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Abstract: Place recognition is one of the most fundamental topics in the computer-vision and
robotics communities, where the task is to accurately and efficiently recognize the location of
a given query image. Despite years of knowledge accumulated in this field, place recognition still
remains an open problem due to the various ways in which the appearance of real-world places may
differ. This paper presents an overview of the place-recognition literature. Since condition-invariant
and viewpoint-invariant features are essential factors to long-term robust visual place-recognition
systems, we start with traditional image-description methodology developed in the past, which
exploits techniques from the image-retrieval field. Recently, the rapid advances of related fields,
such as object detection and image classification, have inspired a new technique to improve visual
place-recognition systems, that is, convolutional neural networks (CNNs). Thus, we then introduce
the recent progress of visual place-recognition systems based on CNNs to automatically learn better
image representations for places. Finally, we close with discussions and mention of future work on
place recognition.

Keywords: place recognition; Convolutional Neural Network; feature extraction; bag-of-visual words
(BoW); vector of locally aggregated descriptors (VLAD)

1. Introduction

Place recognition has attracted a significant amount of attention in the computer-vision and
robotics communities, as evidenced by the related citations and a number of workshops dedicated to
improving long-term robot navigation and autonomy [1]. It has a number of applications, ranging from
autonomous driving and robot navigation to augmented reality and geolocalizing archival imagery.

The process of identifying the location of a given image by querying the locations of images
belonging to the same place in a large geotagged database, usually known as place recognition, is still an
open problem. One major characteristic that separates place recognition from other visual-recognition
tasks is that place recognition has to solve condition-invariant recognition to a degree that many other
fields haven’t. How can we robustly identify the same real-world place undergoing major changes in
appearance (e.g., illumination variation (Figure 1), change of seasons (Figure 2) or weather, structural
modifications over time, and viewpoint change)? To be clear, the above changes in appearance
are summarized as conditional variations, but exclude viewpoint change. Moreover, how can we
distinguish true images from similar-looking images without supervision? Since collecting geotagged
datasets is time-consuming and labor-intensive, and locations like indoor places do not necessarily have
GPS information. Place-recognition tasks have been traditionally cast as image-retrieval tasks [2] where
image representations for places are essential. The fundamental scientific question is what the

Appl. Sci. 2018, 8, 2257; doi:10.3390/app8112257 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/8/11/2257?type=check_update&version=1
http://dx.doi.org/10.3390/app8112257
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 2257 2 of 9

appropriate representation of a place is that is informative enough to recognize real-world places, yet
compact enough to satisfy the real-time processing requirement on a terminal, such as a mobile phone
or a robot.

At early stages, place recognition was dominated by sophisticated local-invariant feature
extractors, such as Scale-Invariant Feature Transformation (SIFT) [3] and Speed-Up Robust Features
(SURF) [4], hand-crafted global image descriptors, such as Generalized Search Trees (GIST) [5,6], and
the bag-of-visual-words [7,8] approach. These traditional feature-extraction techniques have gained
impressive results.

Recent years have seen a prosperous advancement of visual content recognition using
a powerful image representation-extractor—Convolutional Neural Networks (CNNs) [9–12],
which offers state-of-the-art performance on many category-level recognition tasks, such as object
classification [9,10,13], scene recognition [14–16], and image classification [17]. The principle ideas of
CNNs date back to 1980s, and the two major reasons why CNNs are so successful in computer vision
are the advances in GPU-based computation power and data volume, respectively. Recent studies
show that general features extracted by CNNs can be transferable [18] and generalized well to other
visual-recognition tasks. The semantic gap is a well-known problem in place recognition, where
different semantics of places may share common low-level features extracted by SIFT, e.g., colors
and textures. Convolutional neural networks may bridge this semantic gap by treating an image as
a high-level feature vector extracted through deep-stacked layers.

This paper provides an overview of both traditional and deep-learning-based descriptive
techniques widely applied to place-recognition tasks, which is by no means exhaustive. The remainder
of this paper is organized as follows. Section 2 talks about local and global image descriptors that are
widely applied to place recognition. Section 3 presents a brief view of convolutional neural networks
and the corresponding techniques used in place recognition. Section 4 discusses future work on place
recognition.The primary abbreviations and their extended representations in the paper are listed
in Table 1.

Figure 1. TokyoTimeMachine dataset [19] images from the same place with different illumination
conditions: day, sunset, night.

Figure 2. Frames extracted from the Nordland dataset [20] that are from the same place in spring,
summer, fall, and winter.
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Table 1. Abbreviations used in this paper and their extended representations.

Abbreviation The Extended Representation

CNN Convolutional Neural Network
SIFT Scale-Invariant Feature Transformation
SURF Speed-Up Robust Features
VLAD Vector of Locally Aggregated Descriptors
BoW Bag-of-Words
FAST Features from Accelerated Segment Test
BRIEF Binary Robust Independent Elementary Features

2. Traditional Image Descriptors

2.1. Local Image Descriptors

Local feature descriptors, such as SIFT [3] and SURF [4], have been widely applied to
visual-localization and place-recognition tasks. They achieve outstanding performance on viewpoint
invariance. SIFT and SURF describe the local appearance of individual patches or key points within an
image, for an image; X = [x1, x2, ..., xN]T represents the set of local invariant features, in which xi ∈ Rd

is the ith local feature. The length of X depends on the number of key points of the image. These local
invariant features are then usually aggregated into a compact single vector for the entire image, using
techniques such as bag-of-visual-words [7,8], Vector of Locally Aggregated Descriptors (VLAD) [19],
and Fisher kernel [21,22].

Since local-feature extraction consists of two phases, detection and description, a number of
variations and extensions of techniques for the two phases have been developed. For example,
Reference [23] used the Features from Accelerated Segment Test (FAST) [24] to detect the interesting
patches of an image that were then described by SIFT. Reference [25] used FAST as well during the
detection phase, whereas they used Binary Robust Independent Elementary Features (BRIEF) [26] to
describe the key points instead of SIFT.

State-of-the-art visual simultaneous localization and mapping (SLAM) systems, such as
FAB-MAP [27,28] used bag-of-visual-words to construct the final image representation. Each image
may contain hundreds of local features, which is impractical in large-scale and real-time processing
place-recognition tasks; moreover, they require an enormous amount of memory to store the high
dimensional features. The bag-of-visual-words mimics the bag-of-words technique used in efficient
text-retrieval fields. It typically needs to form a codebook C = [c1, c2, ..., ck] with K visual words, and
each visual word ci ∈ Rd is a centroid of a cluster, usually gained by k-means [29]. Then, each local
invariant feature xi is assigned to its nearest cluster centroid, i.e., the visual word. A histogram vector
of the k dimension containing the frequency of each visual word being assigned can be formed this way.
The bag-of-visual-words model and local-image descriptors generally ignore the geometric structure
of the image, that is, different orders of local invariant features in X do not impact the histogram vector;
thus, the resulting image representation is viewpoint-invariant. There are several variations on how to
normalize the histogram vector, a common choice being L2 normalization. Components of the vector
are then weighted by inverse document frequency (IDF). However, the codebook is dataset-dependent
and needs to be retrained if a robot moves into a new region it has never seen before. The lack of
structural information of the image can also weaken the performance of the model.

Fisher Kernel proposed by References [21,22] is a powerful tool in pattern classification, combining
the strengths of generative models and discriminative classifiers. It defines a generative probability
model p, which is the probability density function with parameter λ. Then, one can characterize the
set of local invariant features X = [x1, x2, ..., xN]T with the following gradient:

∇λ log p(X|λ) (1)
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where the gradient of the log likelihood describes the direction in which parameters should be modified
to best intuitively fit the observed data. It transforms a variable-length sample X into a fixed-length
vector whose size is only dependent on the number of parameters in the model.

Reference [22] applied the Fisher kernel in the context of image classification with a Gaussian
mixture model to model the visual words. In comparison with the bag-of-visual-words representation,
they obtained a (2d + 1) ∗ k− 1 dimensional image representation of a local invariant feature set,
while k dimensional image representation using the bag-of-visual-words. Thus, the Fisher kernel can
provide richer information under the condition that their codebook size is equal, or fewer visual words
are required by this more sophisticated representation.

Reference [19] proposed a new local-aggregation method, VLAD, which is a state-of-the-art
technique compared to the bag-of-visual-words and Fisher vector. The final representation is computed
as follows:

vi,j = ∑
NN(x)=ci

xj − ci,j (2)

The VLAD vector is represented by vi,j, where the indices i = 1, ..., k and j = 1, ..., d respectively
index the ith visual word and the jth component of the local invariant feature. The vector is
subsequently L2-normalized. We can see that the final representation stores the sum of all residuals
between local invariant features and its nearest visual word. One excellent property of the VLAD
vector is that it is relatively sparse and very structured [19], showing that a principal component
analysis is likely to capture this structure for dimensionality reduction without much degradation of
representation. They obtain comparable search quality to bag-of-visual-words and the Fisher kernel
with at least an order of magnitude less memory.

2.2. Global Image Descriptors

The key difference between local and global place descriptors is the presence of the detection phase.
One can easily figure out that local place descriptors turns into global descriptors by predefining the
key points as the whole image. WI-SURF [30] used whole-image descriptors based on SURF features,
and BRIEF-GIST [31] used BRIEF [26] features in a similar whole-image fashion.

A representative global descriptor is GIST [5]. It has been shown to suitably model semantically
meaningful and visually similar scenes in a very compact vector. The amount of perceptual and
semantic information that observers comprehend at a glance (around 200 ms) refers to the gist of the
scene, termed Spatial Envelope properties, and it encodes the dominant spatial-layout information
of the image. GIST uses Gabor filters at different orientations and different frequencies to extract
information from the image. The results are averaged to generate a compact vector that represents
the “gist” of a scene. Reference [32] applied GIST to large-scale omnidirectional imagery and obtained
a good segmentation of the search space into clusters, e.g., tall buildings, streets, open areas, mountains.
Reference [33] followed a biological strategy that first computes the gist of a scene to produce a coarse
localization hypothesis, then refine it by locating salient landmark points in the scene.

The performance of techniques described in Section 2 mainly depends on the size of codebook C;
if too small, the codebook does not characterize the dataset well, while if it is too large, it requires huge
computational resources and time. While global image descriptors have their own disadvantages,
they usually assume that images are taken from the same viewpoint.

3. Convolutional Neural Networks

Recently, convolutional neural networks have achieved state-of-the-art performance
on various classification and recognition tasks, e.g., handwriting-digit recognition [34],
object classification [9,10,13], and scene recognition [14,15].The most representative convolutional
neural networks include AlexNet [9], VGGNet [10], ResNet [35] and GoogleNet [13]. Features extracted
from convolutional neural networks trained on very large datasets significantly outperform SIFT
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in a variety of vision tasks [9,36]. The core idea behind CNNs is the ability to automatically learn
high-level features trained on a significant amount of data through deep-stacked layers in an end-to-end
manner. It works as a function that takes some inputs, such as images, and puts out the image
representations characterized by a vector. A common CNN model for fine-tuning is VGG-16 [10], and
its architecture can be seen from Table 2. For an intuitive understanding of what the CNN model
learns in each layer, please see References [19,37] for heatmap graphical explanation.

Table 2. VGG-16 configuration (shown in columns). Configuration depth increases from the left
(A) to the right (E) as more layers are added (added layers are shown in bold). Convolutional layer
parameters are denoted as “conv(receptive field size)-(number of channels)”. ReLU activation function
is omitted for simplicity.

ConvNet Configuration

A A-LRN B C D E

11 weight
layers

11 weight
layers

13 weight
layers

16 weight
layers

16 weight
layers

19 weight
layers

input (224 × 224 RGB image)

conv3-64 conv3-64
LRN

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

maxpool

conv3-128 conv3-128 conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

maxpool

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256
conv1-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

maxpool

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Reference [38] was the first work to exploit CNN in place-recognition systems as a feature extractor.
They used a pretrained CNN called Overfeat [39], which was originally proposed for ImageNet Large
Scale Visual Recognition Challenge 2013 (ILSVRC2013), and proved that advantages of deep learning
can shift to place-recognition tasks. Reference [36] provides an investigation on the performance of
CNN and SIFT on a descriptor-matching benchmark. Reference [37] comprehensively evaluated and
compared the utility and viewpoint-invariant properties of CNNs. They showed that features extracted
from middle layers of CNNs have good robustness against conditional changes, including illumination
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change, and seasonal and weather changes, while features extracted from top layers are more robust
to viewpoint changes. Features learnt by CNNs are proved to be versatile and transferable, i.e., even
though they were trained on a specific target task, they can be successfully deployed for other problems,
and often outperform traditional hand-engineered features [18]. However, their usage as black-box
descriptors in place recognition has so far yielded limited improvements. For example, visual cues that
are relevant for object classification may not benefit the place-recognition task. Reference [19] designed
a new CNN architecture based on VGG-16 and the VLAD representation; they removed all the fully
connected layers and plugged the VLAD layers into it by making it differentiable. The loss function
used in this paper is triplet loss, which can be seen in many other recognition tasks. Reference [14]
gathered a huge scene-centric dataset called “Places” containing more than 7 million images from
476 scene categories. However, scene recognition is fundamentally different from place recognition.
Reference [40] creates, for the first time, a large-scale place-centric dataset called SPED, containing
over 2.5 million images.

Though CNNs have the power to extract high-level features, we are far from making full use of
them. How to gather a sufficient amount of data for place recognition, and how to train a CNN model
in an end-to-end manner to automatically choose the optimal features to represent the image, are still
underlying problems to be solved.

4. Discussion and Future Work

Place recognition has made great advances in the last few decades, e.g., on the principles of how
animals recognize and remember places, and the relationship between places from a neuroscience
perspective [41]; a new way of describing places using convolutional neural networks, and a number
of datasets specifically for places were put forward. However, we are still a long way from a robust
long-term visual place-recognition system that can be applied well to a variety of scenarios of real-world
places. Hence, we highlight several promising avenues of ongoing and future research that are leading
us closer to this outcome.

Place recognition is becoming a hot research topic and it is benefiting from related ongoing works
in other fields, especially the enormous successes achieved in computer vision through deep-learning
techniques, e.g., image classification, object detection, and scene recognition. While features extracted
from pretrained CNNs on other vision tasks are shown to be transferable and versatile, they have,
so far, yielded unsatisfactory performance on place-recognition tasks. There is a high possibility that
we are still not fully exploiting the potential of CNNs. We can improve their performance in two
aspects. First, by gathering a sufficient amount of place-centric data covering various environments,
including illumination, weather, structure, seasons, and viewpoint changes. An alternative and reliable
source is Google Street View Time Machine. If you train a CNN on a small-size dataset, the model
usually works awfully on other datasets, since place recognition is dataset-dependent. One also needs
to retrain it when a new dataset is fed into it. Since one of the advantages of CNNs is to extract
representative features through Big Data, their state-of-the-art performance can be improved. Second,
designing optimized CNN architecture for place-recognition tasks. Real-world images from cameras
are usually high-resolution, whereas in many cases one needs to downscale the original images.
For example, the input size of VGG-16 is 224 × 224. Moreover, an architecture that is well-suited
for object detection may not fit well into place-recognition tasks since their visual cues are different.
Designing a good loss function is also essential to their features. Developments focused on the above
two problems would further improve the robustness and performance of existing deep-learning-based
place-recognition techniques.

Place-recognition systems can also benefit from ongoing research on object detection, scene
classification [42], and scene recognition [16]. Semantic context from a scene, interpreted as the “gist”
of the scene, can help to partition the search space when comparing similarities between image
representations, which ensures scalability and real-time processing towards real-world application.
Note that different places may share a common semantic concept that needs a further and more precise
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feature-mapping procedure. Objects such as pedestrians and trees should be avoided, while objects like
buildings and landmarks are important for long-term place recognition. Automatically determining
and suppressing features that lead to confusion in visual place-recognition systems would also improve
place-recognition performance.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
SIFT Scale Invariant Feature Transformation
SURF Speed Up Robust Features
VLAD Vector of Locally Aggregated Descriptors
BoW Bag-of-Words
FAST Features from Accelerated Segment Test
BRIEF Binary Robust Independent Elementary Features
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