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Abstract: Due to rapid development in mobile communication technology in recent years, the demand
for high quality and high capacity networks with thorough coverage has become a major necessity.
Several models have been developed for predicting wireless signal coverage in urban areas, but these
models suffer from inadequately calculating certain conditions, such as weather and building
materials, especially window size. In this paper, we propose a new path loss prediction model
based on the measurement of new indicators, such as window size, temperature, and humidity
conditions, after which an extensive statistical analysis using a linear regression technique was
implemented in order to validate the new indicators. As the new indicators were incorporated into
the Okumura model to derive a new path loss model, the results showed that the proposed model
provides an accurate prediction of the received signal strength in a given propagation environment.
Our model enhanced the prediction of path loss by 10% when compared to the Okumura and by 15%
when compared to the COST-Hata.

Keywords: path loss; signal; millimeter wave; Okumara; COST-Hata; window size; temperature;
humidity

1. Introduction

The increasing demand for mobile data in daily life, as well as the importance of high-speed
data transmission, has led to enormous growth of mobile communication systems. To a large extent,
mobile communication systems have witnessed major advances in wireless access, integrated circuits,
and digital signal processing, which have brought about additional technologies such as Global
positioning system (GPS), IP telephony, online gaming, streamed multimedia, and ultra-broadband
internet access [1].

There are two primary limitations to the performances of the 4G mobile communication systems:
time and location. The new 5G technology, with 28 and 38 GHz mm wave frequencies, address these
limitations [2]. Amongst the channel characteristics, signal paths change is the most critical parameter.
The path loss is defined as a decrease in the signal strength during propagation from the transmitter
to the receiver [3]. Several effects may cause the path loss, such as reflection, refraction, diffraction,
absorption, coupling, and cable loss [4]. The path loss inside the building is also influenced by many
factors, including the propagation medium, environment, height of the antennas, and the distance
between the transmitter and the receiver inside the building [5,6]. Figure 1 shows the effect of path
loss on the received signal power over an urban area and inside building obstacles. However, there is a
clear relationship between the signal strength and the temperature. In general, when the temperature
increases, the Received Signal Strength Indicator (RSSI) drops [7]. Naturally, the relative humidity
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increases and drops based on RSSI, which is dependent on a positive relationship with the trend of
Absolute Humidity (AH), indicating a negative correlation [8]. If the size of a window is large the
signal will be high; if the window size decreases, the signal will decrease [9,10].

Appl. Sci. 2018, 8, x FOR PEER REVIEW  2 of 14 

the relative humidity increases and drops based on RSSI, which is dependent on a positive 
relationship with the trend of Absolute Humidity (AH), indicating a negative correlation [8]. If the 
size of a window is large the signal will be high; if the window size decreases, the signal will decrease 
[9,10]. 

 
Figure 1. Different path loss sensor (signal strength). 

Radio channels are random. In order to predict path loss, the radio channels must be modeled 
[4]. Therefore, for practical path loss prediction, propagation models are used. Among these models 
are the Okumura, COST-Hata, and empirical models, which are all used extensively. Path loss 
calculation is typically done based on observations and data measurements, such as the distance of 
the receiver from the transmitter and signal frequency. These two measures are manipulated in a 
logarithmic format as given in Equation (1). 𝑃𝐿 = 32.45 + 20 log 10 (𝑑) + log 10 (𝑓) (1) 

Definition 1. (PL) is the path loss, (d) is the distance between the sender (TX) and the receiver (RX), and (f) 
is the frequency, the (32.45) is the coefficient. This model is the basic model for all path loss models. 

Among the most broadly used empirical models are the Okumura model and COST-Hata model 
[4]. Okumura model is applicable in the frequency range 3 GHz [3,5], whereas COST-Hata model 
gives simple and straightforward techniques to ascertain path loss in a wider frequency range. 
Despite the fact that working frequency (5 GHz) is well beyond its estimation extent, its effortlessness 
and adjustment variables still allow for the calculation of path loss occurring at higher frequencies. 
The Okumura and COST-Hata models are an accepted standard of today’s propagation prediction 
models, but both models do not consider certain pertinent effects, such as indoor and outdoor 
environments, humidity, temperature, and window size. This paper proposes a path loss propagation 
model that illuminates new indicators like windows size and weather conditions. Thus, our findings 
help telecommunication providers in network planning to design stable mobile indoor networks that 
work accurately with the high and low power signal. 

The remainder of this paper is structured as follows: Section 2 presents related work for path 
loss models; Section 3 presents details on the analysis methodology of the proposed model; Section 4 
demonstrates the evaluation and results of the proposed model Section 5 concludes this paper by 
considering the potential usefulness of the model system. 

2. Related Works 

Over the past few years, several low frequency models have been developed for path loss 
prediction [11]. Concerning the related models, the Okumura model [4] is the classical empirical 
model, while most of the other models are derived from Okumura’s model. 

Figure 1. Different path loss sensor (signal strength).

Radio channels are random. In order to predict path loss, the radio channels must be modeled [4].
Therefore, for practical path loss prediction, propagation models are used. Among these models are
the Okumura, COST-Hata, and empirical models, which are all used extensively. Path loss calculation
is typically done based on observations and data measurements, such as the distance of the receiver
from the transmitter and signal frequency. These two measures are manipulated in a logarithmic
format as given in Equation (1).

PL = 32.45 + 20 log 10(d) + log 10( f ) (1)

Definition 1. (PL) is the path loss, (d) is the distance between the sender (TX) and the receiver (RX), and (f) is
the frequency, the (32.45) is the coefficient. This model is the basic model for all path loss models.

Among the most broadly used empirical models are the Okumura model and COST-Hata
model [4]. Okumura model is applicable in the frequency range 3 GHz [3,5], whereas COST-Hata
model gives simple and straightforward techniques to ascertain path loss in a wider frequency range.
Despite the fact that working frequency (5 GHz) is well beyond its estimation extent, its effortlessness
and adjustment variables still allow for the calculation of path loss occurring at higher frequencies.
The Okumura and COST-Hata models are an accepted standard of today’s propagation prediction
models, but both models do not consider certain pertinent effects, such as indoor and outdoor
environments, humidity, temperature, and window size. This paper proposes a path loss propagation
model that illuminates new indicators like windows size and weather conditions. Thus, our findings
help telecommunication providers in network planning to design stable mobile indoor networks that
work accurately with the high and low power signal.

The remainder of this paper is structured as follows: Section 2 presents related work for path
loss models; Section 3 presents details on the analysis methodology of the proposed model; Section 4
demonstrates the evaluation and results of the proposed model Section 5 concludes this paper by
considering the potential usefulness of the model system.

2. Related Works

Over the past few years, several low frequency models have been developed for path loss
prediction [11]. Concerning the related models, the Okumura model [4] is the classical empirical
model, while most of the other models are derived from Okumura’s model.
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Moreover, the wireless industry is moving to its fifth generation of cellular technology.
This technology will bring mobility to millimeter waves (mmWave) communications. Fifth generation
cellular networks (5G) offer unprecedented bandwidth and faster network speeds by tapping into a
high band spectrum in the mmWave frequency range, typically from 30 to 300 GHz [12,13]. Propagation
is more lossy in the mmWave bands when compared to today’s microwave bands, thus the solution is
to modify the standard path loss models (with a frequency between 28 and 38 GHz) to fit the real world
measured propagation data for reliable mmWave channel planning [14,15]. However, the previous
models (Okumura, COST-Hata) do not work with frequencies between 28 and 38 GHz, and thus they
are not compatible with the 5G [16,17].

Of all the literature studies, the Okumura model [18] is the foundation of today’s propagation
prediction models. This prediction model is based on data extensive measurements which enable the
telecommunication providers to compute the received signal power in a given propagation medium.
However, when making network planning in practice, it is required to fit the parameters that was best
used in the Okumura model, instead of a direct usage. In this regard, an empirical formulation for
propagation prediction called a COST-HATA model [19] is derived from Okumura’s model. This model
offers straightforward techniques to verify path loss in an expandable frequency range. On the other
hand, our working frequency of 5 GHz is different from the estimation extent, as its effortlessness and
modified variables still allow us to estimate the path loss at a higher frequency.

Furthermore, it provides a good approximation in urban areas and it is a well-suited model over
roughly the same range of Okumura converge frequencies, as the model for urban areas was built first
and used as the base for other models. By using the Okumura model, we have the ability to calculate
path loss in urban areas up to less than 3 GHz [20].

The path loss model by Okumura is given according to Equation (2).

PL = l f + Amu( f , d)− G(hte) − G(hre) − Garea (2)

Definition 2.

PL: is Path loss.
l f : is the free space propagation loss.
Amu( f , d): is the median attenuation relative to free space.
G(hte): is the gain base station antenna.

G(hre): is the gain mobile antenna.

Garea: is the gain due to the type of environment.

The COST-Hata models have more parameters that allow frequency and height to be adjusted.
The Okumura and COST-Hata models are more generalized and well-known.

The Hata path loss model is represented in Equation (3).

PL = 46.3 + 33.9 log 10( f )− 13.82 log 10 − ahm + (44.9 − 6.55 log 10(hb)) log 10(d) + cm (3)

Definition 3. d is for distance, hb is the height of the transmitter antenna, ahm is the Height of mobile station
antenna, and cm is the height correction factor; ahm and cm have two values depending on the area being tested,
as listed below:

Urban area: ahm = 3.2(log10 11.75)) 2 − 4.79.
Urban area: cm = 3 dB.

The classical Okumura and COST-Hata models are also examined [8]. Fuzzy logic was applied as
a set of rules to characterize precisely the unknown propagation environment from a set of known
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propagation environments. As a result, more cost-effective cellular network designs are expected using
the path method.

Other path loss prediction models created by Miura et al. [8] made use of the sum of three
propagation losses: propagation loss, wall penetration loss, and indoor propagation loss. That is,
the radio waves coverage outdoor to indoor by propagating from the transmitter outdoor to the wall of
the building. Then, the radio waves penetrate the wall of the building. Last, the radio waves propagate
inside the building to the receiver.

Later, such methods [8,21], aimed at using artificial neural networks (ANNs) model to predict
path loss. The ANNs perform a nonlinear mapping function of a given set of input values to a set of
appropriate output values. Thus, the input parameters contain propagation features, such as frequency,
the distance between the transmitter and the receiver, and the desired output value, which contains
the measured path loss for a better prediction.

Other such models are Hata [8], COST 231 HATA [21], Walfisch [9], Stanford University Interim
(SUI) [9], and the ECC-33 model [22]. These models have previously been compared [23].

Based on the related models in this field, the Okumura model [24] and the COST 231 HATA
model [25,26] are both used as a basis for our proposed model, given that these models cover a wide
range of frequencies as well as different terrains with a high accuracy. Other models are limited to
significant restrictions, such as the antenna height or covered building height, because most of these
models also show low accuracy over some terrains [27–29].

Femtocells have risen as a promising solution in order to address the path loss issue and to
decongest the microcell network from the increasing number of mobile users and corresponding
traffic. As such, 90% of data services and 60% of phone calls take place within an indoor environment.
Femtocells, which usually reside in a home/office environment and consist of an Access Point (AP)
with short range (i.e., 10–50 m) are connected to a service provider’s Internet network. They can provide
large indoor coverage and capacity due to the short communication distance to users. Furthermore,
femtocells are characterized by low cost installation over an existing microcell network. In the area of
two-tier femtocell networks, the overlapping of the coverage areas of femtocells and microcell offer
the ability to connect to either the Microcell or a neighboring femtocell, depending on the quality of
service criteria. One of the major challenges in this area is that femtocells share the same licensed
frequency with microcells [30–32].

In this paper, the proposed prediction model is based on measurement of new indicators and
extensive statistical analysis, in order to compute the predicted received signal strength in a given
propagation environment. We present a new path loss model that includes new parameters allowing for
an accurate estimation of signal power inside of buildings, as well as the distance between transmitter
and receiver. However, the Okumura and COST-Hata models do not take into consideration other
factors like the buildings. Therefore, many models were proposed like Okumura, and COAST-Hata.
They were the most widely used though our new model was an enhancement over them.

3. Proposed Model

The main focus of this research is to develop a new path loss prediction model, which we will
call the TYM model (see Equation (7)). The success of the TYM model depends on new parameters,
as it works in one type of environment like urban areas with a frequency ranging from 28 to 38 GHz.
The proposed approach is comprised of two main steps: dataset gathering and coefficient calculation
using a linear regression technique. The details of these main steps will be explained, in addition to
the effects of the new parameters on the proposed model.

3.1. The Effects of the New Parameters on the TYM

Temperature and humidity are significantly related to each other. Humidity is the amount of
water steam present in the air and it is ordinarily invisible. The highest level of water steam in the air
is based on the changeable temperature of the air. The temperature point implies that the air should
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cool down so that the water steam reduces into either ice or water (RH = 100%) [7]. Steam from boiling
water changes from a gassy state into a solid (deposition, T < 0 ◦C) state or into a liquid (intensification)
state. Intensification/deposition begins when the temperature precipitation or the humidity reaches
a saturation point of (RH = 100%). The steam from the water is either called clouds (fog) or dew
(frost when T < 0 ◦C), but this depends on the weather condition [7,8].

AH(t, RH) = 216.7.


RH

100% .A.exp

(
m.t

Tn + t

)
273.15 + t

(4)

Definition 4. (t) denotes the actual temperature (◦C), RH denotes the actual relative humidity (%), (m) = 17.62,
(Tn) = 243.12 ◦C, and (A) = 6.112 hPa, (AH) denotes the Absolute Humidity.

3.1.1. Effects of Temperature on Signal Strength

There is a clear relationship between signal strength and temperature. Generally, when the
temperature increases, RSSI drops, and vice versa, which represents a negative relationship between
signal strength and temperature [8].

3.1.2. The Impact of Humidity on Signal Strength

To measure the different aspects of humidity, we used: Absolute Humidity (AH), which refers
to the total mass of steam from water included in a given air volume; Steam Humidity (SH) is the
highest amount of steam from water in the air at a given temperature; Relative Humidity (RH) is the
amount of AH that exists in the air and thus refers to the highest amount of SH at the same pressure
and temperature. The relative humidity of the SH is 100%. Humidity is considered as another variable
that puts an impact on the signal strength. It is obvious that the relationship between both AH and RH
humidity affects the signal strength within a given time. The relative humidity increases and drops
based on RSSI, and this depends on a positive relationship, while the trend of AH, indicates a negative
correlation (Table 3) [7].

3.1.3. The Impact of Window Size on Signal Strength

Here, we shall explain some of the features of window size. Specifically, the effect of both the
metal frame shape over the deviation style and the window size; both must be taken into consideration,
in addition to the view of a computational accuracy spot.

Another important factor that needs to be considered is the effect of window size on the form of
the deviation style [9,10]. For the window size, the complete area of the entire window is calculated in
this paper within the same selected floor. In fact, this process was performed by conducting calculations
for the average size of each entire window. Then, we performed a multiplication for the available
number of windows.

In relation to the window size inside the building, we calculated the full surface area for the
window in the same specific floor. This was accomplished by multiplying the average size for all the
windows in the same floor by the number of the windows (Equation (5)).

Swin =
1
N ∑N

i=1 ai =
1
N

= (win1 + win2 + . . . + winn) (5)

Definition 5. (Swin) is window size, (N) is the number of windows, (winn) is number of windows in each floor.
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3.2. Measurements and Environment Definitions for Urban Area

Using the real data measurement, we now suggest that there are several empirical path loss
models suitable for the signal mobile system, using the sender (TX) and receiver (RX), for 5G mmWave
wireless networks with a frequency between 28 GHz and 38 GHz. The measurement frequency between
28 GHz and 38 GHz came from a broadband sliding channel effect, using (BPSK) identical binary shift
keying and modulated Pseudo-noise (PN). The 28 GHZ combine 11.2◦ and 28.9◦ half-power bandwidth
(HPBW) antennas at the sender (TX) and receiver (RX). The 38 GHZ combine 9.2◦ and 49.7◦ half-power
band width (HPBW) antenna at receiver (RX) [14–16]. The measurement propagation [14–16] combines
power delay profiles (PDPs) for single point angles using high directions (8, 19).

The data measurement for microwave path loss models was collected in different places in an
urban area (Tables 1 and 2). In order to show the non-line-of-sight (NLOS) for the different frequency
between 28 GHz and 38 GHz mmWave bands (Table 1), we introduced the empirical path loss model
and show the statistics with 10 m free space distance for a range of locations, and the directional RX
antennas for each location.

Table 1. Measurements between the sender (TX) and the receiver (RX) with a frequency of 38 GHz.

Environment NLOS

TX height antenna (m) 8 19
RX height antenna (m) 1.55
TX gain antenna (dB) 24.8

TX(HPBW) (◦) 11.2◦

RX gain antenna (dB) 24.8 16
RX (HPBW) (◦) 11.2◦ 28.9◦

The tables provided simple mmWave path loss models that are functional with the height and
frequency for different directions. The definitions of the environment used in Tables 1 and 2 explained
that the RX locations were classified according to the NLOS definition:

NLOS refers to the path of propagation of a radio frequency (RF) that is obscured (partially
or completely) by obstacles, thus making it difficult for the radio signal to pass through (Figure 2).
Common obstacles between radio transmitters and radio receivers are tall buildings, trees, physical,
scape, and high-voltage power conductors. While some obstacles absorb and others reflect the radio
signal; similarly, they all limit the transmission ability of signals (Figure 2) [6].
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Figure 2. Visual representation of a non-line-of-sight (NLOS).

The signal was measured at 28 GHz RX at the University of Bridgeport, Connecticut,
USA (see Figure 3 for different locations). The green dots in Figure 3 show the distances at the
TX locations, which went up to 300 m. For RX locations, we used half-power Beam width antennas
(HPBW) with 25.3 dB (11.2◦ HPBW) and 16 dB (28.9◦ HPBW) gain antennas at the TX and RX for the
largest range of measurement of 184 dB incoming signals from different angles of arrivals. The data
measurement was collected over distances of 25 to 500 m but was cut from 20 to 251 m based on the
power failure [14].
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Figure 3. Measurement locations (University of Bridgeport, CT, USA).

For the frequency of 38 GHz propagation (Table 2), the signal was measured at 38 GHz RX at the
University of Bridgeport, Connecticut, USA (see Figure 3 for different distances up to 300 m with six
different handheld measurements, using two different transition locations). There were six handheld
RX locations using half-power Beam width antennas (HPBW). Most TX-RX locations used 25.3 dBi
(9.2◦ HPBW) gain directional antennas, while others used 14 dBi gain (49.7◦ HPBW) antennas at the
RX. The data measurement was collected over distances of 25 to 500 m [14].

Table 2. Measurements between TX and RX with a frequency of 38 GHz.

Environment NLOS

TX height antenna (m) 24 9 38
RX height antenna (m) 1.55
TX gain antenna (dB) 25.3

TX (HPBW) (◦) 9.2◦

Handheld RX gain antenna (dB) 25.3◦ 14◦ 25.3◦ 14◦ 25.3◦ 14◦

Handheld RX (HPBW) (◦) 9.2◦ 49.7◦ 9.2◦ 49.7◦ 9.2◦ 49.7◦

Tables 1 and 2 show path loss at a 3 m frequency for a distance signal, which was obtained with a
high antenna gain at 28 and 38 GHz. The NLOS measurement data in these tables is closely modeled
by the environment parameters for the path loss model. The measured results in Tables 1 and 2 were
determined by using a 6 m free space distance between TX and RX and were obtained using a liner
regression model ranging between 28 and 38 GHz. The measured results in Tables 1 and 2 were
determined by using a 10 m free space distance between TX and RX and were obtained using a liner
regression model ranging between 28 and 38 GHz.

3.3. Dataset Gathering

For the dataset reading, we collected data from multiple geographical locations inside and outside
of the University of Bridgeport. This measurement was collected to help build the TYM model.
The dataset contains between 28 and 38 GHz path loss measurements, collected from 35 base stations.
The dataset reading used AT&T company tools from inside buildings, especially inside elevators.
Table 3 shows measurements for random samples of the collected dataset.

Table 3. Random measurements from the collected dataset.

Window Size Temperature Humidity Frequency

32.13 82 ◦F 65% (28) GHz
27.21 82 ◦F 65% (28) GHz
25.49 82 ◦F 65% (28) GHz
24.21 82 ◦F 65% (28) GHz
27.23 82 ◦F 65% (28) GHz
10.14 82 ◦F 65% (28) GHz
23.23 82 ◦F 65% (28) GHz
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3.4. New Parameters Coefficient Calculation Using a Linear Regression Technique on TYM Model

The linear regression technique “is a form of predictive modelling technique which investigates
the relationship between a dependent and independent variable. This technique is used for calculating
time series modelling and findings between the variables” [28].

Y = a + b ∗ X + e (6)

Definition 6. b is the slope of the line and e is the error term. This equation can be used to predict the value of
target variable based on given predictor variable.

For fitting a regression line, it calculates the best-fit line for the observed data by minimizing the
sum of the squares of the vertical deviations from each data point to the line [28].

3.5. TYM Model

Based on the linear regression technique on the different parameters we have formulated a new
model called the TYM model. This model shows that the path loss value is highly dependent on these
parameters: distance between the transmitter (TX) and receiver (RX), temperature, humidity, window
size, and the frequency. The TYM model is represented in Equation (7).

PL = 96.7 − 0.562 ∗ Swin − 0.366 ∗ f + 0.092 ∗ d − 0.187 ∗ h + 0.257 ∗ t (7)

Definition 7. (PL) is path loss, (Swin): window size, ( f ): Frequency, (d): distance between sender and receiver,
(h): humidity, (t): temperature, and the number before every variable and its coefficient.

Based on the linear regression technique on the window size parameter, using a TYM model in
Figure 4, shows the regression of the path loss by the window size with coefficients (0.562). If the size
of the window is big, the path loss will be low, which means the relation is negative.
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Based on the linear regression technique on the window size parameter, Figure 5 shows the
regression of the path loss between the distance and the receiver with coefficients (0.092). If the
distance between the sender and the receiver is very close, the path loss will be low, which means that
the relation is positive.
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Based on the linear regression technique on the humidity parameter, Figure 6 shows the regression
of the path loss by the humidity with coefficients (0.187). The relative humidity increases, and drops
based on (RSSI), and is depended on a positive relationship, while the trend of AH indicates a
negative correlation.
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Based on the linear regression technique on the temperature parameter, Figure 7 shows the
regression of the path loss by the temperature with coefficients (0.257). When the temperature increases,
the signal strength (RSSI) drops, and if the temperature decreases, the signal strength increases.
This outcome specifies a negative relationship between the signal strength and the temperature.
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Based on the linear regression technique on the frequency parameter, Figure 8 shows the regression
of the path loss by the frequency with coefficients (0.366). When the frequency increases, the signal
strength (RSSI) drops, and when the frequency decreases, the signal strength increases. This outcome
specifies a negative relationship between the signal strength and the frequency.
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Figure 9 shows the standard coefficients for all parameters using the linear regression technique
and TYM model with a coefficient (96.7).Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 14 
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4. Results and Discussion

For the analysis of the TYM model, we completed a comparison between the TYM model and
two reference models, Okumura and COST 231 HATA, according to the measured data. The expected
output results and the measured data in watt was converted into dBm values; the path loss value is
given as it is in Equation 8:

PL = Transmitted power + Transmitting gain + Receiving gain − Received power (8)

Figure 10 shows the output result from the three reference models: Okumura, COST 231 HATA,
and TYM, compared to the measured data. The graph clearly shows that the TYM model has a higher
accuracy than the other models, due to its flexibility between high and low frequencies. Meanwhile,
the Okumara model only works only with low frequencies. The Okumara model is better than the
COST-Hata model, however, because the COST-Hata works exclusively with limited frequencies.
Both the Okumara and COST-Hata only focus on outside environments.
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Figure 11 shows the output result from the three reference models including the real measurement.
The Okumura, COST 231 HATA, and TYM models are compared to the measured data. Figures 10
and 11 clearly shows that the TYM model has a higher accuracy than the other models, due to its
flexibility between high and low frequencies. Meanwhile, the Okumara model only works only with
low frequencies. The Okumara model is better than the COST-Hata model, however, because the
COST-Hata works exclusively with limited frequencies. Both the Okumara and COST-Hata models
only focus on outside environments, while the TYM model works with outdoor environmental factors
such as humidity and temperature in addition to indoor environmental factors such as window size.
Additionally, the TYM model worked with 5G, while the Okumara and COST-Hata models did not.
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5. Conclusions

In this paper, we proposed a new path loss model called TYM, which predicted signal strength
inside buildings, especially in dead spot areas. The TYM model had new parameters like window size
in each floor; weather conditions were also taken into consideration. Moreover, the model 120 total
path loss measurements have been included from 35 base stations. We have validated our model over
different propagation environments and showed improved results over the Okumura and COST-HATA
models. The evaluation analysis proved that the capability of our model over other models compared
to real measurements. The TYM model can assist mobile network design engineers to produce stable
mobile networks in very accurate and cost-effective ways. Our model enhanced the prediction of path
loss by 10% compared to Okumura and by 15% compared to COST-Hata.
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