
applied
sciences

Article

Fault Localization by Comparing Memory Updates
between Unit and Integration Testing of Automotive
Software in an Hardware-in-the-Loop Environment

Ki-Yong Choi and Jung-Won Lee *

Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, Korea; ki815kaisian@gmail.com
* Correspondence: jungwony@ajou.ac.kr; Tel.: +82-31-219-1813

Received: 21 September 2018; Accepted: 13 November 2018; Published: 15 November 2018 ����������
�������

Abstract: During the inspection stage, an integration test is performed on electronic automobile
parts that have passed a unit test. The faults found during this test are reported to the developer,
who subsequently modifies the source code. If the tester provides the developer with memory
usage information (such as functional symbol or interface signal), which works differently from
normal operation in failed Hardware-in-the-Loop (HiL) testing (even when the tester has no source
code), that information will be useful for debugging. In this paper, we propose a fault localization
method for automotive software in an HiL environment by comparing the analysis results of updated
memory between units and integration tests. Analyzing the memory usage of a normally operates
unit test, makes it possible to obtain memory-updated information necessary for the operation of
that particular function. By comparing this information to the memory usage when a fault occurs
during an integration test, erroneously operated symbols and stored values are presented as potential
root causes of the fault. We applied the proposed method to HiL testing for an OSEK/VDX-based
electronic control unit (ECU). As a result of testing using fault injection, we confirmed that the fault
causes can be found by checking the localized memory symbols with an average of 5.77%. In addition,
when applying this methodology to a failure that occurred during a body control module (BCM)
(which provides seat belt warnings) test, we could identify a suspicious symbol and find the cause of
the test failure with only 8.54% of localized memory symbols.

Keywords: electronic control unit (ECU); automotive software; fault localization;
Hardware-in-the-Loop (HiL) test; memory update information

1. Introduction

As the number of electronic control units (ECU) in automobiles increases, so does the functional
complexity of automotive software. Therefore, the possibility of systemic ECU problems also
increases [1]. Thus, testing has become a key process in the development of vehicle ECUs.
The automobile industry develops and manufactures the electronics and their software via original
equipment manufacturers (OEMs). Accordingly, a tester for the automobile company conducts an
acceptance or integration test on the ECU and automotive software (ECU/SW) developed by a separate
manufacturing company [2].

Figure 1 shows the process of electronic component development and testing utilized by the
automotive industry and OEMs. The developer receives the requirement from the designer and
develops the ECU/SW. The tester receives the developed ECU/SW and uses the Hardware-in-the-Loop
(HiL) simulator to test unit or integrated functions without source code. The faults detected during the
test are then reported to the developers for modification [3]. At this time, the test results that the tester
reports include only the test script and the corresponding pass/fail information (i.e., the expected

Appl. Sci. 2018, 8, 2260; doi:10.3390/app8112260 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8007-678X
https://orcid.org/0000-0001-8922-063X
http://www.mdpi.com/2076-3417/8/11/2260?type=check_update&version=1
http://dx.doi.org/10.3390/app8112260
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 2260 2 of 21

value for a test condition and the actual output value of the ECU/SW). Therefore, the developers need
to rebuild the same testing scenario to correct the reported failure. If the tester can provide debugging
information on the internal operations when a failure occurs, the developer can easily resolve the cause
of the failure [4].

Appl. Sci. 2018, 8, x FOR PEER REVIEW 2 of 22

that the tester reports include only the test script and the corresponding pass/fail information (i.e.,
the expected value for a test condition and the actual output value of the ECU/SW). Therefore, the
developers need to rebuild the same testing scenario to correct the reported failure. If the tester can
provide debugging information on the internal operations when a failure occurs, the developer can
easily resolve the cause of the failure [4].

Figure 1. Development and testing processes of ECU/SW by OEM. ECU/SW: electronic control
unit/automotive software; OEM: original equipment manufacturers; HiL: Hardware-in-the-Loop.

When developing embedded systems such as ECUs, developers can use existing debugging
tools to obtain internal operating information on particular software failures. However, those tools
are not available for the HiL testing of ECU/SWs for vehicles that the tester conducts for the following
reasons. First, an in-circuit emulator (ICE, for example, Trace32, Multi-ICE), which is generally used
as a debugging tool in an embedded system, requires a dedicated connector as a debugging interface.
In the case of a completed ECU, the debugging interface is rarely exposed to the exterior of the
component. If the debugging interface is not taken into consideration from the design stage of the
ECU, the debugging tool cannot be used to check internal operation during an ECU/SW HiL test [5].
Second, even if the ECU is modified to connect the debugging interface, internal operation
monitoring using debugging tools is unsuitable for the HiL test environment. The HiL test is based
on a test scenario of the test script and the host PC, the HiL simulator and the ECU/SW are organically
executed. In order to apply the method of step by step observation of the software using the break
point with the existing debugger, the entire HiL test environment should be suspended. Accordingly,
it is impractical to use the debugging tool to pause and observe a suspected buggy spot on a running
system [6].

There are studies that use software fault localization methods to acquire information needed for
debugging without directly using a debugging tool. The conventional method of software fault
localization has evolved to find faults efficiently based on source code [7]. However, the tester tests
the ECU/SW in a black box without source code. As a result, it is difficult to apply the conventional
source-code-based method of to HiL testing. Therefore, in order to understand the internal operation
when a fault occurs during the HiL test, a method that does not use the source code and the debugger
are needed without affecting the test flow performed on the test script basis.

Memory dump analysis can be used as a way to find the cause of a fault without the source code.
In the data-flow analysis, it is called DU chains (or DU pairs), where data is defined (D) and then
used (U) (i.e., “A = B + C”; A is “define;” B and C are “use”). Therefore, according to the DU chain,
the results of all right-hand side (RHS) expressions processed by the CPU are stored on the left-hand
side (LHS). Owing to the nature of these computer systems, the footprints of important data remain
in memory when the software is executed. The method used to analyze the memory dump is
involving analyzing the stack and variables at the moment when the fault occurred [8]. However, in

Figure 1. Development and testing processes of ECU/SW by OEM. ECU/SW: electronic control
unit/automotive software; OEM: original equipment manufacturers; HiL: Hardware-in-the-Loop.

When developing embedded systems such as ECUs, developers can use existing debugging tools
to obtain internal operating information on particular software failures. However, those tools are
not available for the HiL testing of ECU/SWs for vehicles that the tester conducts for the following
reasons. First, an in-circuit emulator (ICE, for example, Trace32, Multi-ICE), which is generally used as
a debugging tool in an embedded system, requires a dedicated connector as a debugging interface.
In the case of a completed ECU, the debugging interface is rarely exposed to the exterior of the
component. If the debugging interface is not taken into consideration from the design stage of the
ECU, the debugging tool cannot be used to check internal operation during an ECU/SW HiL test [5].
Second, even if the ECU is modified to connect the debugging interface, internal operation monitoring
using debugging tools is unsuitable for the HiL test environment. The HiL test is based on a test
scenario of the test script and the host PC, the HiL simulator and the ECU/SW are organically executed.
In order to apply the method of step by step observation of the software using the break point with the
existing debugger, the entire HiL test environment should be suspended. Accordingly, it is impractical
to use the debugging tool to pause and observe a suspected buggy spot on a running system [6].

There are studies that use software fault localization methods to acquire information needed
for debugging without directly using a debugging tool. The conventional method of software fault
localization has evolved to find faults efficiently based on source code [7]. However, the tester tests
the ECU/SW in a black box without source code. As a result, it is difficult to apply the conventional
source-code-based method of to HiL testing. Therefore, in order to understand the internal operation
when a fault occurs during the HiL test, a method that does not use the source code and the debugger
are needed without affecting the test flow performed on the test script basis.

Memory dump analysis can be used as a way to find the cause of a fault without the source code.
In the data-flow analysis, it is called DU chains (or DU pairs), where data is defined (D) and then
used (U) (i.e., “A = B + C”; A is “define;” B and C are “use”). Therefore, according to the DU chain,
the results of all right-hand side (RHS) expressions processed by the CPU are stored on the left-hand
side (LHS). Owing to the nature of these computer systems, the footprints of important data remain in
memory when the software is executed. The method used to analyze the memory dump is involving
analyzing the stack and variables at the moment when the fault occurred [8]. However, in the HiL test,

Appl. Sci. 2018, 8, 2260 3 of 21

a test failure occurs when the output of the ECU does not meet the expected value. Therefore, the test
failure determination and the occurrence of the fault may manifest at different times and it is difficult
to dump the memory by specifying the fault occurrence timing. Accordingly, the memory dump-based
debugging method cannot be applied as-is to the HiL test. If it is applied to the HiL test, it is necessary
to trace both the updated memory data during the test and the timing information on the fault
occurrence. For that reason, in the preliminary work [9], we developed a fault localization method
that utilizes an updated data frequency when the failure occurs. However, all update symbols derived
by the input without a clear criterion are presented as fault candidates. There is no guarantee that an
updated symbol will be associated with a fault while the input is reflected. In the opposite case, if the
test fails because important symbols are not updated, the defect candidate will not include the symbol
because it has no update frequency. Therefore, in addition to the memory update information available
at the time of the fault, a criterion for judging abnormal operation is required. If it is possible to
obtain the memory usage information from the ECU during normal operation, it can serve as reference
information to be observed in order to judge the cause of the fault in the memory-updated information
acquired at the time of fault.

In this paper, we propose a method of fault localization for automotive software in an HiL
environment. This is accomplished by comparing analysis results of updated memory between
a normal unit test and a failed integration test without the source code. First, analyzing the memory
usage of the unit test in normal operation can identify the memory update information required for
the operation on the function, such as used memory addresses, corresponding symbols, stored values
and updated frequency. The memory usage information of the identified unit test is compared with
the memory usage information at the time of the fault. The symbols necessary for the operation
of the specific function are compared and presented as fault candidates (Invalid updated or fixed
symbols and stored values). As a result, a tester at the OEM can provide the developer with the
fault occurrence time, malfunctioning symbols and stored values during an integration test in the
HiL environment. He can accomplish this by using the operation information from the unit test
without the source code and the debugging tools. The proposed method is applied to an HiL test of an
OSEK/VDX-based ECU/SW. As a result of testing using fault injection, we confirmed that fault causes
can be found by checking the localized memory symbols at an average of 5.77% by the proposed
method. In addition, when applying this methodology to a failure that occurred during a body control
module (BCM) (which provides seat belt warnings) test, we could identify suspicious symbols and
find the cause of the test failure with only 8.54% of localized memory symbols. In this paper, we can
provide debugging information for suspicious symbols and memory usage in an ECU/SW integration
test in the HiL environment.

This paper is organized as follows. In Section 2, we analyze HiL test limitations and existing fault
localization methods. In Section 3, we define the process of fault localization and the memory-updated
information that can be collected during HiL testing of ECUs. In Section 4, we propose a fault
localization method and in Section 5, we describe how the method is applied and then provide our
evaluation. In Section 6, we conclude the paper and present future work.

2. Related Work

To test electrical automotive parts, a tester uses an HiL simulator in a black box environment
without source code. In this environment, when a fault occurs, the tester can provide only limited
information, such as the test script and a pass/fail confirmation, to the developers who must do
the debugging. In this section, we examine the limitations of HiL testing, software fault localization
methods and the studies that have applied memory analysis to debugging.

2.1. Hardware-in-the-Loop (HiL) Testing for Automotive Software

The performance of automotive software is affected by both software and hardware problems.
Therefore, the software must be evaluated on actual hardware and its behavior must be tested and

Appl. Sci. 2018, 8, 2260 4 of 21

verified. The test is performed according to the overall integration level under development. The HiL
test is a method for evaluating the hardware on which software is installed [10]. The HiL test constructs
the physical environment in which the hardware operates with a simulator and evaluates whether the
hardware meets certain input and output requirements [6]. Figure 2 shows an example of an HiL test
environment. The host PC provides the test script to the HiL simulator. The HiL simulator then gives
an input signal to the system under test (SUT) based on the script and it confirms the result. If the
output value is equal to the expected value, a “pass” is delivered; otherwise, a “failure” is delivered to
the host PC. This process runs automatically based on the script. However, an HiL test that utilizes
such a simulator can only evaluate the output as the input of the defined SUT. In other words, if a fault
occurs, there is no information on the internal operation that causes the fault. The results only include
inputs that do not meet the requirements (i.e., the expected value—the oracle). Therefore, when a fault
occurs during an HiL test, it is necessary to hunt for the internal operation of the employed SUT.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 4 of 22

constructs the physical environment in which the hardware operates with a simulator and evaluates
whether the hardware meets certain input and output requirements [6]. Figure 2 shows an example
of an HiL test environment. The host PC provides the test script to the HiL simulator. The HiL
simulator then gives an input signal to the system under test (SUT) based on the script and it confirms
the result. If the output value is equal to the expected value, a “pass” is delivered; otherwise, a
“failure” is delivered to the host PC. This process runs automatically based on the script. However,
an HiL test that utilizes such a simulator can only evaluate the output as the input of the defined SUT.
In other words, if a fault occurs, there is no information on the internal operation that causes the fault.
The results only include inputs that do not meet the requirements (i.e., the expected value—the
oracle). Therefore, when a fault occurs during an HiL test, it is necessary to hunt for the internal
operation of the employed SUT.

Figure 2. HiL test environment.

Commonly used methods for debugging general embedded systems include an in-circuit
emulator (ICE) and a logic analyzer. The HiL test is based on a test script scenario. Debugging tools
that utilize ICE, such as Trace32 and Multi-ICE, require synchronization with the HiL simulator to
provide instruction-level control [5]. In addition, the HiL test of the integration process is intended
for completed parts, so ICE connectors may not be exposed; this makes it difficult to apply the
methodology to HiL testing. Logic analyzers are devices that capture I/O signals and observes the
timing relationship between the signals [11]. They can detect the failed signals by using the
relationship between the signals, time differences and so forth. It is easy to find the fault signal but
the fault signal is unsuitable for finding the internal cause that created the fault. Furthermore,
background knowledge at the level of I/O signals and operation timing is required and it is unlikely
that anyone other than a developer would have that level of expertise. Therefore, there is a need for
a method that can be applied to the HiL test for testers who perform integration testing of the software
installed on the completed hardware.

Figure 2. HiL test environment.

Commonly used methods for debugging general embedded systems include an in-circuit emulator
(ICE) and a logic analyzer. The HiL test is based on a test script scenario. Debugging tools that utilize
ICE, such as Trace32 and Multi-ICE, require synchronization with the HiL simulator to provide
instruction-level control [5]. In addition, the HiL test of the integration process is intended for
completed parts, so ICE connectors may not be exposed; this makes it difficult to apply the methodology
to HiL testing. Logic analyzers are devices that capture I/O signals and observes the timing relationship
between the signals [11]. They can detect the failed signals by using the relationship between the
signals, time differences and so forth. It is easy to find the fault signal but the fault signal is unsuitable
for finding the internal cause that created the fault. Furthermore, background knowledge at the level
of I/O signals and operation timing is required and it is unlikely that anyone other than a developer
would have that level of expertise. Therefore, there is a need for a method that can be applied to the HiL
test for testers who perform integration testing of the software installed on the completed hardware.

2.2. Software Fault Localization

Finding the location where a fault occurred during debugging is costly and time consuming [12].
Therefore, many studies have been conducted on fault localization methods. Among these methods,

Appl. Sci. 2018, 8, 2260 5 of 21

there is a technique that finds errors by using information related to the operating elements of the
program. Most methods are white-box-based methods that use a source code because a developer can
find and fix the cause of the fault. Thus, there are memory-based studies performed using software
footprints that can be applied to a black box without source code.

There is a method that locates faults by measuring the code executed by the program [13,14].
This method is called code-coverage-based fault localization (CBFL). Code coverage is one of the
test measures, which means that codes are covered during testing. For each statement measured in
each test case, suspected areas are calculated by coverage by pass or fail signals. The key idea is that
the code executed in the failed test case is the cause of the failure. The CBFL method presents the
rank of the statement in order of suspicion. Tarantula [13] and Ochiai [14] are typical methods used
for calculating the suspicion of CBFL. However, the CBFL method is unsuitable for testers in OEM
environments where the source code is difficult to obtain.

There is also a mutation-based fault localization (MBFL) method that utilizes the mutation of
the program. This method identifies suspected mutations and finds the point at which the fault
occurred with the statement that caused the mutation [15,16]. A mutation is created by modifying
only one statement. The mutation applies the test case that the original performed and kills if the
result is the same as the original. The remaining mutations are then mutations that affect the outcome.
The MBFL method calculates suspicion with statements that affect the outcome. Typical methods
include Metallaxis [15] and Museum [16]. The MBFL method has the disadvantage of creating
impractical levels of mutation by creating multiple mutations in each statement in the original program.
In order to solve this problem, studies have applied the CBFL method [17] or generate mutation
efficiently through test case optimization [18]. However, the MBFL method still has a disadvantage
in that it takes a significant amount of time to test with a large number of mutations. HiL testing is
unsuitable because it is difficult to control the execution speed differently from software testing.

In addition, there are fault location methods extended from the CBFL method that statistically
access characteristic elements of program execution. In Reference [19], statistically defines the density
and type of faults based on CBFL method and considers multiple faults present in the program as
interference rather than individual approaches. And in Reference [20], the PageRank algorithm is
applied to the existing CBFL method to weight the rank. These studies presented the statistical
approach to test the results and the effects of source code on faults with density and rank weights.
However, it is difficult to measure the covered source code in the HiL test, so the source-code-based
methods are not applicable.

However, analyzing the memory that has the execution trace of the program can grant access
to the fault without the source code. One of the traditional debugging methods involves analyzing
the memory dump. This method analyzes the behavior of the program based on how the memory
is used at the OS level. However, this method should support a memory dump at the OS level and
generally a memory dump occurs when the program terminates due to a serious fault. The HiL test
does not know when a fault occurs and the HiL test cannot pause for the memory dump because the
host PC, simulator and SUT work together according to the test script. Therefore, it is difficult to apply
it directly to an ECU/SW HiL test.

For this reason, we periodically dumped the memory in previous works for fault localization in
HiL tests [4,9,21]. These studies assume that a fault has occurred in the process of determining the
output by the input. Therefore, the timing of the interval in which the output is induced by the input
applied in the HiL simulator, the address updated in the interval and the corresponding symbol are
provided as fault candidates. However, these studies have two problems. The first is that all update
symbols derived by the input without a clear criterion are presented as fault candidates. There is no
guarantee that an updated symbol will be associated with a fault while the input is reflected. The other
problem concerns the opposite case. The fault candidate does not include the symbol if the test fails
due to not updating the important symbol. Therefore, in addition to the memory update information at
the time of the fault, a criterion for judging abnormal operation is required. By comparing the memory

Appl. Sci. 2018, 8, 2260 6 of 21

usage at the failed operation in a specific function with the memory usage in normal operation, it is
possible to check the memory which is used incorrectly (invalid or fixed symbols and stored values).
As a result, it is necessary to compare the memory usage between the unit and integration tests in
order to obtain debugging information regarding faults that occur during the HiL integration test. It is
difficult to use the source code and existing debugging tools to obtain this information.

3. Preparations for Fault Localization

This section describes the overall process of the updated memory-based fault localization method
and explains how to construct memory-updated information by processing available test data and
memory usage without source code.

3.1. Fault Localization Process

In an integration test, the ECUs that have passed unit tests are inspected under various conditions.
As a result of the integration test, the ECU can be divided into “pass” or “fail” categories according
to the test case. In the “fail” case, the ECU has operated normally and passed the unit test but faults
were found in the integration test. In this paper, we focus on fault localization in the integration test by
using memory information that normally operates during the unit test. Figure 3 shows the process of
fault localization using memory-updated information.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 22

information at the time of the fault, a criterion for judging abnormal operation is required. By
comparing the memory usage at the failed operation in a specific function with the memory usage in
normal operation, it is possible to check the memory which is used incorrectly (invalid or fixed
symbols and stored values). As a result, it is necessary to compare the memory usage between the
unit and integration tests in order to obtain debugging information regarding faults that occur during
the HiL integration test. It is difficult to use the source code and existing debugging tools to obtain
this information.

3. Preparations for Fault Localization

This section describes the overall process of the updated memory-based fault localization
method and explains how to construct memory-updated information by processing available test
data and memory usage without source code.

3.1. Fault Localization Process

In an integration test, the ECUs that have passed unit tests are inspected under various
conditions. As a result of the integration test, the ECU can be divided into “pass” or “fail” categories
according to the test case. In the “fail” case, the ECU has operated normally and passed the unit test
but faults were found in the integration test. In this paper, we focus on fault localization in the
integration test by using memory information that normally operates during the unit test. Figure 3
shows the process of fault localization using memory-updated information.

Figure 3. Process of fault localization through analysis of updated memory.

At the first step, we perform HiL testing and data collection. As a result, we collect test results,
test scripts, memory data and executable files of the software used for testing. Next, we perform static
analysis of the executable file to extract the symbol names and their assigned addresses. Then, we
analyze the memory snapshots that are periodically dumped and compute the update frequency of
the specific address. In this step, the analyzed result is used to map the assigned addresses and
symbols and to generate memory update information for each address. The third step identifies the
frame range of memory data that responds to the input of the function being tested. Here, there are
two types of symbols: normally operated symbols and symbols suspected of operating abnormally
within the frame range. The last step compares both memory update information of the previous
stage. If the suspicious symbols are different from the memory-updated information in normal

Figure 3. Process of fault localization through analysis of updated memory.

At the first step, we perform HiL testing and data collection. As a result, we collect test results,
test scripts, memory data and executable files of the software used for testing. Next, we perform
static analysis of the executable file to extract the symbol names and their assigned addresses.
Then, we analyze the memory snapshots that are periodically dumped and compute the update
frequency of the specific address. In this step, the analyzed result is used to map the assigned
addresses and symbols and to generate memory update information for each address. The third step
identifies the frame range of memory data that responds to the input of the function being tested.
Here, there are two types of symbols: normally operated symbols and symbols suspected of operating
abnormally within the frame range. The last step compares both memory update information of
the previous stage. If the suspicious symbols are different from the memory-updated information in
normal operation, they can be regarded as abnormal; these symbols are called fault candidates. In the
last stage, the memory-updated information on symbols determined to be abnormal is provided as

Appl. Sci. 2018, 8, 2260 7 of 21

the fault candidates. The key is to find the fault candidates so that the developers can use them as
debugging information.

3.2. Data Collection

In order to provide debugging information for automotive ECU/SW faults, we collect the
following three types of data and extract important information from them during the HiL Test.
First, we collect test data related to the experiments performed, such as test results and test scripts.
The results and scripts, including the pass/fail testing criteria, are the basis for distinguishing between
normal operation and failure operation and the script contains the I/O specification of the tested
function. Second, we collect the executable file of the software running on the ECU. Static analysis
of the executable file provides the basis for identifying the symbolic name of the allocated address,
which is essential information. This information appears in the form of a pair (address, symbol-name).
Finally, we examine all of the raw data by dumping the memory. Because raw memory data is difficult
to understand, memory usage can be checked as to how each symbol has changed over time using the
symbols obtained from the executable file.

In the fault localization process, the first step collects test data and raw memory data and prepares
them for analysis. The HiL test environment is modified to collect raw memory data and periodically
collects memory during testing. In addition, the test result is confirmed when the test is finished and
test specifications are analyzed in test scripts.

We have added a data collector and a test agent for obtaining memory data from the HiL test
environment described in Section 2. In Figure 4, a test executor is expressed as a program that handles
the test scripts instead of the host PC in the existing HiL test environment. A data collector and a test
agent are responsible for collecting memory data. The data collector collects memory data from the
host PC and determines whether they have been updated based on the changes in values. The test
agent sends memory data within the address range to be observed in the SUT during the test time
according to the request of the data collector. The communication between the test agent and the data
collector uses a vehicle communication network, such as a CAN.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 22

operation, they can be regarded as abnormal; these symbols are called fault candidates. In the last
stage, the memory-updated information on symbols determined to be abnormal is provided as the
fault candidates. The key is to find the fault candidates so that the developers can use them as
debugging information.

3.2. Data Collection

In order to provide debugging information for automotive ECU/SW faults, we collect the
following three types of data and extract important information from them during the HiL Test. First,
we collect test data related to the experiments performed, such as test results and test scripts. The
results and scripts, including the pass/fail testing criteria, are the basis for distinguishing between
normal operation and failure operation and the script contains the I/O specification of the tested
function. Second, we collect the executable file of the software running on the ECU. Static analysis of
the executable file provides the basis for identifying the symbolic name of the allocated address,
which is essential information. This information appears in the form of a pair (address, symbol-
name). Finally, we examine all of the raw data by dumping the memory. Because raw memory data
is difficult to understand, memory usage can be checked as to how each symbol has changed over
time using the symbols obtained from the executable file.

In the fault localization process, the first step collects test data and raw memory data and
prepares them for analysis. The HiL test environment is modified to collect raw memory data and
periodically collects memory during testing. In addition, the test result is confirmed when the test is
finished and test specifications are analyzed in test scripts.

We have added a data collector and a test agent for obtaining memory data from the HiL test
environment described in Section 2. In Figure 4, a test executor is expressed as a program that handles
the test scripts instead of the host PC in the existing HiL test environment. A data collector and a test
agent are responsible for collecting memory data. The data collector collects memory data from the
host PC and determines whether they have been updated based on the changes in values. The test
agent sends memory data within the address range to be observed in the SUT during the test time
according to the request of the data collector. The communication between the test agent and the data
collector uses a vehicle communication network, such as a CAN.

Figure 4. Data collector in HiL testing.

When the HiL test is finished, the test results and the script are collected as data. The test reports
that the developer receives from the tester for debugging includes metadata about the test, such as
the date/time of the test, the result and the test script. Through the test script, the developer recognizes
the occurrence of the fault, reproduces the fault condition and starts debugging. Therefore, it is
possible to extract the meta information and specification of the test by analyzing the collected test
script and the test result. The test script in Figure 2 contains the test conditions and the expected value
to check after the required operation time. The “write” command inputs the test condition into the
SUT and the “inspect” command checks the expected value and the output value from the SUT. By

Figure 4. Data collector in HiL testing.

When the HiL test is finished, the test results and the script are collected as data. The test reports
that the developer receives from the tester for debugging includes metadata about the test, such as the
date/time of the test, the result and the test script. Through the test script, the developer recognizes the
occurrence of the fault, reproduces the fault condition and starts debugging. Therefore, it is possible
to extract the meta information and specification of the test by analyzing the collected test script and
the test result. The test script in Figure 2 contains the test conditions and the expected value to check
after the required operation time. The “write” command inputs the test condition into the SUT and
the “inspect” command checks the expected value and the output value from the SUT. By analyzing
the test script in this manner, it is possible to identify the function being tested by the signal name.
The data that can be acquired through the test are summarized in Table 1 below. The test case has I/O
information of the function to be inspected and the test script includes a series of test cases.

Appl. Sci. 2018, 8, 2260 8 of 21

Table 1. Example of test information.

Type Content Example

Script ID Index number of test script #1
Script Name Name of test script TS_RoomLamp

Date Date the test was performed 17 March 2018 12:00:30
Case ID Index number of test case in the test script #1-2-1
Result Pass or Fail Fail

Test condition (Write) Input signal to the SUT INPUT_A, INPUT_B, ...
Expected value

(Inspect) Signals to check on the SUT SIGNAL_A,
SIGNAL_B, ...

3.3. Data Analysis

In Figure 3, the second step analyzes the updated memory data and the executable file.
The amount of memory data collected depends on the set range and time but the amount collected
over a period of tens milliseconds is too enormous to check raw data values. Therefore, we focus on
the symbols with the values updated by input stimulus. As explained in the Introduction, the results
of all right-hand side (RHS) expressions processed by the CPU are stored on the left-hand side (LHS)
according to the DU chain. Therefore, we focus on LHS symbols with the updated values.

3.3.1. Static Analysis of the Execution File

The executable file is statically analyzed to extract execution information from the software.
The tester receives an executable file from the developer in a binary form rather than source code
to test an automotive ECU/SW. To statically analyze an executable file, a binary utility is used [22].
For instance, the Objdump is used for the memory section table and the NM is used for the symbol list.
First, we have to obtain a memory section table, which provides memory partitioning information
based on usage, including structure information used by the executable. Figure 5a, which is an
example of a memory section table, shows the section name, the size of each section, the start address
(Virtual Memory Address, VMA) and characteristics such as alignment and flags. This section table
contains information on the address range to be dumped. In the figure, “.text” in 1© indicates the
part where code is loaded on memory and 2© is a section for variables used in software execution.
The section of “.data” is for the variables with initial values and “.bss” is for the variables without initial
values. The variable sections that can be updated with values that correspond to LHS are dumped and
analyzed. At this point, our method focuses on the value changes in the address. Therefore, there is
a limit to not using static addresses such as local variables in the stack and dynamic allocation variables
in the heap. However, in the coding rules (MISRA-C: 2004 Rule 18.3, 20.4) for automotive software,
it is recommended that memory should not be reused or dynamically allocated [23]. In this paper,
we propose a fault localization method for static addresses only.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 22

analyzing the test script in this manner, it is possible to identify the function being tested by the signal
name. The data that can be acquired through the test are summarized in Table 1 below. The test case
has I/O information of the function to be inspected and the test script includes a series of test cases.

Table 1. Example of test information.

Type Content Example
Script ID Index number of test script #1

Script Name Name of test script TS_RoomLamp
Date Date the test was performed 17 March 2018 12:00:30

Case ID Index number of test case in the test
script #1-2-1

Result Pass or Fail Fail
Test condition (Write) Input signal to the SUT INPUT_A, INPUT_B, ...

Expected value
(Inspect)

Signals to check on the SUT SIGNAL_A,
SIGNAL_B, ...

3.3. Data Analysis

In Figure 3, the second step analyzes the updated memory data and the executable file. The
amount of memory data collected depends on the set range and time but the amount collected over
a period of tens milliseconds is too enormous to check raw data values. Therefore, we focus on the
symbols with the values updated by input stimulus. As explained in the Introduction, the results of
all right-hand side (RHS) expressions processed by the CPU are stored on the left-hand side (LHS)
according to the DU chain. Therefore, we focus on LHS symbols with the updated values.

3.3.1. Static Analysis of the Execution File

The executable file is statically analyzed to extract execution information from the software. The
tester receives an executable file from the developer in a binary form rather than source code to test
an automotive ECU/SW. To statically analyze an executable file, a binary utility is used [22]. For
instance, the Objdump is used for the memory section table and the NM is used for the symbol list.
First, we have to obtain a memory section table, which provides memory partitioning information
based on usage, including structure information used by the executable. Figure 5a, which is an
example of a memory section table, shows the section name, the size of each section, the start address
(Virtual Memory Address, VMA) and characteristics such as alignment and flags. This section table
contains information on the address range to be dumped. In the figure, “.text” in ① indicates the part
where code is loaded on memory and ② is a section for variables used in software execution. The
section of “.data” is for the variables with initial values and “.bss” is for the variables without initial
values. The variable sections that can be updated with values that correspond to LHS are dumped
and analyzed. At this point, our method focuses on the value changes in the address. Therefore, there
is a limit to not using static addresses such as local variables in the stack and dynamic allocation
variables in the heap. However, in the coding rules (MISRA-C: 2004 Rule 18.3, 20.4) for automotive
software, it is recommended that memory should not be reused or dynamically allocated [23]. In this
paper, we propose a fault localization method for static addresses only.

Figure 5. Memory section table and symbol List: (a) Memory section table; (b) Symbol list.

Second, obtain the symbol list that contains the actual names of each address for use in displaying
fault candidates. The symbol name obtained is optionally used to help understand the result of fault
localization. As shown in Figure 5b, the list of symbols acquired from a binary file using static analysis
includes the size, starting address, type and name of the symbol. The symbol type D in 3© represents

Appl. Sci. 2018, 8, 2260 9 of 21

the “.data” section in the section table of 2©. The first column is the address where the symbol is and the
next column is the size of the symbol in bytes. Thus, when a symbol list is interpreted, a symbol named
UART_BAUDRATE will be the symbol that is 4 bytes in a data section that starts at address 0x2000.
That is, even if there is no source code, we can obtain the name, size and memory location of the symbol
used in the source code by extracting the symbol list through the static analysis. However, some build
options cannot extract the symbol lists. Therefore, the proposed method displays only the memory
address when the symbol list cannot be extracted.

3.3.2. Computation of Memory-Updated Information

The HiL tests require a periodic memory dump to trace the running software. Because the tester
is prohibited from using additional storage space inside the ECU for testing, we previously developed
a method to transfer large amounts of data while taking into account the communication load of
an ECU [21]. Using this method, the memory sections for variables can be dumped periodically
without data loss and beyond the bandwidth of CAN. The memory data of the k-th dump is defined as
a k-frame at the interval of the period T of the main task of the system from the 0-frame in Equation (1)
and is represented by Fk.

Fk ≡ {∀VA, k|VA, k is the value of the address A at time T × k; k is an index number} (1)

Fk is a set of values corresponding to each address at the point of dumping. Therefore, Fk can be
regarded as a memory snapshot at the k-th point. The ECU state at a specific point can be confirmed
using this memory snapshot. By examining the values of memory stored in the frame, we can trace
the ECU states at time intervals. A change in value in a specific address means that a new value has
been updated to that location. This indicates that the symbol corresponding to that address was used
as a left-hand side variable in the program. Accordingly, “MU (Memory Updated)” is defined as
Equation (2):

MUA, k =

{
1, VA, k−1 6= VA, k
0, VA, k−1 = VA, k

; k is a frame− index number (2)

In Equation (2), the memory updated (MUA, k) compares VA, k−1 with VA, k. If both values are
equal, the value is 0; otherwise, the value is 1. If MUA, k is 1, it means that the address A is updated in
the k-frame and that the ECU has performed an operation related to the address A. By accumulating
the MU between specific ranges, we know how frequent the address is used. We refer to it as the
memory-updated frequency (MUFA, R) which is defined as shown in Equation (3).

MUFA, R =
R.end

∑
k=R.start

MUA,k; R is a set of the frame index between R.start and R.end (3)

MUFA, R represents the number of times the updates occurred from the range of the R.start to
the R.end of the frame index to which address A is to be observed. If we trace the MUFA, R for each
address, we can know the addresses used during the operations that are performed over the specific
frame range (R).

Equation (4) defines the memory data (MDA, R) using the previous equation. In Equation (4),
memory data (MDA, R) includes the address A, the update frequency of the address in the range R of the
frame observed (MUFA, R) and the value set of each frame of the address. We define memory-updated
information (MUI) as shown in Equation (5), together with the symbol name (SymA) of the address A
obtained by static analysis and MDA, R.

MDA, R ≡ {A, MUFA, R, {VA, k}|k ∈ R} (4)

Appl. Sci. 2018, 8, 2260 10 of 21

MUIA, R ≡
{
(MDA, R, SymA)

∣∣∣∣∣ SymA is the symbol name of the address A,
R is a set of the frame index

}
(5)

Algorithm 1 shows an algorithm for generating MUI. In line 7–12, the update is determined by
the change of the value in each frame according to Equation (2) and the update frequency is calculated
in line 13 how many times the value has changed in the full range according to Equation (3). For the
updated memory according to Equations (4) and (5), the symbol, the address, the update frequency
and the values in each frame are stored as line 15. The MUI can be obtained by repeating lines
6–16 for all addresses. As a result, memory usage such as the memory addresses, the corresponding
symbol name, the changes in values and the updated frequency can be identified by the analyzed
MUI. Therefore, we are ready to proceed with the fault localization by comparing the memory usage
of normal and failed operation.

Algorithm 1. The Algorithm for Memory Updated Information

INPUT: value set, symbol list, frame range(R)
OUTPUT: MUI, memory updated information

1: val(α,k) ≡ the value of the address α at k-frame
2: MU(α,k) ≡ the value of the address α changed in k-frame
3: MUF(α,R) ≡ the frequency of the MU(α,k) in R range
4: sym(α) ≡ symbol name of the address α in symbol list
5: MUI(α,R) ≡ the memory updated information of the address α in R range

6: FOR each address α DO

Update Decision:
7: FOR each frame k of frame range(R) DO
8: IF value change of address α in frame k THEN
9: MU(α,k)← 1: updated(true)
10: ELSE
11: MU(α,k)← 0: non-updated(false)
12: END FOR

Consist Memory Updated Information:
13: MUF(α,R)← sum of MU in range R
14: sym(α)← find α in the symbol list for displaying
15: MUI(α,R)← {address α, memory updated frequency, value set, symbol name}
16: END FOR

4. Fault Localization Method Using Memory Updates

By collecting the memory usage of an ECU/SW that has passed its unit test, normal operating
criteria can be created. An integration test is conducted to verify the problems that might occur
in the integration of the unit functions of an ECU that has already passed a unit test. In other
words, the integration between unit functions checks the transfer of the values, exception handling,
timing delay and so on. Faults that may occur in this integration test can be compared with the criteria
for normal operation to determine the failed signal. This section describes how data is prepared to
apply the proposed method for fault localization and it explains how to identify the major symbols
involved in the operation of the function. Finally, we propose a primary algorithm for finding fault
candidates for integration tests using the normal operation symbols of unit tests.

Appl. Sci. 2018, 8, 2260 11 of 21

4.1. Data from Test Specification and Memory Updates

In the previous section, we prepare memory-updated information (MUI) by accumulating the
frequency of the specific address and by extracting the symbol names from the executable file.
Additionally, we have to obtain a test specification such as show the number of inputs, the test
condition, the expected value and the input interval from the test script.

Depending on the test suite, the details of the script may vary. However, the test condition and
the expected values are essential. The test condition is input after initialization to confirm the normal
operation of the function. The interval means time duration between inputs—between initialization
and input or between inputs. The following is summarized.

• Number of Input(Nin)—The number of inputs including initialization in the test script
• Input interval(Tin)—Time interval between inputs
• Test condition—Input values including initialization of input signal
• Expected value—Expected value including initial value of output signal

Figure 6 shows an example of MUI. Figure 6a,b are the memory snapshots in color. Figure 6a
shows a set of MUA, n of n-th frame in red, which means “updated”. The addresses of the white area
that look like the background means there are no changes in the values at that point of n-th frame. In
(b), it is possible to identify the updated frequency of each address in the range of the full-frame. The
updated frequency is visualized using different color palettes (white, yellow, green, blue, red). As
frequency increases, the color changes from white to red and turns red if an address is updated on all
frames. In (c), you can see the additional details of the MUI. The symbol “request” in the first line is
assigned to address 0x2037 and the total number of updates is 10 because the value is continuously
changed from #488 to #497 in every frame.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 22

Additionally, we have to obtain a test specification such as show the number of inputs, the test
condition, the expected value and the input interval from the test script.

Depending on the test suite, the details of the script may vary. However, the test condition and
the expected values are essential. The test condition is input after initialization to confirm the normal
operation of the function. The interval means time duration between inputs—between initialization
and input or between inputs. The following is summarized.

• Number of Input(Nin)—The number of inputs including initialization in the test script
• Input interval(Tin)—Time interval between inputs
• Test condition—Input values including initialization of input signal
• Expected value—Expected value including initial value of output signal

Figure 6 shows an example of MUI. Figure 6a,b are the memory snapshots in color. Figure 6a
shows a set of MUA, n of n-th frame in red, which means “updated”. The addresses of the white area
that look like the background means there are no changes in the values at that point of n-th frame. In
(b), it is possible to identify the updated frequency of each address in the range of the full-frame. The
updated frequency is visualized using different color palettes (white, yellow, green, blue, red). As
frequency increases, the color changes from white to red and turns red if an address is updated on
all frames. In (c), you can see the additional details of the MUI. The symbol “request” in the first line
is assigned to address 0x2037 and the total number of updates is 10 because the value is continuously
changed from #488 to #497 in every frame.

Figure 6. Example of Analyzed Memory Updated Information: (a) n-th frame; (b) Full Range of
Frames; (c) MUIA, R (A = {a|MUFa, R > 0}, R = [488,497]).

4.2. Identification of Input-Driven Updated Range

Now, we have to focus on reducing the number of the captured memory frames. Because we use
the MUI, we do not need entire frames that are periodically collected. In Figure 3, the third step
identifies the Input-Driven Updated Range (IDUR). When the software is executed, the footprint
remains in memory. The software is executed according to the input signal provided by the simulator
and input-driven output can be traced by analyzing the memory. In Reference [9], we proposed the

Figure 6. Example of Analyzed Memory Updated Information: (a) n-th frame; (b) Full Range of Frames;
(c) MUIA, R (A = {a|MUFa, R > 0}, R = [488,497]).

4.2. Identification of Input-Driven Updated Range

Now, we have to focus on reducing the number of the captured memory frames. Because we
use the MUI, we do not need entire frames that are periodically collected. In Figure 3, the third step
identifies the Input-Driven Updated Range (IDUR). When the software is executed, the footprint
remains in memory. The software is executed according to the input signal provided by the simulator
and input-driven output can be traced by analyzing the memory. In Reference [9], we proposed the
IDUR identification method using a moving average technique and tracing the trend of updating

Appl. Sci. 2018, 8, 2260 12 of 21

memory through the entire frames. However, it is difficult to obtain the exact updated range because
it is identified only by trend without precise criteria. Thus, we propose a new algorithm that can
improve the method of IDUR identification to obtain an exact range. Figure 7 compares the IDUR
identified by the existing moving average method of [9] and the proposed method.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 22

IDUR identification method using a moving average technique and tracing the trend of updating
memory through the entire frames. However, it is difficult to obtain the exact updated range because
it is identified only by trend without precise criteria. Thus, we propose a new algorithm that can
improve the method of IDUR identification to obtain an exact range. Figure 7 compares the IDUR
identified by the existing moving average method of [9] and the proposed method.

Figure 7. Identification of Input-Driven Updated Range.

The blue line indicates the number of updated addresses throughout the frame and the dashed
line shows the trend of the number using the moving average method. Looking at the 50th frame of
the graph, you can see that the number of updated addresses increases and the number of updates
increases again near the 250th frame after 200 frames (Tin = 200). This is obvious evidence that the
input signal reflects the update of the memory value. Therefore, in order to handle only the data
driven by the input, we need to find the exact range called IDUR. The algorithm of the proposed
IDUR identification method is shown in Algorithm 2.

Algorithm 2. The Algorithm for Input Driven Updated Range

INPUT: Nin, Number of Input,
 Tin, Input Interval
OUTPUT: IDUA, Input Driven Updated Address,

IDUR, Input Driven Updated Range

1: MUF (α,R) ≡ the frequency of the MU(α,k) in R range
2: MU(α,k) ≡ the value of the address α changed in k-frame

Set Input Driven Updated Address:

3: FOR each address α DO

4: if MUF(α,R) ≤ Nin then
5: if updated frames interval = Tin then

6: IDUA ← α

7: END FOR

Identify Input Driven Updated Range:

8: FOR each input j of Nin DO

9: Kj ≡ {∀kj|MU(α, kj) = 1, α in IDUA} //

10: R.start ← min(Kj) // first updated frame of input number j
11: R.end ← max(Kj) // last updated frame of input number j
12: IDUR[j] = {index of IDUR, R.start, size of R range}
13: END FOR

Figure 7. Identification of Input-Driven Updated Range.

The blue line indicates the number of updated addresses throughout the frame and the dashed
line shows the trend of the number using the moving average method. Looking at the 50th frame of
the graph, you can see that the number of updated addresses increases and the number of updates
increases again near the 250th frame after 200 frames (Tin = 200). This is obvious evidence that the
input signal reflects the update of the memory value. Therefore, in order to handle only the data
driven by the input, we need to find the exact range called IDUR. The algorithm of the proposed IDUR
identification method is shown in Algorithm 2.

Algorithm 2. The Algorithm for Input Driven Updated Range

INPUT: Nin, Number of Input,
Tin, Input Interval

OUTPUT: IDUA, Input Driven Updated Address,
IDUR, Input Driven Updated Range

1: MUF (α,R) ≡ the frequency of the MU(α,k) in R range
2: MU(α,k) ≡ the value of the address α changed in k-frame

Set Input Driven Updated Address:
3: FOR each address α DO
4: if MUF(α,R) ≤ Nin then
5: if updated frames interval = Tin then
6: IDUA← α

7: END FOR

Identify Input Driven Updated Range:
8: FOR each input j of Nin DO
9: Kj ≡ {∀kj|MU(α, kj) = 1, α in IDUA} //
10: R.start←min(Kj) // first updated frame of input number j
11: R.end←max(Kj) // last updated frame of input number j
12: IDUR[j] = {index of IDUR, R.start, size of R range}
13: END FOR

First, we find an address with MUF smaller than the number of inputs (Nin) written in the
test script (line 4). Here, the interval of the updated frame is equal to the input time interval (Tin).
That is, it finds an address that is updated at the same time interval of the input. We define a set of

Appl. Sci. 2018, 8, 2260 13 of 21

the addresses as Input-Driven Updated Addresses (IDUA) (lines 5–6). The identification method of
IDUR is based on the order of the updated frames of the IDUA and determines the frame range from
the first frame (R.start) to the last frame (R.end) of each order as the IDUR (lines 8–13). As a result,
the IDUR identified by the proposed algorithm is determined as shown by the shaded area in Figure 7.
Therefore, we can focus on only input-driven data by reducing the number of captured memory frames
using the algorithm of IDUR identification.

4.3. Comparison of Difference between Memory Updates of Normal and Failed Operations

In the fourth step, the normal operation executed during the unit test is compared with the
failed operation during the integration test. The memory usage pattern generated from the normal
operation of each unit test has already been obtained through the previous steps. We define the
IDUA of the unit test as functional symbols for the normal operation of the unit function. That is,
the IDUA reacts directly when the function is activated by the input. Therefore, we can find the
cause of the fault by observing the IDUA of the unit function within the IDUR of integration test.
When analyzing the memory symbols, there are symbols required during the function operation,
infrastructure symbols used for OS operation and communication and temporary symbols such as
buffers and counters [24]. Therefore, the MUI of the integrated function is composed of IDUA of each
unit functions and integrated function, the infrastructure symbols and the temporary symbols. If the
integration test is operating normally, the IDUA of the unit function should behave similar to unit test.

As the fault candidates, we present the MUI of the IDUA identified in each unit function and the
failed integration test. In Equation (6), we define the fault candidates (FC) as the MUI, which consists
of the IDUAs within the frame range-IDUR, the address of the symbol, the update frequency and a set
of values for each frame. The fault candidates (FC) are defined by Equation (6).

FC ≡ {MUIa,IDUR|a ∈ {IDUA of the Integrated Function∪ IDUA of each Unit Function}} (6)

Finding fault using memory updated information has two implications. One is that the update is
not made at the time when the update should be made. The other is that the update is made at the
correct time but it is updated to the wrong value. Therefore, we proposed a two-step fault localization
method using the fault candidates. The first step is to find the “not updated” symbols where the value
of MUF is zero in IDUR. These symbols are symbols that are not used as the integrated function among
the IDUA of the unit functions or are affected by the fault. The next step is to check the revised value
of the updated symbols whose MUF is one or more in the IDUR. Based on the value, you can check
which symbol has been updated to the incorrect value. In other words, it is possible to find faults by
first identifying symbols that are not updated and then by identifying the cause of the failure operation
with the changed values of the updated symbols.

For example, the “Emergency Stop Signal” (ESS) is a function that quickly flashes the brake
lamp in an emergency stop situation. Specifically, the “Advanced ESS” (Adv ESS) is connected to the
function that automatically turns on the emergency lamp when the vehicle is completely stopped.
At this time, the “Adv ESS” consists of an integrated function of “ESS” and “Emergency Signal”.
Therefore, by observing the IDUA of the integrated function, the cause of the fault in the “Adv ESS”
can be found. Figure 8 presents an example of fault candidates for the “Adv ESS”. It shows the
MUI for the IDUA of each “Emergency Signal” and “ESS” from the top of Figure 8. Each IDUA
(from function A and B) is updated in order of the cmd* symbol, the flag* symbol and the status*
symbol after the update of the mCan* symbol. Figure 8 also shows fault candidates for the integrated
functions. The cells highlighted in yellow are the values that have changed in the address and the
symbols highlighted as the shaded bars are the symbols that were not updated. The FC contains the
union of IDUA of each unit function and the symbols belonging to each unit function are marked as a©
and b©. Among these symbols, the symbols marked with b© have been similarly updated for unit B and
the integrated function but the symbols with a©marks are not similar. There are symbols highlighted

Appl. Sci. 2018, 8, 2260 14 of 21

by the shaded bar in the symbols marked a© and when you look at the highlighted cell of the symbol,
you can see that the value of flagIndicatorLamp has been changed from 96 to 192. Therefore, the “ESS”
(function B) is operated normally but it can be seen that a fault has occurred by connecting to the
“Emergency Signal” (function A).

Appl. Sci. 2018, 8, x FOR PEER REVIEW 14 of 22

B and the integrated function but the symbols with ⓐ marks are not similar. There are symbols
highlighted by the shaded bar in the symbols marked ⓐ and when you look at the highlighted cell
of the symbol, you can see that the value of flagIndicatorLamp has been changed from 96 to 192.
Therefore, the “ESS” (function B) is operated normally but it can be seen that a fault has occurred by
connecting to the “Emergency Signal” (function A).

Figure 8. Example of Finding the Faults in the “Adv Emergency Stop Signal”.

5. Evaluation

In this section, we evaluate the proposed method in both environments. First, a fault is injected
into the HiL test environment of the OSEK/VDX-based ECU using the mutation technique and it is
confirmed that the fault is included in the fault candidates. In addition, we analyze fault candidates
for two types of faults: fixed (called “not updated”) symbols and invalid values. Next, it also
evaluates whether the fault candidate includes the cause of failure when applying a warning test for
seat belt usage, which is a failed test case of BCM.

5.1. Testbed for Fault Injection

For the evaluation, we have constructed the SUT with an NXP MC9S12X [25] family ECU and
OSEK/VDX-based SW. Figure 9 shows the HiL environment used for testing. As shown in the figure,
the environment consists of an SUT with three ECUs, a test executor, a test interface and a monitoring
system that collects and stores memory. Consisting of three separate ECUs, the SUT has 10 unit
functions that handle steering and forward functions (N1), communication and vehicle propulsion
(N2) and peripheral sensing and rearward functions (N3). Therefore, the memory region used by
each unit function is statically allocated to each node.

Figure 8. Example of Finding the Faults in the “Adv Emergency Stop Signal”.

5. Evaluation

In this section, we evaluate the proposed method in both environments. First, a fault is injected
into the HiL test environment of the OSEK/VDX-based ECU using the mutation technique and it is
confirmed that the fault is included in the fault candidates. In addition, we analyze fault candidates
for two types of faults: fixed (called “not updated”) symbols and invalid values. Next, it also evaluates
whether the fault candidate includes the cause of failure when applying a warning test for seat belt
usage, which is a failed test case of BCM.

5.1. Testbed for Fault Injection

For the evaluation, we have constructed the SUT with an NXP MC9S12X [25] family ECU and
OSEK/VDX-based SW. Figure 9 shows the HiL environment used for testing. As shown in the figure,
the environment consists of an SUT with three ECUs, a test executor, a test interface and a monitoring
system that collects and stores memory. Consisting of three separate ECUs, the SUT has 10 unit
functions that handle steering and forward functions (N1), communication and vehicle propulsion
(N2) and peripheral sensing and rearward functions (N3). Therefore, the memory region used by each
unit function is statically allocated to each node.

Appl. Sci. 2018, 8, 2260 15 of 21

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 22

Figure 9. HiL test environment.

The fault is injected by the mutation method [26]. Because the proposed method targets faults
after a successful unit test is completed, the fault to be injected must pass the unit test but fail the
integration test. In Table 2, the 80 C language mutation operators are classified according to their
applicability to each function and the passage of the unit test is confirmed. Table 3 shows the faults
injected for each function. In Table 3, we did not use VTWD and ORRN for fault injection. VTWD
mutates the variable by adding or subtracting 1, so the result is similar to CGCR. ORRN mutates a
relational operator in an “if” statement and behaves similarly to a STRI that forces the state in an “if”
statement. Therefore, among all mutation operators, operators with similar operations are not
applied. Table 4 summarizes the mutation operators used in the experiments [26].

Table 2. Mutation operator selection for fault injection.

Function
Number of Unsuitable

Operators
Number of Unit Failure

Operators
Unit Pass
Operators

Turn Signal 67 12 OEBA *

AEBS 47 30
SSDL, VTWD,

CGCR
Driving
Mode

50 28 STRI, ORRN

Head lamp 61 18 OCNG

Rear lamp 51 26
VTWD, CGCR,

CGSR
* See the Table 4.

Table 3. List of fault injection by the selected mutation operators.

Index Node Function Mutation Operator Fault
1

1
Front Turn Signal OEBA * Malfunction due to consecutive commands

2 Head lamp OCNG Illumination change error
3 Steering CGSR Steering angle change error
4

2
AEBS

SSDL Distance change error
5 CGCR Operation in the reverse mode
6

Driving Mode
STRI Mode change while accelerating

7 STRI Increase internal variable in the parking mode
8

3

Rear Turn Signal OEBA Malfunction due to consecutive commands
9 Brake lamp CGSR Malfunction due to accelerator pedal condition
10 Emergency stop signal CGCR Operation in the reverse mode
11 Rear alert OEBA Distance change error
12 Adv. Emergency stop signal OEAA Malfunction due to the existing command state

* See the Table 4.

Figure 9. HiL test environment.

The fault is injected by the mutation method [26]. Because the proposed method targets faults
after a successful unit test is completed, the fault to be injected must pass the unit test but fail
the integration test. In Table 2, the 80 C language mutation operators are classified according to
their applicability to each function and the passage of the unit test is confirmed. Table 3 shows the
faults injected for each function. In Table 3, we did not use VTWD and ORRN for fault injection.
VTWD mutates the variable by adding or subtracting 1, so the result is similar to CGCR. ORRN
mutates a relational operator in an “if” statement and behaves similarly to a STRI that forces the state
in an “if” statement. Therefore, among all mutation operators, operators with similar operations are
not applied. Table 4 summarizes the mutation operators used in the experiments [26].

Table 2. Mutation operator selection for fault injection.

Function Number of Unsuitable
Operators

Number of Unit Failure
Operators Unit Pass Operators

Turn Signal 67 12 OEBA *
AEBS 47 30 SSDL, VTWD, CGCR

Driving
Mode 50 28 STRI, ORRN

Head lamp 61 18 OCNG
Rear lamp 51 26 VTWD, CGCR, CGSR

* See the Table 4.

Table 3. List of fault injection by the selected mutation operators.

Index Node Function Mutation Operator Fault

1
1

Front Turn Signal OEBA * Malfunction due to consecutive commands
2 Head lamp OCNG Illumination change error
3 Steering CGSR Steering angle change error

4

2
AEBS

SSDL Distance change error
5 CGCR Operation in the reverse mode
6 Driving Mode STRI Mode change while accelerating
7 STRI Increase internal variable in the parking mode

8

3

Rear Turn Signal OEBA Malfunction due to consecutive commands
9 Brake lamp CGSR Malfunction due to accelerator pedal condition

10 Emergency stop signal CGCR Operation in the reverse mode
11 Rear alert OEBA Distance change error
12 Adv. Emergency stop signal OEAA Malfunction due to the existing command state

* See the Table 4.

Appl. Sci. 2018, 8, 2260 16 of 21

Table 4. List of mutation operators.

Category Operator Mutation

Statement
SSDL Statement Deletion
STRI Trap on if Condition

Operator
OEAA Operator Replacement (Plain assignment to Plain assignment)
OEBA Operator Replacement (Plain assignment to Bitwise assignment)
OCNG Logical context negation

Constant
CGSR Constant for Scalar Replacement
CGCR Constant for Constant Replacement

5.2. Experimental Result

Through an example of localizing the injected faults, we show how to find faults using our
proposed method and evaluate the result based on the localization rate of the fault candidates.
First, we analyzed the memory-updated information from unit test of the “Left-Turn Signal” function.
Next, we test for a fault in both cases (fixed symbols and invalid values) at fault index #1 and #12 of
Table 3. Finally, we evaluate the experimental results as the ratio of localization. The data used in the
experiment is provided as Supplementary Material.

5.2.1. Memory-Updated Information of Unit Test

The experiment performs according to the process of illustrated in Figure 3. First, a unit test
is performed to check whether a function is normally operated. The unit test sets inputs for initial
state setting and functional testing and confirms that the function normally operates. The updated
information is analyzed by the collected memory data of unit test. At the same time, the test
specifications are analyzed in the test script and include the test conditions, expected values and
time intervals between inputs. IDUR is identified using memory-updated information and test
specifications. Refer to Figure 10a. “Left-turn Signal” initializes as 0 at 200 ms and inputs to a test
condition value (input value) of 32 at 700 ms. If the left signal lamp changes from 0 to 1 (the expected
value), it is determined to be normal. In (b) left, mCanLampModeSet is initialized as 0 from frame
number #27, then the values of the other symbols are updated in order. The statuslLeftSignalLamp is
initialized as 0 from frame number #31. In (b) right, mCanLampModeSet is updated from #77 as 32 to
the test condition value and is sequentially updated until #81 and the statusLeftSignalLamp is output
as 1, which is the same as the expected value. Because the SUT and the simulator are not synchronized,
the timestamp of the test specification and the updated frame number of the MUI may be different.
However, the input time difference between the test specification (500 ms) and the MUI (50 frames) is
the same (one frame is 10 ms).

Appl. Sci. 2018, 8, x FOR PEER REVIEW 16 of 22

Table 4. List of mutation operators.

Category Operator Mutation

Statement
SSDL Statement Deletion
STRI Trap on if Condition

Operator
OEAA Operator Replacement (Plain assignment to Plain assignment)
OEBA Operator Replacement (Plain assignment to Bitwise assignment)
OCNG Logical context negation

Constant
CGSR Constant for Scalar Replacement
CGCR Constant for Constant Replacement

5.2. Experimental Result

Through an example of localizing the injected faults, we show how to find faults using our
proposed method and evaluate the result based on the localization rate of the fault candidates. First,
we analyzed the memory-updated information from unit test of the “Left-Turn Signal” function.
Next, we test for a fault in both cases (fixed symbols and invalid values) at fault index #1 and #12 of
Table 3. Finally, we evaluate the experimental results as the ratio of localization. The data used in the
experiment is provided as Supplementary Material.

5.2.1. Memory-Updated Information of Unit Test

The experiment performs according to the process of illustrated in Figure 3. First, a unit test is
performed to check whether a function is normally operated. The unit test sets inputs for initial state
setting and functional testing and confirms that the function normally operates. The updated
information is analyzed by the collected memory data of unit test. At the same time, the test
specifications are analyzed in the test script and include the test conditions, expected values and time
intervals between inputs. IDUR is identified using memory-updated information and test
specifications. Refer to Figure 10a. “Left-turn Signal” initializes as 0 at 200 ms and inputs to a test
condition value (input value) of 32 at 700 ms. If the left signal lamp changes from 0 to 1 (the expected
value), it is determined to be normal. In (b) left, mCanLampModeSet is initialized as 0 from frame
number #27, then the values of the other symbols are updated in order. The statuslLeftSignalLamp is
initialized as 0 from frame number #31. In (b) right, mCanLampModeSet is updated from #77 as 32
to the test condition value and is sequentially updated until #81 and the statusLeftSignalLamp is
output as 1, which is the same as the expected value. Because the SUT and the simulator are not
synchronized, the timestamp of the test specification and the updated frame number of the MUI may
be different. However, the input time difference between the test specification (500 ms) and the MUI
(50 frames) is the same (one frame is 10 ms).

Figure 10. Unit Test of “Left Turn Signal”: (a) “Left Turn Signal” Unit Test Specification; (b) Initialize
and Test input (MUIIDUA,IDUR).
Figure 10. Unit Test of “Left Turn Signal”: (a) “Left Turn Signal” Unit Test Specification; (b) Initialize
and Test input (MUIIDUA,IDUR).

Appl. Sci. 2018, 8, 2260 17 of 21

5.2.2. Finding the Fault by the Fixed Symbols (in the Case of the Fault Index #1)

This fault means that the symbols required to be updated by function operations are not updated.
In Table 3, the fault index #1 causes the “Front Turn Signal” function to the malfunction due to
a consecutive command. The “Front Turn Signal” has three unit tests as left, right and emergency
lamp. Therefore, the fault candidates include the IDUA of three unit tests. Figure 11 shows the fault
candidates of the fault index #1. In (a), it switches from “Left Turn Signal” into “Right Turn Signal,”
and (b) switches from “Emergency Signal” into “Right Turn Signal” (i.e., mCanLampModeSet: in (a),
32 → 64 and in (b), 96 → 64). The test condition values are input in #290 and #790, respectively
and have to be updated in the same order as the IDUA of unit test but the flagIndicatorLamp is not
updated. When cmdLeftSignalLamp of 1© in (a) or cmdEmergencyLamp of 1© in (b) is changed to
0, cmdRightSignalLamp is changed to 1 but all status* symbols of 2© are not updated. This shows
that there is a malfunction in flagIndicatorLamp between 1© and 2©. The fault index #1 uses OBEA to
mutate the assignment operator into a bitwise assignment operator (see the Table 3). Therefore, if a new
value comes in when a value already exists, the “|=” operation is performed and it malfunctions.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 17 of 22

5.2.2. Finding the Fault by the Fixed Symbols (in the Case of the Fault Index #1)

This fault means that the symbols required to be updated by function operations are not
updated. In Table 3, the fault index #1 causes the “Front Turn Signal” function to the malfunction due
to a consecutive command. The “Front Turn Signal” has three unit tests as left, right and emergency
lamp. Therefore, the fault candidates include the IDUA of three unit tests. Figure 11 shows the fault
candidates of the fault index #1. In (a), it switches from “Left Turn Signal” into “Right Turn Signal,”
and (b) switches from “Emergency Signal” into “Right Turn Signal” (i.e., mCanLampModeSet: in (a),
32 →	64 and in (b), 96 →	64). The test condition values are input in #290 and #790, respectively and
have to be updated in the same order as the IDUA of unit test but the flagIndicatorLamp is not
updated. When cmdLeftSignalLamp of ① in (a) or cmdEmergencyLamp of ① in (b) is changed to 0,
cmdRightSignalLamp is changed to 1 but all status* symbols of ② are not updated. This shows that
there is a malfunction in flagIndicatorLamp between ① and ②. The fault index #1 uses OBEA to
mutate the assignment operator into a bitwise assignment operator (see the Table 3). Therefore, if a
new value comes in when a value already exists, the “|=” operation is performed and it malfunctions.

Figure 11. The Fault Candidates of the Fault Index #1: (a) Switching “Left Turn Signal” into “Right
Turn Signal” (MUIIDUA of Unit Function, IDUR); (b) Switching “Emergency Signal” into “Right Turn
Signal” (MUIIDUA of Unit Function, IDUR).

This fault was found in the test that gave the 12 consecutive commands for 8 s. Of the 3714
addresses allocated on N1 (see the Figure 9, Node of handle steering and forward functions), this test
has 187 memory addresses updated. Of the 187 updated memory addresses, the fault candidates that
the developer has to check include only nine memory addresses (9-IDUAs of Figure 11). Moreover,
without checking a total of 800 frames (generated during 8 s), this test only checks 120 frames, using
IDUR for each of the 12 inputs. In summary, developers can find the fault by checking the value at
IDUR for 4.8% of the total memory symbols used. The fault localization ratio can be defined by
Equation (7).

(%)݊݅ݐܽݖ݈݅ܽܿܮ	ݐ݈ݑܽܨ = ݏ݈ܾ݉ݕܵ	ݕݎ݉݁ܯ	݀݁ݐܷܽ݀	݂	#ݏ݁ݐܽ݀݅݀݊ܽܥ	ݐ݈ݑܽܨ	݂	# 	× 100 (7)

5.2.3. Finding the Fault by the Invalid Values (in the Case of the Fault Index #12)

This fault means that the symbols required for function operations are updated with an incorrect
value. In Table 3, the fault index #12 is a malfunction due to the existing command state. If “Adv ESS”
is activated while the turn signal is on, it is malfunctioning. Figure 12, which shows the fault

Figure 11. The Fault Candidates of the Fault Index #1: (a) Switching “Left Turn Signal” into “Right
Turn Signal” (MUIIDUA of Unit Function, IDUR); (b) Switching “Emergency Signal” into “Right Turn
Signal” (MUIIDUA of Unit Function, IDUR).

This fault was found in the test that gave the 12 consecutive commands for 8 s. Of the
3714 addresses allocated on N1 (see the Figure 9, Node of handle steering and forward functions),
this test has 187 memory addresses updated. Of the 187 updated memory addresses, the fault
candidates that the developer has to check include only nine memory addresses (9-IDUAs of Figure 11).
Moreover, without checking a total of 800 frames (generated during 8 s), this test only checks 120 frames,
using IDUR for each of the 12 inputs. In summary, developers can find the fault by checking the value
at IDUR for 4.8% of the total memory symbols used. The fault localization ratio can be defined by
Equation (7).

Fault Localization(%) =
o f Fault Candidates

o f Updated Memory Symbols
× 100 (7)

5.2.3. Finding the Fault by the Invalid Values (in the Case of the Fault Index #12)

This fault means that the symbols required for function operations are updated with an incorrect
value. In Table 3, the fault index #12 is a malfunction due to the existing command state. If “Adv ESS”

Appl. Sci. 2018, 8, 2260 18 of 21

is activated while the turn signal is on, it is malfunctioning. Figure 12, which shows the fault candidates
of fault index #12, can find signals and reasons for the failure. “Adv ESS” turns the “Emergency Signal”
on when the car stops after the “ESS” has been activated. In the figure, a© is the IDUA of unit test of
the “Emergency Signal,” b© is the IDUA of unit test of the “ESS,” and c© is the IDUA of integration
test of the “Adv ESS.” At this point, the three symbols related to the “Emergency Signal” of a© are
highlighted by the shaded bar. It can be assumed that a fault has occurred in the symbol associated
with the “Emergency Signal.” In the fault index #1, the front turn signal acted as an “Emergency Signal”
when the flagIndicatorLamp showed 96. However, after statusPropulsion is updated to 112 at frame
number #224 (after the vehicle has stopped), flagIndicatorLamp is updated to an incorrect value of
192 at frame number #226.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 18 of 22

candidates of fault index #12, can find signals and reasons for the failure. “Adv ESS” turns the
“Emergency Signal” on when the car stops after the “ESS” has been activated. In the figure, ⓐ is the
IDUA of unit test of the “Emergency Signal,” ⓑ is the IDUA of unit test of the “ESS,” and ⓒ is the
IDUA of integration test of the “Adv ESS.” At this point, the three symbols related to the “Emergency
Signal” of ⓐ are highlighted by the shaded bar. It can be assumed that a fault has occurred in the
symbol associated with the “Emergency Signal.” In the fault index #1, the front turn signal acted as
an “Emergency Signal” when the flagIndicatorLamp showed 96. However, after statusPropulsion is
updated to 112 at frame number #224 (after the vehicle has stopped), flagIndicatorLamp is updated
to an incorrect value of 192 at frame number #226.

Figure 12. Fault Candidates of the Fault Index #12.

5.2.4. Result

We applied our proposed method to the other 10 indexed faults in Table 3. As a result, we could
find all the causes of the faults injected by reviewing the presented fault candidates. The results of
the experiment are summarized in Table 5. As a result of the fault injection experiment, we could find
the cause of the fault by only checking 5.77% of the updated symbols on average.

Table 5. Experimental result.

Fault
Index Function ECU

Node
Allocated
Memory

Updated
Symbols

Fault
Candidates

Localization
(%)

1 Front Turn Signal
1 3714

187 9 4.81
2 Head Lamp 195 14 7.18
3 Steering 200 4 2

4, 5 AEBS
2 4032

221 22 9.95
6, 7 Driving Mode 179 13 7.26

8 Rear Turn Signal

3 3711

170 9 5.29
9 Brake Lamp 132 7 5.3

10 ESS 289 9 3.11
11 Rear Alert 167 4 2.4
12 Adv. ESS 163 17 10.43

Average 5.77

Figure 12. Fault Candidates of the Fault Index #12.

5.2.4. Result

We applied our proposed method to the other 10 indexed faults in Table 3. As a result, we could
find all the causes of the faults injected by reviewing the presented fault candidates. The results of the
experiment are summarized in Table 5. As a result of the fault injection experiment, we could find the
cause of the fault by only checking 5.77% of the updated symbols on average.

Table 5. Experimental result.

Fault
Index Function ECU

Node
Allocated
Memory

Updated
Symbols

Fault
Candidates

Localization
(%)

1 Front Turn Signal
1 3714

187 9 4.81
2 Head Lamp 195 14 7.18
3 Steering 200 4 2

4, 5 AEBS
2 4032

221 22 9.95
6, 7 Driving Mode 179 13 7.26

8 Rear Turn Signal

3 3711

170 9 5.29
9 Brake Lamp 132 7 5.3
10 ESS 289 9 3.11
11 Rear Alert 167 4 2.4
12 Adv. ESS 163 17 10.43

Average 5.77

Appl. Sci. 2018, 8, 2260 19 of 21

The proposed method is applied not only to our test bed but also to the commercial BCM seatbelt
warning test. The BCM used in the experiment is an OSEK/VDX-based OS and is an SPC5604B
BOLERO [27] -based ECU. The experiment dumped 29.4 kB of memory in the same 10 ms cycle as the
system main task [9]. In this experiment, 1019 addresses were updated between the total 29.4 kB of
allocated memory. Among them, 87 candidate symbols are localized and the localization rate is 8.54%.
The previous method suggests fault candidates as the suspect region within the updated memory
region rather than the address level. Therefore, the reduction rates (size of fault candidate region/size
of the updated memory region) of fault candidates on average were about 22.42% (2 kB/8.7 kB) and
about 19.21% (4.7 kB/24 kB). This shows a significant performance improvement when compared to
the existing result [9].

As a result, the proposed method was localized at an average of 5.77% in the test bed and
8.54% in the commercial BCM. Experiments were performed on two types of ECUs running different
OS that conform to the OSEC/VDX standard. The MC9S12X is 16-bit and the SPC5604 is a 32-bit
micro controller, which differs in terms of core family [24,26]. Nevertheless, when we experimented
with the proposed fault localization process, we could derive the fault candidates, including the
cause of fault, by analyzing memory usage. This shows that the proposed method is applicable
to ECUs based on OSEK/VDX. In other words, the memory usage related to the failed operation
can be presented as debugging information through the memory usage in the normal operation for
finding the fault occurring in the HiL test environment without the debugging tool or the source code.
However, the proposed method has limitations in the case of a signal that processes the continuous
values like analog signals, when the update does not have a significant meaning.

6. Conclusions

In this paper, we proposed a fault localization method for automotive software in an HiL
environment by comparing updated memory between the passed unit test and the failed its integration
test. Our proposed method collects memory by dumping it based on the main task cycle during an HiL
test. By analyzing the updated information in the collected memory, we can identify the input-driven
updated address (IDUA). The fault candidates are localized by comparing the memory-updated
information of the failed integration test based on the IDUA identified during the successful unit test.
As an experimental result, the fault candidates were localized to 5.77% in the test bed and 8.54% in the
commercial BCM. This means that if 100 symbols are used in an integration test, the developer can
debug by checking only 6 or 9 symbols.

The advantages of the proposed method are as follows. First, fault localization is possible in
a black box environment where the source code is difficult to use. Traditional fault localization methods
based on source code are difficult to apply to a black box environment but the proposed method is
applicable without source code. Second, debugging information can be obtained without using existing
debugging tools. The proposed method can dump the memory for each main task cycle of the system
and observe the state change over time. Therefore, it is possible to obtain information in a similar
fashion to that achieved by observing a system using existing debugging tools. Third, fault localization
is possible without having the background knowledge of a developer because a failed signal can
be found using normal operating information as criteria. The proposed method utilizes a unit test
to obtain the memory usage information during normal operation and then uses it as a criterion
to localize the faults. Therefore, our proposed method can reduce the debugging time invested by
developers by providing fault candidates based on the memory-updated information without the
source code and existing debugging tools.

Our method has a limitation for signals that are continuously changing, such as analog signals for
which the update is less meaningful. However, it is powerful for discrete signals such as digital I/O.
We also believe that the highlight of the table that presents the fault candidates is that it can convey
information visually. Therefore, we plan are in the study to locate the faults through the visualization
of MUI tables.

Appl. Sci. 2018, 8, 2260 20 of 21

Supplementary Materials: A sample data is available online at maria DB (IP: 202.30.11.110: 3306/ID: applied/Pass: guest).

Author Contributions: J.-W.L. conceived and designed the experiments; J.-W.L. and K.-Y.C. analyzed the data;
K.-Y.C. performed the experiments, contributed analysis tools and wrote the paper.

Funding: This research was supported by Next-Generation Information Computing Development Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2014M3C4A7030504); and supported by the National Research Foundation of Korea (NRF) grant
funded by the MSIP (NRF-2016R1A2B1014376).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, H.; Li, W.; Chen, W. Model-based hazard analysis method on automotive programmable electronic
system. In Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics
(BMEI), Yantai, China, 16–18 October 2010; pp. 2658–2661. Available online: https://ieeexplore.ieee.org/
document/5639860 (accessed on 5 November 2018). [CrossRef]

2. Köhl, S.; Jegminat, D. How to Do Hardware-in-the-Loop Simulation Right. SAE Technical Paper,
No. 2005-01-1657. 2005. Available online: https://www.sae.org/publications/technical-papers/content/
2005-01-1657/ (accessed on 5 November 2018).

3. Choi, E.M.; Seo, K.I. An Experiment of Traceability-Driven System Testing. J. Inf. Process. Syst. 2008, 4, 33–40.
Available online: http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1JBB0_2008_v4n1_33
(accessed on 5 November 2018). [CrossRef]

4. Choi, K.-Y.; Seo, J.; Jang, S.; Lee, J.-W. HiL testing based fault localization method using memory update frequency.
In Advances in Computer Science and Ubiquitous Computing; Springer: Singapore, 2015; pp. 765–772. Available online:
https://link.springer.com/chapter/10.1007%2F978-981-10-0281-6_108 (accessed on 5 November 2018).

5. Vermeulen, B. Functional debug techniques for embedded systems. IEEE Des. Test Comput. 2008, 25, 208–215.
Available online: https://ieeexplore.ieee.org/document/4534159 (accessed on 5 November 2018). [CrossRef]

6. Gomez, M. Hardware-in-the-Loop Simulation. Embed. Syst. Program. 2001, 14, 38–49. Available online:
http://www.jmargolin.com/uavs/jm_rpv2_npl_14.pdf (accessed on 5 November 2018).

7. Wong, W.E.; Gao, R.; Li, Y.; Abreu, R.; Wotawa, F. A survey of software fault localization. IEEE Trans. Softw. Eng.
2016, 42, 707–740. Available online: https://ieeexplore.ieee.org/document/7390282 (accessed on 5 November 2018).
[CrossRef]

8. Burdach, M. An Introduction to Windows Memory Forensic. Available online: http://users.du.se/~hjo/cs/
dt2018/readings/week2/introduction_to_windows_memory_forensic.pdf (accessed on 5 November 2018).

9. Kim, K.H.; Choi, K.-Y.; Lee, J.-W. Fault Localization Method by Partitioning Memory Using Memory
Map and the Stack for Automotive ECU Software Testing. Appl. Sci. 2016, 6, 266. Available online:
https://www.mdpi.com/2076-3417/6/9/266 (accessed on 5 November 2018). [CrossRef]

10. Bringmann, E.; Andreas, K. Model-based Testing of Automotive Systems. In Proceedings of the 2008 1st International
Conference on Software Testing, Verification, and Validation, Lillehammer, Norway, 9–11 April 2008; pp. 485–493.
Available online: https://ieeexplore.ieee.org/document/4539577 (accessed on 5 November 2018). [CrossRef]

11. Sudeendra Kumar, K.; Verghese, L.; Mahapatra, K.K. Fuzzy logic based integrated control of anti-lock brake system
and collision avoidance system using can for electric vehicles. In Proceedings of the IEEE International Conference
on Industrial Technology (ICIT 2009), Gippsland, VIC, Australia, 10–13 February 2009; pp. 1–5. Available online:
https://ieeexplore.ieee.org/document/4939720 (accessed on 5 November 2018). [CrossRef]

12. Srivasatav, M.; Singh, Y.; Chayhan, D.S. An Optimized Approach of Fault Distribution for Debugging
in Parallel. J. Inf. Process. Syst. 2010, 6, 537–552. Available online: http://koreascience.or.kr/article/
ArticleFullRecord.jsp?cn=E1JBB0_2010_v6n4_537 (accessed on 5 November 2018). [CrossRef]

13. Jones, J.A.; Harrold, M.J.; Stasko, J. Visualization of test information to assist fault localization. In Proceedings of the
24rd International Conference on Software Engineering (ICSE 2002), Orlando, FL, USA, 19–25 May 2002; pp. 467–477.
Available online: https://ieeexplore.ieee.org/document/1007991 (accessed on 5 November 2018). [CrossRef]

14. Abreu, R.; Zoeteweij, P.; van Gemund, A.J.C. On the accuracy of spectrum-based fault localization.
In Proceedings of the Testing: Academic and Industrial Conference Practice and Research
Techniques—MUTATION, Windsor, UK, 10–14 September 2007; pp. 89–98. Available online: https:
//ieeexplore.ieee.org/document/4344104 (accessed on 5 November 2018). [CrossRef]

https://ieeexplore.ieee.org/document/5639860
https://ieeexplore.ieee.org/document/5639860
http://dx.doi.org/10.1109/BMEI.2010.5639860
https://www.sae.org/publications/technical-papers/content/2005-01-1657/
https://www.sae.org/publications/technical-papers/content/2005-01-1657/
http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1JBB0_2008_v4n1_33
http://dx.doi.org/10.3745/JIPS.2008.4.1.033
https://link.springer.com/chapter/10.1007%2F978-981-10-0281-6_108
https://ieeexplore.ieee.org/document/4534159
http://dx.doi.org/10.1109/MDT.2008.66
http://www.jmargolin.com/uavs/jm_rpv2_npl_14.pdf
https://ieeexplore.ieee.org/document/7390282
http://dx.doi.org/10.1109/TSE.2016.2521368
http://users.du.se/~hjo/cs/dt2018/readings/week2/introduction_to_windows_memory_forensic.pdf
http://users.du.se/~hjo/cs/dt2018/readings/week2/introduction_to_windows_memory_forensic.pdf
https://www.mdpi.com/2076-3417/6/9/266
http://dx.doi.org/10.3390/app6090266
https://ieeexplore.ieee.org/document/4539577
http://dx.doi.org/10.1109/ICST.2008.45
https://ieeexplore.ieee.org/document/4939720
http://dx.doi.org/10.1109/ICIT.2009.4939720
http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1JBB0_2010_v6n4_537
http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1JBB0_2010_v6n4_537
http://dx.doi.org/10.3745/JIPS.2010.6.4.537
https://ieeexplore.ieee.org/document/1007991
http://dx.doi.org/10.1145/581396.581397
https://ieeexplore.ieee.org/document/4344104
https://ieeexplore.ieee.org/document/4344104
http://dx.doi.org/10.1109/TAIC.PART.2007.13

Appl. Sci. 2018, 8, 2260 21 of 21

15. Papadakis, M.; Le Traon, Y. Metallaxis-FL: Mutation-based fault localization. Softw. Test. Verif. Reliab. 2015, 25, 605–628.
Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1509 (accessed on 5 November 2018). [CrossRef]

16. Hong, S.; Kwak, T.; Lee, B.; Jeon, Y.; Ko, B.; Kim, Y.; Kim, M. Museum: Debugging real-world multilingual
programs using mutation analysis. Inf. Softw. Technol. 2017, 82, 80–95. Available online: https://www.
sciencedirect.com/science/article/pii/S0950584916302427?via%3Dihub (accessed on 5 November 2018).
[CrossRef]

17. Just, R.; Jalali, D.; Inozemtseva, L.; Ernst, M.D.; Holmes, R.; Fraser, G. Are mutants a valid substitute for real faults
in software testing? In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, Hongkong, China, 16–22 November 2014; pp. 654–665. Available online: https://dl.acm.
org/citation.cfm?doid=2635868.2635929 (accessed on 5 November 2018).

18. Gong, P.; Zhao, R.; Li, Z. Faster mutation-based fault localization with a novel mutation execution strategy.
In Proceedings of the 2015 IEEE Eighth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Graz, Austria, 13–17 April 2015; pp. 1–10. Available online: https://ieeexplore.ieee.org/
document/7107448 (accessed on 5 November 2018). [CrossRef]

19. DiGiuseppe, N.; Jones, J.A. Fault density, fault types, and spectra-based fault localization. Empir. Softw. Eng.
2015, 20, 928–967. Available online: https://link.springer.com/article/10.1007%2Fs10664-014-9304-1
(accessed on 5 November 2018). [CrossRef]

20. Zhang, M.; Li, X.; Zhang, L.; Khurshid, S. Boosting spectrum-based fault localization using PageRank.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis,
Santa Barbara, CA, USA, 10–14 July 2017; pp. 261–272. Available online: https://dl.acm.org/citation.cfm?
doid=3092703.3092731 (accessed on 5 November 2018). [CrossRef]

21. Lee, J.-W.; Choi, K.-Y.; Lee, J.-W. Collecting Big Data from Automotive ECUs beyond the CAN Bandwidth
for Fault Visualization. Mob. Inf. Syst. 2017, 2017, 4395070. Available online: https://www.hindawi.com/
journals/misy/2017/4395070/ (accessed on 5 November 2018). [CrossRef]

22. GNU Binary Utilities. Available online: https://sourceware.org/binutils/docs/binutils/index.html
(accessed on 5 November 2018).

23. MISRA-C:2004 Guidelines for the Use of the C Language in Critical Systems. Available online: http:
//caxapa.ru/thumbs/468328/misra-c-2004.pdf (accessed on 5 November 2018).

24. Vector Embedded Components. Available online: https://www.vector.com/int/en/products/products-a-
z/embedded-components/ (accessed on 5 November 2018).

25. NXP 16-Bit S12 and S12X MCUs|NXP. Available online: https://www.nxp.com/products/processors-and-
microcontrollers/additional-processors-and-mcus/8-16-bit-mcus/16-bit-s12-and-s12x-mcus:S12S12X
(accessed on 5 November 2018).

26. Agrawal, H.; DeMillo, R.A.; Hathaway, B.; Hsu, W.; Hsu, W.; Krauser, E.W.; Martin, R.J.; Mathur, A.P.;
Spafford, E. Design of Mutant Operators for the C Programming Language; Technical Report SERC-TR-41-P;
Software Engineering Research Center, Department of Computer Science, Purdue University: West Lafayette,
IN, USA, 1989; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.8490&rep=
rep1&type=pdf (accessed on 5 November 2018).

27. MPC551x to Bolero (MPC560xB/C, SPC560Bx/Cx) Migration. Available online: https://www.nxp.com/
docs/en/application-note/AN3753.pdf (accessed on 5 November 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1509
http://dx.doi.org/10.1002/stvr.1509
https://www.sciencedirect.com/science/article/pii/S0950584916302427?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0950584916302427?via%3Dihub
http://dx.doi.org/10.1016/j.infsof.2016.10.002
https://dl.acm.org/citation.cfm?doid=2635868.2635929
https://dl.acm.org/citation.cfm?doid=2635868.2635929
https://ieeexplore.ieee.org/document/7107448
https://ieeexplore.ieee.org/document/7107448
http://dx.doi.org/10.1109/ICSTW.2015.7107448
https://link.springer.com/article/10.1007%2Fs10664-014-9304-1
http://dx.doi.org/10.1007/s10664-014-9304-1
https://dl.acm.org/citation.cfm?doid=3092703.3092731
https://dl.acm.org/citation.cfm?doid=3092703.3092731
http://dx.doi.org/10.1145/3092703.3092731
https://www.hindawi.com/journals/misy/2017/4395070/
https://www.hindawi.com/journals/misy/2017/4395070/
http://dx.doi.org/10.1155/2017/4395070
https://sourceware.org/binutils/docs/binutils/index.html
http://caxapa.ru/thumbs/468328/misra-c-2004.pdf
http://caxapa.ru/thumbs/468328/misra-c-2004.pdf
https://www.vector.com/int/en/products/products-a-z/embedded-components/
https://www.vector.com/int/en/products/products-a-z/embedded-components/
https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-mcus/8-16-bit-mcus/16-bit-s12-and-s12x-mcus:S12S12X
https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-mcus/8-16-bit-mcus/16-bit-s12-and-s12x-mcus:S12S12X
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.8490&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.8490&rep=rep1&type=pdf
https://www.nxp.com/docs/en/application-note/AN3753.pdf
https://www.nxp.com/docs/en/application-note/AN3753.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Hardware-in-the-Loop (HiL) Testing for Automotive Software
	Software Fault Localization

	Preparations for Fault Localization
	Fault Localization Process
	Data Collection
	Data Analysis
	Static Analysis of the Execution File
	Computation of Memory-Updated Information

	Fault Localization Method Using Memory Updates
	Data from Test Specification and Memory Updates
	Identification of Input-Driven Updated Range
	Comparison of Difference between Memory Updates of Normal and Failed Operations

	Evaluation
	Testbed for Fault Injection
	Experimental Result
	Memory-Updated Information of Unit Test
	Finding the Fault by the Fixed Symbols (in the Case of the Fault Index #1)
	Finding the Fault by the Invalid Values (in the Case of the Fault Index #12)
	Result

	Conclusions
	References

