wind farm’s owner can obtain. This makes AEP either the objective function or a critical
component in the objective function for any wind farm design optimization problem. For example, the
levelized cost of energy (LCOE), which is a popular choice for evaluating wind farm designs [19], can be
calculated by considering AEP, together with capital expenditure (CAPEX), operational expenditure
(OPEX), and some financial parameters, such as the interest rate. In this section, we present the aspects
of wind farm modelling related to the AEP estimation.

2.1. Site Condition

Due to terrain effects, i.e., the effect of topographic changes on the flow filed over a complex
terrain [9], different locations at a complex terrain site will experience different wind conditions.
Using onsite wind measurements and standard wind resource assessment tools, such as WAsP [5] and
WindPRO [20], one could get the essential information on location-specific site conditions, i.e., wind
resource and terrain effects, for any given inflow wind direction sector.

For flat or moderately complex terrain, linear models, such as the conventional WAsP [6], provide
reasonable results. For more complex terrain, nonlinear models, such as WAsP CFD [21], are needed.
In the current framework, we assume that the location-specific values of wind resource and terrain
effects have been obtained by using a wind resource assessment tool.

Considering a rectangle area covering the interested area for a wind farm design, we first discretize
the area into a number of grids, defined by a range of x coordinates [x1, x2, . . . , xNx ] and a range of y
coordinates

[
y1, y2, . . . , yNy

]
. For a certain number of wind direction sectors defined by a range of far

field inflow wind directions
[
θ∞

1 , θ∞
2 , . . . , θ∞

Nθ

]
, we can then obtain the relevant sector wise values of

wind resource and terrain effects variables, such as Weibull-A, Weibull-k, frequency, speed up factor,
terrain induced turning angle, and mean wind speed, at a given height above the ground. Note that
Weibull-A is the scale parameter and Weibull-k is the shape parameter of Weibull distribution, which is
the most commonly used distribution for wind speed [4]. Values of variables that do not depend on
inflow wind direction, such as elevation and overall mean wind speed, are also obtained.

Using linear interpolation, we can then easily estimate the values of these variables for any
arbitrary position (x, y) in this area, under any far field inflow wind direction, θ∞, if wind direction
dependent variables are concerned. The variables important for estimating AEP are listed in Table 1.

Table 1. Site condition variables important for AEP (annual energy production) estimation.

Variable Unit Notation

Elevation m z(x, y)
Weibull-A m/s A(x, y, θ∞)
Weibull-k - k(x, y, θ∞)
Frequency -/◦ f req(x, y, θ∞)
Speed up - sp(x, y, θ∞)

Turning angle ◦ tu(x, y, θ∞)

In Table 1, speed up is defined as the ratio between the local wind speed, v, at location (x, y)
and the far field wind speed, v∞, at the same height above the ground for a given far field inflow
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wind direction, θ∞, while turning angle, tu, denotes the difference between the local wind direction, θ,
and the far field inflow wind direction, θ∞. Thus, they can be computed as:

sp(x, y, θ∞) = v(x, y, θ∞)/v∞(θ∞), (1)

tu(x, y, θ∞) = θ(x, y, θ∞)− θ∞. (2)

As a demonstration, four interpolated site condition variables are shown in Figure 1 for a real
wind farm site in complex terrain. Note that the results on wind resource and terrain effects are
imported from WAsP CFD simulations and the wind farm on this site will be used in Sections 4 and 5
as a test case.
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(b) mean wind speed at 67 m height above the ground; (c) speed up at 67 m height under the far field
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164◦.

2.2. Wake Model

Modelling the wake effects of wind turbines is essential for AEP estimation, but quite challenging
for wind farms in complex terrain due to the complex interplay between terrain and wake flow [22].
While the CFD can model the wake flow field of a wind farm in complex terrain with a reasonable
accuracy [23], its high computational cost makes it unsuitable for wind farm design optimization, since
typical optimization algorithms require a large number of design evaluations.

Several studies have proposed a few fast wake models for wind farms in complex terrain:
Song et al. proposed a virtual particle wake model [24] and applied it in wind farm layout
optimizations [12,13]; Feng and Shen developed an adapted Jensen wake model in [14]; Kuo et al. [25]
proposed a wake model by solving a simplified variation of the Navies-Stokes equations, which yields
results with a reasonable accuracy and has a much less computational cost when compared with full
CFD simulations.

In the current framework, the wake flow field of a wind farm in complex terrain is modelled
by coupling the adapted Jensen wake model with the terrain flows obtained by CFD simulations,
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i.e., flow fields of the wind farm site without wind turbines, such as those imported from WAsP CFD
simulations. The adapted Jensen wake model assumes the wake centerline of a wind turbine’s wake
follows the terrain at the same height above the ground along the local inflow wind direction, while its
wake zone expands linearly and its wake deficit develops following the same rule as the original
Jensen wake model [14]. The schematic of this wake model is shown in Figure 2.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 18 
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Considering the wake effect between an upwind turbine, i, located at (xi, yi) and a downwind
turbine, j, located at (xj, yj) for a given far field inflow condition: v∞ and θ∞, we can calculate the
downwind distance, ddown

ij (θ∞), and the crosswind distance, dcross
ij (θ∞), from the upwind turbine to the

location of the downwind turbine. The downwind distance can be computed by integration following
the wake centerline (the red line in Figure 2) based on the elevation, z(x, y), and the local inflow
wind direction, θi(θ

∞) = θ∞ + tu(xi, yi, θ∞), while the crosswind distance can be easily obtained by
considering the coordinates of these two turbines and the local inflow wind direction of the upwind
turbine. Then, the local inflow wind speed at turbine i and the effective wake deficit turbine i caused
on turbine j can be calculated by:

vi(v∞, θ∞) = sp(xi, yi, θ∞)·v∞, (3)

∆vij(v∞, θ∞) =
Aol

ij (θ
∞)

Arotor
j

·vi(v∞, θ∞)·
(

1−
√

1− CT(vi(v∞, θ∞))

1 + α·ddown
ij (θ∞)/Ri

)
, (4)

in which Aol
ij (θ

∞) is the overlapping area between the wake zone of turbine i and the rotor area of

turbine j; Arotor
j = πR2

j is the rotor area of turbine j; CT(·) represents the thrust coefficient function of
the wind turbine; α denotes the wake decay coefficient, and Ri represents the rotor radius of turbine
i. Note that Aol

ij (θ
∞) can be calculated based on the wake zone radius, Rwake = Ri + α·ddown

ij (θ∞),
the rotor radius, Rj, and the relevant crosswind distance, dcross

ij (θ∞), using the method described in [14].
Additionally, α = 0.075 is used in this study.

Denoting the set of indexes of all the turbines upwind of turbine j as Iup, and using the energy
deficit balance assumption [14], we can then calculate the effective wind speed of turbine j under the
far field inflow wind condition, v∞ and θ∞, as:

vj(v∞, θ∞) = vj(v∞, θ∞)−
√

∑
i∈Iup

(
∆vij(v∞, θ∞)

)2. (5)

A more detailed description of the wake model governed by Equations (3)–(5) is referred to in [14].
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2.3. AEP Estimation

After the local wind speeds with and without wake effects of each wind turbine are obtained by
using Equations (3)–(5), it is then easy to calculate the corresponding power outputs using the power
curve of the wind turbine.

Note that the site condition described in Section 2.1 provides wind resource parameters at
each turbine site for a given far field inflow wind direction, i.e.,: Ai(θ

∞) = A(xi, yi, θ∞), ki(θ
∞) =

k(xi, yi, θ∞) and f reqi(θ
∞) = f req(xi, yi, θ∞). Based on these parameters, the probability of each

turbine site’s local wind condition, i.e., vi(v∞, θ∞) and θi(θ
∞), with respect to the far field inflow wind

condition (v∞ and θ∞) can be estimated by using the joint distribution proposed in [26] as:

pd fi(v∞, θ∞) = pd f (vi(v∞, θ∞), θi(θ
∞))

= ki(θ
∞)

Ai(θ∞)
·
(

vi(v∞ ,θ∞)
Ai(θ∞)

)ki(θ
∞)−1
· exp

(
−
(

vi(v∞ ,θ∞)
Ai(θ∞)

)ki(θ
∞)
)
· f reqi(θ

∞)
(6)

Thus, for a wind farm composed of Nwt turbines, its gross and net AEP, i.e., AEP with and without
wake effects, can be estimated as:

AEPgross =
Nwt

∑
i=1

8760·ηi·
x

P(vi(v∞, θ∞))·pd fi(v∞, θ∞)dv∞θ∞, (7)

AEPnet =
Nwt

∑
i=1

8760·ηi·
x

P(vi(v∞, θ∞))·pd fi(v∞, θ∞)dv∞θ∞, (8)

in which 8760 is the total number of hours in a year, ηi denotes the availability factor of turbine i,
and P(·) represents the power curve of the wind turbine. The integrations in Equations (7) and (8)
are done numerically after properly discretizing the interested ranges of v∞ and θ∞. In this study,
the availability factors of all the turbines are assumed to be 1.0 and the discretization used in numerical
integration is ∆v∞ = 1 m/s, and ∆θ∞ =5◦.

3. Optimization Framework

3.1. Problem Formulation

For a wind farm with Nwt turbines, its design can be specified by the turbines’ locations, i.e.,
X = [x1, x2, . . . , xNwt ] and Y = [y1, y2, . . . , yNwt ]. Then, a general optimization problem of the wind
farm design can be formulated as:

min fm(X, Y), m = 1, 2, . . . , M,
subject to : gk(X, Y) ≥ 0, k = 1, 2, . . . , K;

X(L) ≤ X ≤ X(U);
Y(L) ≤ Y ≤ Y(U).

 (9)

where fm is the mth objective function, gk is the kth inequality constraint function, and X(L), X(U), Y(L),
and Y(U) denote the lower and upper bounds.

Common objective functions for wind farm design optimization include AEP, LCOE, profit,
noise emission, and so on. Typical constraints that can be modelled as inequality constraint
functions include wind farm boundary, exclusive zones, and wind turbine proximity. In the current
framework, the default objective function is AEP and the considered constraints are summarized in
the next subsection.
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3.2. Constraints

Wind farm design is subject to various constraints, which may come from technical, logistical,
environmental, economical, legal, and/or even social considerations. In the current framework, three
types of constraints are considered: (1) inclusive and exclusive boundaries; (2) minimal distance
requirements; and (3) bounds on certain site condition variables.

Inclusive and exclusive boundaries denote the feasible and infeasible area for placing turbines,
which may come from limitations and requirements on leased land, existing roads and properties, soil
conditions, and so on. As a general method, polygons can be used to model inclusive and exclusive
zones defined by the inclusive and exclusive boundaries. Thus, for a wind farm with Ninc inclusive
and Nexc exclusive boundaries, the individual inclusive and exclusive zones and the overall feasible
zone can be modeled as:

Si
inc =

{
(x, y)

∣∣∣ ai
kx + bi

ky ≤ ci
k, k = 1, 2, . . . , mi

}
, i = 1, 2, . . . , Ninc (10)

Sj
exc =

{
(x, y)

∣∣∣ aj
l x + bj

l y ≤ cj
l , l = 1, 2, . . . , nj

}
, j = 1, 2, . . . , Nexc (11)

Sfeasible =
{
(x, y)

∣∣∣ (x, y) ∈ ∪Ninc
i=1 Si

inc, (x, y) /∈ ∪Nexc
j=1 Sj

exc

}
(12)

where mi and nj are the polygon edge numbers of the ith inclusive and jth exclusive
boundaries, respectively.

Thus, the constraints on inclusive and exclusive boundaries of the wind farm design can be
written as:

(xi, yi) ∈ Sfeasible, for i = 1, 2, . . . , Nwt. (13)

The second type of constraint is also typical in the engineering practice, which requires the distance
between any two turbines larger than a minimal value. This is because a shorter distance between
turbines will give a larger wake loss and a higher turbulence intensity, which results in a higher level
of fatigue loads and maintenance cost, and even a shorter lifetime of turbines. Also, a minimal distance
is required to make sure two turbines’ blades never contact each other and one turbine never falls on
the other turbine. In the current framework, a fixed minimal distance requirement, Distmin, is assumed
for any two turbines. Thus, the constraints on the minimal distance requirement are governed by:√(

xi − xj
)2

+
(
yi − yj

)2 − Distmin ≥ 0 for i, j = 1, 2, . . . , Nwt and i 6= j. (14)

The third type of constraints exposes requirements on certain site condition variables to rule
out certain unfavorable sites, such as those with too low a mean wind speed, too high a turbulence
intensity, or too rugged terrain. When applied properly, this type of constraint can help the optimizer
to focus on the more favorable design space and speed up the convergence process, as found in [18].

To measure the degree of the terrain ruggedness, a terrain ruggedness index (TRI) is introduced.
This index was first proposed by Riley et al. [27] as a quantitative measure of topographic heterogeneity.
A dimensionless version of this index is developed in the current framework, which can be calculated
based on the elevation data of grids as defined in Section 2.1. Given the grid sizes along the x and
y directions are ∆x and ∆y, the TRI at grid (xi, yj) can be computed based on its elevation and the
elevation values of the eight surrounding grids as:
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TRI(xi, yj) =
1
8


[
z(xi, yj)− z(xi+1, yj)

]2

∆x2 +

[
z(xi, yj)− z(xi−1, yj)

]2

∆x2

+

[
z(xi, yj)− z(xi, yj+1)

]2

∆y2 +

[
z(xi, yj)− z(xi, yj−1)

]2

∆y2 +

[
z(xi, yj)− z(xi+1, yj+1)

]2

∆x2 + ∆y2

+

[
z(xi, yj)− z(xi+1, yj−1)

]2

∆x2 + ∆y2 +

[
z(xi, yj)− z(xi−1, yj+1)

]2

∆x2 + ∆y2 +

[
z(xi, yj)− z(xi−1, yj−1)

]2

∆x2 + ∆y2


1/2

(15)

For the wind farm site in Figure 1a, the TRI map calculated in Equation (15) is shown in Figure 3a.
Note that the grid sizes are chosen as ∆x = ∆y = 25 m in this study according to the default setting of
WAsP, which makes the total number of grids in the rectangle area shown in Figure 1 as 38,801. In the
current framework, the constraints on TRI and mean wind speed, vmean, are considered. Note that the
mean wind speed values on the grids, vmean(xi, yj), can be imported from wind resource assessment
tools or calculated based on the sector wise wind resource parameters, i.e., Weibull-A, Weibull-k, and
frequency. For an arbitrary site, linear interpolation is used to find the value of TRI and vmean. Thus,
constraints on TRI and mean wind speed can be written as:

TRImax − TRI(xi, yi) ≥ 0, for i = 1, 2, . . . , Nwt, (16)

vmean(xi, yi)− vmean
min ≥ 0, for i = 1, 2, . . . , Nwt. (17)

where TRImax is the allowed maximal TRI and vmean
min is the allowed minimal mean wind speed.

For the wind farm site in Figure 1, the feasibility of each grid, (xi, yj), can then be estimated as
F(xi, yj) based on the first and third types of constraints, i.e., constraints defined in Equations (13),
(16) and (17). Note that F(xi, yj), with a value of 1 (true) or 0 (false), means whether the given site,
(xi, yj), is a feasible site to install a turbine, i.e., a site satisfies the constraints on inclusive/exclusive
boundaries and bounds of certain site condition variables. The map of F(xi, yj) is shown in Figure 3b.
Note that the black area in this figure denotes the feasible area. Compared with the feasible area
defined by Equations (13) and (14), the bounds on TRI and vmean help to reduce the feasible grids from
12,150 to 9218, representing a 24.13% reduction in the feasible design space. This reduction can help
certain optimization algorithms, such as RS, to limit the search space and converge faster.
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min = 6.5 m/s ).

3.3. Optimization Algorithm

To solve the optimization problem, the Random Search (RS) algorithm is used in the current
framework. This algorithm was first proposed by Feng and Shen in [15] and improved in [16]. Recently,
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they also extended the algorithm to cover multiple objective cases [28] and overall design cases with
multiple types of turbines [19], and to maximize the robustness of wind farm power production under
wind condition uncertainties [29]. It has shown a superior performance when compared to other
popular algorithms, such as GA (genetic algorithm) [16], NSGA-II (Non-dominated Sorting Genetic
Algorithm II) [28], and mixed-discrete PSO (Particle Swarm Optimization) [19].

RS is a single solution search method. At each step, a new feasible design, i.e., a design satisfies
all the constraints and bounds, is generated by slightly changing the current design, i.e., randomly
choosing a turbine and moving it to a random position inside the feasible area. This new design is then
compared with the current design with respect to the objective function. If the new design is better,
it becomes the current design. If not, the current design remains unchanged. This step is iteratively
repeated until a given stop condition is met. Normally, the stop condition can be set as a maximal
number of steps (equivalent to the number of objective function evaluations). The procedure of this
algorithm is shown as a flowchart in Figure 4.

There are two parameters controlling the RS algorithm: maximal step size, Mmax, which controls
how far away a chosen turbine can be possibly moved from its current position; and maximal number
of evaluations, Emax, which defines when to terminate the optimization process. Mmax should be set
large enough to allow the algorithm to explore the design space more thoroughly and escape local
minima more likely. When no trials and experimentations are first applied, Mmax could be set in the
order of the maximal distance between any two points in the feasible wind farm area and Emax should
be in the range of 1000 to 10,000.

Due to the randomness involved in the optimization process, meta-heuristics, such as RS, exhibits
a stochastic nature, meaning different runs typically obtain different results. This also means that the
quality of the initial solution(s) can have profound influences on the final optimization results and the
convergence speed [30]. Saavedra-Moreno et al. [31] tackled this problem by seeding an evolutionary
algorithm with initial solutions obtained by a greedy heuristic algorithm, and applied this method in
wind farm layout optimization.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 18 
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Figure 4. Flowchart of the Random Search algorithm.

In this study, a simple algorithm called Heuristic Fill is proposed to find a good initial design,
based solely on site conditions and constraints. As described in Section 3.2, the feasibility of each
grid, (xi, yj), can be calculated as F(xi, yj) based on constraints defined in Equations (13), (16), and
(17). The mean wind speed of each grid, vmean(xi, yj), can also be obtained from site conditions.
The algorithm then tries to fill the feasible grids with Nwt wind turbines one by one according to the
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corresponding mean wind speed from high to low, while respecting the minimal distance constraints
in Equation (14). This algorithm can be summarized in the pseudo code shown in Algorithm 1.

Algorithm 1. Pseudo code of the Heuristic Fill algorithm.

(1) Find the set of feasible grid points:

G f easible =
{
(xi, yj)

∣∣∣F(xi, yj) = 1, for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny

}
;

(2) Sort the feasible grid points according to mean wind speed, i.e., find a list of feasible grid points as[
(xi1 , yj1 ), (xi2 , yj2 ), . . . , (xim , yjm ),

]
, where (xik , yjk ) ∈ G f easible with k = 1, 2, . . . , m and

vmean(xik , yjk ) ≥ vvmean(xik+1 , yjk+1 ) with k = 1, 2, . . . , m− 1;

(3) Heuristically fill with Nwt turbine sites:

(a) Set w = 1, g = 1;

(b) While 1 < w ≤ Nwt and

√
(xi − xig )2 +

(
yi − yjg

)2
< Distmin holds for i = 1, . . . , w− 1:

g = g + 1
End While
Set xw = xig , yw = yjg , g = g + 1, w = w + 1;

(c) Set the initial layout as X = [xw|w = 1, 2, . . . , Nwt] , Y = [yw|w = 1, 2, . . . , Nwt].

3.4. Framework

Putting things together, we can describe the framework in the architecture diagram shown in
Figure 5. Note that WAsP (or another wind resource assessment code) needs to be used only once to
get the relevant results for defining the site conditions, since the wake modelling and AEP estimation,
as well as the modelling of constraints and optimization process, are all implemented by the modules
inside the framework as introduced in the previous subsections. Thus, this framework can work
as a stand-alone tool for wind farm design optimization. If objective functions other than AEP and
more constraints are considered, the relevant modules can also be extended accordingly, while the
optimization algorithm and the architecture remain unchanged.
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4. Case Study and Results

As a demonstration, a case study for an anonymous wind farm in complex terrain using the
proposed framework is presented here. This wind farm is located in Northwest China, and has a total
capacity of 50 MW with 25 turbines. This wind farm has been studied in [23,32] to investigate the wake
flow simulation in complex terrain using CFD, and the preliminary results of the layout optimization
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study of this wind farm have been presented in [18]. Some of this wind farm’s site conditions have
already been shown in Figure 1. Its original layout is shown in Figure 6 and the turbine characteristics
are shown in Figure 7. This type of turbine is variable speed, pitch regulated and has a rotor diameter
of D = 93 m and a hub height of H = 67 m. The cut-in, rated, and cut-out wind speeds are 3 m/s,
12 m/s, and 25 m/s, respectively.
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Note that constraints on inclusive and exclusive boundaries and bounds on parameters that are
considered in this case study are shown in Figure 3. Additionally, the minimal distance requirement
used in Equation (14) is chosen as the minimal distance between the turbines in the original layout,
which is Dmin = 403.8 m. The inclusive boundary shown with red line in Figure 6 is set as the minimal
convex polygon that covers all the turbines, and the exclusive boundary (the green line) is arbitrarily
set to test the modelling capacity of the exclusive boundary of the framework. The choice of the
inclusive boundary is to make sure the optimized wind farm occupies the same or a smaller area and
the required cost of electrical cables and access roads that connect all turbines stays at the same level,
so that the comparison of AEP with the original wind farm makes sense.

To find a good feasible initial design, the Heuristic Fill algorithm is applied in this wind farm,
which obtains an initial design with AEP = 164.61 GWh, as shown in Figure 8.
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Compared to the original wind farm, the design found by the Heuristic Fill algorithm obtains an
impressive 1.72% increase of AEP (from 161.83 GWh to 164.61 GWh). Note that this increase is achieved
by a deterministic filling process without any searching process, thus can be done in several seconds.

To show the performance of the proposed framework, multiple runs of Random Search with
different settings of the optimization algorithm are carried out, i.e., optimization runs with different
numbers of total evaluation number, Emax, and maximal step size, Mmax. For each of these parameter
combinations, 10 optimization runs are done to obtain the statistics. Cases starting from the original
design (as shown in Figure 6) and the initial design found by the Heuristic Fill algorithm (as shown
in Figure 8) are both tried. The results are summarized in Table 2. Note that the percentages of AEP
that increase in the optimized wind farm design compared to the original wind farm (161.83 GWh) are
marked with underlines inside the parentheses, and the CPU time shown here is the mean value per
run for 10 runs by a Python 3.6 implementation of the framework on a laptop with an Intel® i5-2520M
CPU @2.50 GHz.

Table 2. Performance of the framework in multiple runs with different settings.

Opt. Setting AEP [GWh] (Increase [%]) CPU Time [s]

Emax [-] Mmax [m] Initial Opt. min Opt. mean Opt. max Mean

1000 5000 161.83 164.62 (1.72) 165.03 (1.98) 165.67 (2.37) 2137.5
1000 50 164.61 165.18 (2.07) 165.27 (2.12) 165.30 (2.14) 1824.6
1000 500 164.61 165.17 (2.06) 165.28 (2.13) 165.41 (2.21) 1923.7
1000 5000 164.61 165.17 (2.06) 165.45 (2.24) 165.79 (2.45) 2272.3
5000 5000 164.61 165.76 (2.42) 166.02 (2.58) 166.17 (2.68) 12,042.6

10,000 5000 164.61 165.95 (2.55) 166.11 (2.64) 166.21 (2.70) 24,613.0

As shown in Table 2, allowing the optimization process to run longer, i.e., with a larger number of
evaluations, generally obtains better results (see the last three rows in Table 2). The other advantage
for an optimization process is starting from a better initial design, as the results from the initial design
obtained by the Heuristic Fill algorithm are much better than those from the original design using the
same optimization setting (see the first and fourth rows of the results in Table 2).

The maximal step size also has an effect on the results, as it controls the degree of change that can
be made to the current best design in each step. As discussed in Section 3.3, this parameter should
be set large enough to explore the design space more thoroughly and thus find a better solution after
a sufficient large number of evaluations. This is supported by the comparison of optimization runs
with the same Emax, but different Mmax, as shown in the second to fourth rows of Table 2.

The best optimized design found by all the optimization runs summarized in Table 2 is under
the optimization setting: Emax = 10, 000, Mmax = 5000 m, with the optimized AEP as 166.21 GWh,
representing a 2.70% increase to the original wind farm design. This design is found by the Random
Search algorithm starting from the initial design obtained by the Heuristic Fill algorithm, and shown
in Figure 9.
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To better compare the performance of the original, initial, and optimized designs as shown in
Figures 6, 8 and 9, their gross and net AEP values are listed in Table 3.

Table 3. AEP values comparison of the original, initial, and optimized wind farms.

Wind Farm Net AEP [GWh] Gross AEP [GWh] Wake Loss [%]

Original (Figure 6) 161.83 169.75 4.67
Initial (Figure 8) 164.61 175.42 6.16

Optimized (Figure 9) 166.21 174.91 4.97

As Table 3 shows, the initial design found by the Heuristic Fill algorithm has both higher gross
AEP and higher net AEP than the original design. Although the wake loss is higher for the initial
design than the original one (6.16% versus 4.67%), the larger increase (3.34%) of gross AEP thanks to
the higher mean wind speed of the sites found by the Heuristic Fill algorithm compensates the higher
wake loss and still yields a substantial increase (1.72%) of net AEP. Note that the higher wake loss of
the initial design can also be seen from the layout shown in Figure 8, as the turbines are placed much
closer to each other than the original layout shown in Figure 6.

Since the optimized design in Figure 9 is obtained by the optimization run starting from the initial
design in Figure 8, we can also compare these two designs. Apparently, the optimization algorithm
makes a small sacrifice in gross AEP, i.e., allowing the gross AEP to decrease by 0.28% from 175.42 GWh
to 174.91 GWh, while decreasing the wake loss percentage from 6.16% to 4.97%. The combined effect
allows the optimized design to gain a 0.97% increase of net AEP to the initial design (from 164.61 GWh
to 166.21 GWh), representing a 2.70% increase of net AEP when compared to the original design (from
161.83 GWh to 166.21 GWh).

Examining the layout of the initial design in Figure 8 and the layout of the optimized design in
Figure 9, we can see that the turbines are scattered away from each other while most of the turbines
are still located at high elevation sites. This shows that the optimization algorithm tries to lower
wake effects while not sacrifice too much on the gross AEP, as suggested by the net and gross AEP
comparison. To show the performance of the framework in multiple runs, the evolution histories of
the 10 runs under the optimization setting: Emax = 10, 000, Mmax = 5000 m are shown in Figure 10,
which demonstrate the random nature of the RS algorithm.
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As Figure 10 shows, different runs of the optimization process yield different results. Thus, if it
is possible, it is always advised to have multiple runs (10 or more) of the optimization process and
use the best result. Also, it is shown for these 10 runs that the largest portion of the AEP increase is
achieved in the first 2000 evaluations.
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5. Comparison with Other Algorithms

To better show the effectiveness of the RS algorithm for wind farm design in complex terrain,
we compare its performance with two widely used algorithms: Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA) [33].

PSO is a population based meta-heuristic algorithm inspired by bird flocking, which maintains
a population of solutions (called particles) and moves each particle in the design space according to the
global best solution in the population and the local best solution found by each particle. In this study,
the version of PSO used by Chowdhury et al. in [34] is implemented in Python with the algorithm
parameters set as recommended in Table 4 of [34]. Details of this algorithm are referred to in the
paper [34].

GA is also a nature inspired population based meta-heuristic algorithm for optimization problems.
Various versions of GA have been applied to solve the wind farm layout optimization problem,
most of which are binary coded [33]. As a binary-coded GA makes restrictions on where to place
turbines and thus limits the design space, we choose to implement a real-coded GA (RCGA) recently
proposed by Chuang et al. [35], which has no such restrictions. This version of RCGA was developed
for constrained optimization based on three specially designed evolutionary operators, i.e., ranking
selection, direction-based crossover, and dynamic random mutation, and showed a better performance
than traditional versions of RCGA for a variety of benchmark constrained optimization problems [35].
A Python version of this algorithm is implemented in this study using the parameters recommended
by the authors of [35]. Details of this algorithm can be found in [35].

For the sake of simplicity, we consider the design optimization problem for the same wind farm
as in the case study with only bounds on the design variables, i.e., x and y coordinates of wind
turbines. No constraints on wind resource, terrain parameters, and minimal distances are considered.
The bounds are set as the boundary of the rectangle area shown in Figure 6, i.e., 314, 000 m ≤ x ≤
320, 000 m and 4, 152, 000 m ≤ y ≤ 4, 156, 000 m . Following the recommendations in [34,35], the size
of the population is set as 250 for both PSO and RCGA.

Two scenarios for setting the initial solution(s) are tested. In the random scenario, 250 initial
layouts are generated randomly by putting 25 turbines randomly inside the bounds. These initial
layouts are used in PSO and RCGA as the initial population, while the worst performing initial layout,
i.e., the layout with lowest AEP, is used as the initial solution in RS.

As the initial solution(s) has influences on the optimization results obtained by meta-heuristics,
there has been an effort on seeding good initial solution(s) for meta-heuristics in the field of wind
farm layout optimization [31]. We address this issue in the heuristic fill scenario. In this scenario,
an initial layout is first obtained by using the Heuristic Fill algorithm described in Section 3 with the
minimal distance requirement set as four times of the rotor diameter. Then, a group of 124 layouts are
generated by running RS 124 times with Emax = 100 and Mmax = 5000 m from the initial layout found
by Heuristic Fill. Thus, these 124 initial layouts have a higher or the same AEP as the one found by
the Heuristic Fill, as they are improved better ones found by RS. After this process, we have 125 good
initial layouts, which are then seeded in the initial populations of PSO and GA, while the remaining
halves of the initial populations are filled with random layouts. In this way, the initial populations
for both PSO and GA have some good quality initial solutions and some random initial solutions,
thus they have a good degree of randomness, which is essential for the diversification. For RS, the
worst performing layout among the 125 good initial layouts is used as the initial solution.

The performance of these three algorithms with a different number of evaluations (Emax) for both
scenarios are summarized in Table 4.
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Table 4. Performance comparison of three algorithms: PSO (particle swarm optimization), RCGA
(real-coded genetic algorithm) and RS (random search).

Initial Scenario Algorithm AEP [GWh] Emax [-]

Worst Initial Best Initial Optimized

Random

PSO 119.12 152.44 160.76 5000
RCGA 119.12 152.44 156.68 5000

RS 119.12 119.12 173.58 5000
PSO 119.12 152.44 161.66 50,000

RCGA 119.12 152.44 165.43 50,000
RS 119.12 119.12 174.26 10,000

Heuristic fill

PSO 170.27 171.18 171.74 10,000
RCGA 170.27 171.18 171.96 10,000

RS 170.27 170.27 174.10 10,000
PSO 170.27 171.18 171.84 50,000

RCGA 170.27 171.18 172.58 50,000
RS 170.27 170.27 173.80 5000

Note: ‘Worst/best initial’ represents the worst/best performing initial solution among the 250 random initial
layouts for the random scenario and the 125 seeded good initial layouts for the heuristic fill scenario. These two
values are the same for RS as it maintains only one solution. ‘Optimized’ denotes the global best solution found by
PSO/RCGA.

It is worth to note that in both scenarios, RS starts from the worst initial solution among the
solutions seeded in the initial population for PSO and GA, thus with a disadvantage in terms of the
quality of the initial solution(s). Despite this disadvantage, RS shows a much better performance than
PSO and RCGA. As Table 4 shows, RS with 10,000 evaluations obtains the best optimized layout in both
scenarios. Compared with PSO and RCGA, RS with only 5000 evaluations largely outperforms PSO
and RCGA with 50,000 evaluations (equivalent to 200 generations) in both scenarios, which clearly
demonstrates the effectiveness of RS. To better visualize the difference between algorithms, the
evolution histories of the best solutions in the different runs of PSO, RCGA, and RS are shown in
Figure 11.

Figure 11 shows that: (1) starting from good initial solutions makes PSO and RCGA converge
to much better optimized solutions, while its benefit for RS is not so profound; (2) RCGA obtains
better results than PSO after a sufficient number of evaluations (20,000); and (3) RS converges faster to
a better solution than PSO and RCGA in both scenarios. Based on the results described above, it is
natural to conclude that RS used in the current framework performs much better than PSO and RCGA
for this case.

The best optimized design, which is found by RS with 10,000 evaluations in the random scenario,
is shown in Figure 12.
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Without the limitation of inclusive and exclusive boundaries, the turbines in the optimized design
in Figure 12 are spread out in the whole rectangle area and mostly occupying high elevation sites.
Note that these sites also have high mean wind speeds as shown in Figure 1b. To place more turbines
on the limited high elevation sites, some of the turbines are placed quite close (down to 170.44 m),
which could cause problems on fatigue loads for certain turbines. Although the optimized wind
farm has a much higher AEP (174.26 GWh), representing a 7.68% increase over the original wind
farm, it should be interpreted with caution, as in one aspect, it occupies a much larger area and thus
requires more investments on electrical cables and access roads, and in the other aspect, it places
several turbines too close, thus it will have difficulty satisfying the requirements on fatigue loads.

6. Conclusions

Wind farm design in complex terrain is a crucial yet challenging task. In this work, we present
an overall design optimization framework for tackling this task. This framework combines results
from state-of-the-art wind resource assessment tools, such as WAsP CFD, a fast engineering wake
model, and an advanced optimization algorithm, to solve the wind farm design optimization problem
in complex terrain under various realistic constraints and requirements. This makes the framework
a valuable tool that can be used by designers/developers who need to optimize wind farm designs in
complex terrain under a real-life scenario.

While the framework in its default setting considers maximizing the total net AEP, its modular
architecture makes it easy to be extended to consider other objective function(s). More constraints,
requirements, and other optimization algorithms can also be easily implemented and added.

Other contributions of this work include: a terrain ruggedness index (TRI) to characterize the
terrain feature and model constraints on the terrain ruggedness; and a fast and simple algorithm called
Heuristic Fill to find good initial designs for wind farms in complex terrain, by using a deterministic
process based on wind resource considerations and constraints.

The case study of a real wind farm in complex terrain demonstrates the effectiveness of the
framework and the performance of proposed algorithms. An impressive increase of net AEP
(up to 2.70%) is achieved by using the framework, while respecting realistic constraints on inclusive
and exclusive boundaries, minimal mean wind speed, and maximal TRI, and minimal distance
constraints between turbines. In comparison with two widely used algorithms (PSO and real-coded
GA) for the same wind farm without any constraints, the Random Search algorithm also shows
a much better performance in terms of convergence speed and optimization results. This of course
demonstrates the advantages of the developed framework and proves the usefulness for wind farm
designers/developers.

Although the wind farm design considered in the current framework concerns only the turbine
layout, other design variables, such as number, hub height(s), and type(s) of turbines, foundations,
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access roads, and electrical systems, also play important roles for an overall design optimization
of a wind farm. Our future works will investigate these problems and extend the framework in
this direction.
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