New Empirical Path Loss Model for 28 GHz and 38 GHz Millimeter Wave in Indoor Urban under Various Conditions
Abstract
:1. Introduction
2. Related Works
- : is Path loss.
- : is the free space propagation loss.
- : is the median attenuation relative to free space.
- : is the gain base station antenna.
- : is the gain mobile antenna.
- : is the gain due to the type of environment.
- Urban area: ahm = 3.2(log10 11.75)) 2 − 4.79.
- Urban area: cm = 3 dB.
3. Proposed Model
3.1. The Effects of the New Parameters on the TYM
3.1.1. Effects of Temperature on Signal Strength
3.1.2. The Impact of Humidity on Signal Strength
3.1.3. The Impact of Window Size on Signal Strength
3.2. Measurements and Environment Definitions for Urban Area
3.3. Dataset Gathering
3.4. New Parameters Coefficient Calculation Using a Linear Regression Technique on TYM Model
3.5. TYM Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Popescu, I.; Kanstas, A.; Angelou, E.; Nafornita, L.; Constantinou, P. Applications of generalized RBF-NN for path loss prediction. In Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Lisboa, Portugal, 18 September 2002; Volume 1, pp. 484–488. [Google Scholar]
- Sulyman, A.I.; Nassar, A.T.; Samimi, M.K.; Maccartney, G.R.; Rappaport, S.T.; Alsanie, A. Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Commun. Mag. 2014, 52, 78–86. [Google Scholar] [CrossRef]
- Nossire, Z.; Dichter, J.; Gupta, N.; Fathi, J. A new selected points to enhance radio wave propagation strength outside the coverage area of the mobile towers in the dead spots of cellular mobile WiFi downloads. In Proceedings of the 2015 Long Island Systems, Applications and Technology, Farmingdale, NY, USA, 1 May 2015; pp. 1–7. [Google Scholar]
- Alim, M.; Rahman, M.; Hossain, M.; Al-Nahid, A. Analysis of Large-Scale Propagation Models for Mobile Communications in Urban Area. Int. J. Comput. Sci. Inf. Secur. 2010, 7, 135–139. [Google Scholar]
- Alumona, T.L.; Kelvin, N.N. Path Loss Prediction of Wireless Mobile Communication for Urban Areas of Imo State, South-East Region of Nigeria at 910 MHz. Int. J. Sens. Netw. Data Commun. 2015, 4, 1–4. [Google Scholar] [CrossRef]
- Okumura, Y. Field Strength and Its Variability in VHF and UHF Land-Mobile Radio Service. Rev. Electr. Commun. Lab. 1968, 16, 825–873. [Google Scholar]
- Nadir, Z.; Suwailam, M.; Idrees, M. Pathloss Measurements and Prediction using Statistical Models. In Proceedings of the MIMT 2016, 7th International Conference on Mechanical, Industrial, and Manufacturing Technologies, Cape Town, South Africa, 1–3 February 2016; pp. 1–4. [Google Scholar]
- Piazzi, L.; Bertoni, H.L. Achievable accuracy of sitespecific path loss predictions in residential environments. IEEE Trans Veh. Technol. 1999, 48, 922–930. [Google Scholar] [CrossRef]
- Wennerstrom, H.; Hermans, F.; Rensfelt, O.; Rohner, C.; Nord’en, L. A Long-Term Study of Correlations between Meteorological Conditions and 802.15.4 Link Performance. In Proceedings of the 2013 IEEE International Conference on Sensing, Communications and Networking (SECON), New Orleans, LA, USA, 24–27 June 2013; pp. 221–229. [Google Scholar]
- Zhang, Z.; Sorensen, R.K.; Yun, Z.; Iskander, M.F.; Harvey, J.F. A ray-tracing approach for indoor/outdoor propagation through window structures. IEEE Trans. Antennas Propag. 2002, 50, 742–748. [Google Scholar] [CrossRef]
- ITU-R P. Propagation Data and Prediction Methods for the Planning of Short-Range Outdoor Radio Communication Systems and Radio Local Area Networks in the Frequency Range 300 MHz to 100 GHz; (1411-7); Electronic Publication: Geneva, Switzerland, 2013; pp. 1–41. Available online: http://www.itu.int/ITU-R/go/patents/en (accessed on 10 July 2018).
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Hata, M. Empirical Formula for Propagation Loss in Land Mobile Radio Services. IEEE Trans. Veh. Technol. 1980, 29, 317–325. [Google Scholar] [CrossRef]
- Cavalcanti, B.J.; Cavalcante, G.A.; Mendonça, L.M.D.; Cantanhede, G.M.; de Oliveira, M.M.; D’Assunção, A.G. A hybrid path loss prediction model base on artificial neural networks using empirical models for LTE and LTE-A of 800 MHz and 2600 MHz. J. Microwaves Optoelectr. Electromagn. Appl. 2017, 16, 708–722. [Google Scholar] [CrossRef]
- Ostlin, E.; Zepernick, H.J.; Suzuki, H. Macrocell radio wave propagation prediction using an artificial neural network. In Proceedings of the Vehicular Technology Conference, VTC2004-Fall, Los Angeles, CA, USA, 26–29 September 2004; Volume 1, pp. 57–61. [Google Scholar]
- Murdock, J.N.; Ben-Dor, E.; Qiao, Y.; Tamir, J.I.; Rappaport, T.S. A 38 GHz cellular outage study for an urban outdoor campus environment. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 1–4 April 2012. [Google Scholar]
- Rappaport, T.S.; Gutierrez, F.; Ben-Dor, E.; Murdock, J.N.; Qiao, Y.; Tamir, J.I. Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications. IEEE Trans. Antennas Propag. 2013, 61, 1850–1859. [Google Scholar] [CrossRef]
- Nadir, Z.; Elfadhil, N.; Touati, F. Pathloss Determination Using Okumura-Hata Model and Spline Interpolation for Missing Data for Oman. In Proceedings of the World Congress on Engineering, London, UK, 2–4 July 2008. [Google Scholar]
- Faruque, S. Propagation prediction based on environment classification and fuzzy logic approximation. In Proceedings of the International Conference on Communications, ICCC/SUPERCOMM’96, Dallas, TX, USA, 23–27 June 2002. [Google Scholar]
- Miura, Y.; Oda, Y.; Taga, T. Outdoor-to-indoor propagation modelling with the identification of path passing through wall openings. In Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Lisboa, Portugal, 18 September 2002. [Google Scholar]
- Angeles, C.D.; Dadios, E.P. Neural network-based path loss prediction for digital TV macrocells. In Proceedings of the Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, Cebu City, Philippines, 9–12 December 2015. [Google Scholar]
- EDX Wireless. Smart Planning for Smart Networks. Available online: http://www.edx.com/ (accessed on 12 January 2012).
- Hrovat, A.; Kandus, G.; Javornik, T. A Survey of radio propagation modeling for Tunnels. IEEE Commun. Surv. Tutor. 2014, 16, 658–669. [Google Scholar] [CrossRef]
- Cichon, D.J.; Kurner, T. Digital mobile radio towards future generation systems: Cost 231 final report. In European Cooperation in the Field of Scientific and Technical Research—Action 231; Technical Report; European Cooperation in Science and Technology (COST): Brussels, Belgium, 1993. [Google Scholar]
- Farhoud, M.; El-Keyi, A.; Sultan, A. Empirical correction of the Okumura-Hata model for the 900 MHz band in Egypt. In Proceedings of the 2013 Third International Conference on Communications and Information Technology (ICCIT), Beirut, Lebanon, 19–21 June 2013; pp. 386–390. [Google Scholar]
- Jeng, S.; Chen, J.; Tsung, C.; Lu, Y. Coverage probability analysis of IEEE 802.16 system with smart antenna system over stanford university interim fading channels. IET Commun. 2010, 4, 91–101. [Google Scholar] [CrossRef]
- Oliveira, J.; Alencar, M.; Rocha, V. A new propagation model for cellular planning. In Proceedings of the IEEE International Telecommunications Symposium, Fortaleza, Ceara, Brazil, 3–6 September 2006. [Google Scholar]
- Nossire, Z.; Gupta, N.; Xiong, X. Survey of path loss modeling in wireless communication under various conditions. Unpublished work. 2018. [Google Scholar]
- Al-Hamadi, H.M. Long-term electric power load forecasting using fuzzy linear regression technique. In Proceedings of the 2011 IEEE Power Engineering and Automation Conference, Wuhan, China, 8–9 September 2011; pp. 96–99. [Google Scholar]
- Tsiropoulou, E.E.; Vamvakas, P.; Katsinis, G.K.; Papavassiliou, S. Combined power and rate allocation in self-optimized multi-service two-tier femtocell networks. Comput. Commun. 2015, 72, 38–48. [Google Scholar] [CrossRef]
- Saquib, N.; Hossain, E.; Le, L.B.; Kim, D.I. Interference management in OFDMA femtocell networks: Issues and approaches. IEEE Wirel. Commun. 2012, 19, 86–95. [Google Scholar] [CrossRef]
- Tsiropoulou, E.E.; Katsinis, G.K.; Filios, A.; Papavassiliou, S. On the Problem of Optimal Cell Selection and Uplink Power Control in Open Access Multi-Service Two-Tier Femtocell Networks; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
Environment | NLOS | |
---|---|---|
TX height antenna (m) | 8 | 19 |
RX height antenna (m) | 1.55 | |
TX gain antenna (dB) | 24.8 | |
TX(HPBW) (°) | 11.2° | |
RX gain antenna (dB) | 24.8 | 16 |
RX (HPBW) (°) | 11.2° | 28.9° |
Environment | NLOS | |||||
---|---|---|---|---|---|---|
TX height antenna (m) | 24 | 9 | 38 | |||
RX height antenna (m) | 1.55 | |||||
TX gain antenna (dB) | 25.3 | |||||
TX (HPBW) (°) | 9.2° | |||||
Handheld RX gain antenna (dB) | 25.3° | 14° | 25.3° | 14° | 25.3° | 14° |
Handheld RX (HPBW) (°) | 9.2° | 49.7° | 9.2° | 49.7° | 9.2° | 49.7° |
Window Size | Temperature | Humidity | Frequency |
---|---|---|---|
32.13 | 82 °F | 65% | (28) GHz |
27.21 | 82 °F | 65% | (28) GHz |
25.49 | 82 °F | 65% | (28) GHz |
24.21 | 82 °F | 65% | (28) GHz |
27.23 | 82 °F | 65% | (28) GHz |
10.14 | 82 °F | 65% | (28) GHz |
23.23 | 82 °F | 65% | (28) GHz |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nossire, Z.; Gupta, N.; Almazaydeh, L.; Xiong, X. New Empirical Path Loss Model for 28 GHz and 38 GHz Millimeter Wave in Indoor Urban under Various Conditions. Appl. Sci. 2018, 8, 2122. https://doi.org/10.3390/app8112122
Nossire Z, Gupta N, Almazaydeh L, Xiong X. New Empirical Path Loss Model for 28 GHz and 38 GHz Millimeter Wave in Indoor Urban under Various Conditions. Applied Sciences. 2018; 8(11):2122. https://doi.org/10.3390/app8112122
Chicago/Turabian StyleNossire, Zyad, Navarun Gupta, Laiali Almazaydeh, and Xingguo Xiong. 2018. "New Empirical Path Loss Model for 28 GHz and 38 GHz Millimeter Wave in Indoor Urban under Various Conditions" Applied Sciences 8, no. 11: 2122. https://doi.org/10.3390/app8112122
APA StyleNossire, Z., Gupta, N., Almazaydeh, L., & Xiong, X. (2018). New Empirical Path Loss Model for 28 GHz and 38 GHz Millimeter Wave in Indoor Urban under Various Conditions. Applied Sciences, 8(11), 2122. https://doi.org/10.3390/app8112122