
applied  
sciences

Article

LIDAR Point Cloud Registration for Sensing and
Reconstruction of Unstructured Terrain

Qingyuan Zhu 1,* , Jinjin Wu 1, Huosheng Hu 2 , Chunsheng Xiao 1 and Wei Chen 1

1 Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China;
wujinjinnice@foxmail.com (J.W.); chunsheng.xiao@foxmail.com (C.X.); luckychenwei@foxmail.com (W.C.)

2 School of Computer Science & Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK;
hhu@essex.ac.uk

* Correspondence: zhuqy@xmu.edu.cn

Received: 21 October 2018; Accepted: 18 November 2018; Published: 21 November 2018 ����������
�������

Abstract: When 3D laser scanning (LIDAR) is used for navigation of autonomous vehicles operated
on unstructured terrain, it is necessary to register the acquired point cloud and accurately perform
point cloud reconstruction of the terrain in time. This paper proposes a novel registration method
to deal with uneven-density and high-noise of unstructured terrain point clouds. It has two steps
of operation, namely initial registration and accurate registration. Multisensor data is firstly used
for initial registration. An improved Iterative Closest Point (ICP) algorithm is then deployed for
accurate registration. This algorithm extracts key points and builds feature descriptors based on
the neighborhood normal vector, point cloud density and curvature. An adaptive threshold is
introduced to accelerate iterative convergence. Experimental results are given to show that our
two-step registration method can effectively solve the uneven-density and high-noise problem in
registration of unstructured terrain point clouds, thereby improving the accuracy of terrain point
cloud reconstruction.
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1. Introduction

In recent years, autonomous navigation technology has been gradually deployed on outdoor
vehicles operated in unstructured terrain. Different from structured terrain, unstructured terrain
has an uneven surface and complex conditions, which brings a great challenge to the safety and
stability of autonomous vehicles. Therefore, various sensors such as visual image sensors [1,2]
and LIDAR [3,4] have been deployed on autonomous vehicles for sensing unstructured terrain
to achieve safe operation. Although the visual image sensors only produce 2D images, sufficient
terrain information can be obtained by using some approaches, such as calculating a height map
from an image to obtain 3D information [5] or using the super-resolution reconstruction method to
obtain a spatial resolution-enhanced image [6]. Compared with visual image sensors, LIDAR has the
advantage of being free from the effect of light and weather and can obtain the three-dimensional
terrain information conveniently. Therefore, it has been more and more widely used in autonomous
vehicles for navigation purpose.

When LIDAR is used to scan unstructured terrain, the obtained point cloud is uneven in
density and noisy due to the influence of the terrain, the land cover [7] and the laser scanning
mechanism [8]. Moreover, the point cloud is incomplete because of the self-occlusion of objects
and the installing angle of LIDAR. Without sufficient terrain information, the autonomous vehicles
will fall into bad performance and even roll over. Therefore, in order to provide sufficient terrain
information to autonomous vehicles, it is necessary to register multiple scanning point clouds to obtain
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an accurate terrain point cloud map. Traditionally, dead reckoning is combined with other sensors for
registration [9,10]. Although this method is fast, it can easily lead to a large error in the registration
result due to the imprecision of sensor, the sampling difference and the tire slip. Therefore, we propose
a new two-step registration method to conduct accurate registration after this initial registration.

The ICP (Iterative Closest Point) algorithm [11] has been widely used for accurate registration;
however, it has the disadvantages of low efficiency and of easily falling into local minima.
Therefore, many improved ICP algorithms have been proposed to optimize a part of the iterative
process and then to improve the traditional ICP algorithm, including nearest point search [12–15],
feature description [16,17], correspondence building [18,19], and convergence judgment [20].
Among them, feature description can effectively conduct the registration of point clouds with
uneven-density and high-noise and therefore improve the performance of the traditional ICP algorithm.

In recent years, many scholars have studied the feature description of point cloud. Yao et al. [21]
conducted registration by extracting the line and plane features of the point cloud, which can reduce the
influence of noise, but requires that the point cloud has obvious line and plane features. Ono et al. [22]
and Zhang et al. [23] proposed new feature descriptors with a certain anti-noise ability, but the
calculation was complex and time-consuming. Zhang et al. [24] extracted key points based on
curvature features without full consideration of the neighborhood of the point, which bring about
many feature-similar points when used for the registration of complicated point clouds. The limitations
of these methods make them difficult to be used for the fast point cloud reconstruction of unstructured
terrains, thus a new feature descriptor is required.

In this paper, we propose a two-step registration method consisting of initial registration and
accurate registration. After initial registration, accurate registration is conducted by using an improved
ICP based on the neighborhood normal vector, point cloud density and curvature to extract key points
and build the new feature descriptor. Compared with the traditional one-step registration method,
our method has high accuracy and can reconstruct the point cloud of unstructured terrains quickly. It
can effectively solve the accuracy problem of registration for density-uneven and noisy point clouds of
unstructured terrains.

The rest of this paper is organized as follows. Section 2 introduces the traditional initial registration
method. Section 3 describes our accurate two-step registration method. Four groups of experiments
are conducted in Section 4 to validate the feasibility and performance of our two-step registration
method. Finally, a brief conclusion and future research directions are given in Section 5.

2. Initial Registration

Figure 1 shows the process of our two-step registration method. By optimizing several key steps
shown in yellow, the accuracy and speed for registering field unstructured terrain point clouds are
much improved. Specifically, there is an obvious translation and rotation dislocation between the point
clouds of consecutive frames when the scanning frequency of LIDAR is low and therefore we firstly
use the dead reckoning data to perform initial registration on the point clouds to improve the accuracy
and speed of the subsequent accurate registration. In order to implement this method, IMU (Inertial
Measurement Unit) is used to obtain attitude data, encoders are used to obtain displacement data,
and 3D LIDAR is used to obtain terrain data. These data are matched by using time stamp.
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where (𝑥, 𝑦, 𝑧)  is the coordinate in the navigation coordinate system of the previous frame; (𝑥, 𝑦, 𝑧) is the coordinate in the LIDAR coordinate system; α is the angle between the plane of 
LIDAR and the vertical direction; (𝑑௫, 𝑑௭) is the origin of the LIDAR coordinate system relative to 
the vehicle body coordinate system (IMU coordinate system); ∆𝛽 is the encoder increment; 𝑟 is the 
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where (𝜑, 𝜃, 𝜓) is the vehicle body attitude (Euler angle). 
Through formula (2), the point cloud of the current frame is firstly transformed into the vehicle 

body coordinate system, and then transformed into the current navigation coordinate system, and 
finally transformed into the previous navigation coordinate system. The point cloud of the previous 
frame is transformed into its own navigation coordinate system. For subsequent accurate registration, 
the transformed point cloud of the current frame is the target point cloud and the transformed point 
cloud of the previous frame is the source point cloud. 

3. Accurate Registration 

Because of the restriction of the sensor’s precision, there is still a rather big error after the initial 
registration. Therefore, the accurate registration is necessary to minimize the registration error. Based 
on the uneven-density and high-noise features in the point clouds of unstructured terrains, an 
improved ICP algorithm is presented in this section as an accurate registration method. 
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where (x0, y0, z0) is the coordinate in the navigation coordinate system of the previous frame; (xl, yl, zl)
is the coordinate in the LIDAR coordinate system; α is the angle between the plane of LIDAR and the
vertical direction; (dlx, dlz) is the origin of the LIDAR coordinate system relative to the vehicle body
coordinate system (IMU coordinate system); ∆β is the encoder increment; r is the tire radius. Rs is
as follows:  cos θ cos ψ sin ϕ sin θ cos ψ− cos ϕ sin ψ cos ϕ sin θ cos ψ + sin ϕ sin ψ

cos θ sin ψ sin ϕ sin θ cos ψ + cos ϕ cos ψ cos ϕ sin θ sin ψ− sin ϕ cos ψ
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where (ϕ, θ, ψ) is the vehicle body attitude (Euler angle).
Through formula (2), the point cloud of the current frame is firstly transformed into the vehicle

body coordinate system, and then transformed into the current navigation coordinate system,
and finally transformed into the previous navigation coordinate system. The point cloud of the
previous frame is transformed into its own navigation coordinate system. For subsequent accurate
registration, the transformed point cloud of the current frame is the target point cloud and the
transformed point cloud of the previous frame is the source point cloud.

3. Accurate Registration

Because of the restriction of the sensor’s precision, there is still a rather big error after the
initial registration. Therefore, the accurate registration is necessary to minimize the registration error.
Based on the uneven-density and high-noise features in the point clouds of unstructured terrains,
an improved ICP algorithm is presented in this section as an accurate registration method.
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3.1. Key Points Extraction

In the original point cloud, there are some representative points with rich feature information.
Extracting these points to form a key point set can improve registration accuracy and speed.
Jiang et al. [25] used the mean angle between the normal vectors of one point and its k-nearest neighbor
points as the angle-invariant feature, which has strong sensitivity to the local surface change, but do
not consider the spatial distribution of these neighbor points. Therefore, the feature cannot correctly
reflect the surface change in a local area where the points are sparse.

As shown in Figure 2, when a different number of neighbor points is taken to calculate
angle-invariant features of point in uneven area, there is a big difference in the result. This is because the
more neighborhood points are taken, the more points in the flat area will be included into calculation.
This will significantly influence the evaluation of convexity degree of area around the point.
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Figure 2. The influence of neighbor points for the calculation of the angle-invariant feature.

Therefore, we introduce neighborhood weighting to optimize the algorithm. The improved
algorithm is used to extract key points with rich feature information from the point cloud of
unstructured terrains. The key points are extracted as follows:

fi =

k
∑

j=1
dij

m
·

m

∑
j=1

(
ni · nj

|ni| ·
∣∣nj
∣∣ · 1

dij

)
(3)

where fi is the neighborhood weighted angle-invariant feature, ni and nj are the normal vectors of point,
dij is the spatial distance between the point and the neighbor point, m is the number of neighbor points.

We set an appropriate threshold ε here. If fi > ε, it means the local surface change of the point is
small and the point should be discarded; if fi < ε, it means the local surface change of the point is large
and the point should be kept as a key point. Through this way, we can obtain the key point sets of
source point clouds and target point clouds.

3.2. Building Neighborhood Feature Descriptor

We built the corresponding relation between the two key point sets by finding similar feature
points. The point feature descriptor directly affects the iteration speed and registration accuracy.
We propose a seven-dimensional neighbourhood feature descriptor. First of all, the curvature has the
invariance of rotation, translation, and scaling, so it is considered as a feature element. The curvature k
is calculated as follow [26]:

k =
λ0

λ0 + λ1 + λ2
(4)



Appl. Sci. 2018, 8, 2318 5 of 13

where λ is from formula:
C ·→vi = λi ·

→
vi, i ∈ {0, 1, 2} (5)

where C is the covariance matrix of point,
→
v is the eigenvector and λ is the eigenvalue.

Then taking into account the spatial distribution and feature of the neighbor points, we add two
feature elements u and v:

ui =
1
m

m

∑
j=1

dij · k j, vi =
1
m

m

∑
j=1

dij · f j (6)

where dij is the spatial distance from one point to its neighbor point, kj is the curvature of the neighbor
point, fj is the neighborhood weighted angle-invariant feature, m is the number of neighbor points.

It should be noticed that x, y, z, f, k, u, and v constitute our feature descriptor, in which x, y, z are
the coordinates of point, f is the neighborhood weighted angle-invariant feature, k is the curvature,
u and v are from formula (6). We use the data obtained by calculating the normal vectors of points
to build a feature that fully expresses the neighborhood information, thus the speed and accuracy of
feature calculation and correspondence building are improved.

3.3. Transform Matrix Calculation

In each iteration, a threshold is required when building links between points with the help of
features. If the Euclidean distance between two points is less than the threshold, the link between
the two points will be preserved. We propose to set the adaptive threshold to speed up the iteration.
The threshold is reduced after each iteration. The RANSAC algorithm is used to further remove
incorrect links. In the process of finding the optimal transformation through the corresponding
relation, we use the algorithm proposed by Low [27] to find the transformation matrix. When θ ≈ 0,
there is sinθ ≈ 0, cosθ ≈ 1. According to this, when α, β, γ ≈ 0, we have:

M = T
(
tx, ty, tz

)
· R(α, β, γ) ≈ T

(
tx, ty, tz

)
· R̂(α, β, γ) = M̂ (7)

where T is the transformation matrix, R is the rotation matrix, R̂ is the approximate rotation matrix, M
is the 3D rigid transformation matrix and M̂ is the approximate 3D rigid transformation matrix.

After the above approximation, the original nonlinear problem is converted into a linear problem.
The linear least-squares method can then be used to calculate the optimal transformation matrix by
using the following equation:

Mopt = argminM̂∑
i

((
M̂ · si − di

)
· ni
)2 (8)

where Mopt and M̂ are the 4 × 4 transformation matrixes, Si is the source point, di is the target point,
and ni is the normal vector of the target point.

4. Experimental Results and Analysis

Figure 3a shows the mobile platform used in the experiments, in which multiple sensors and other
components are highlighted. More specifically, three types of sensors, IMU, LIDAR (laser scanner),
2 incremental encoders, are used for scanning and registration of terrain point cloud. Detailed
information about these sensors is shown in Table 1. The articulated wheel loader has 4 wheels
and a joint connection of front and back bodies. A laptop PC and a remote controller are used to
control its motion and collect data. Figure 3b is a typical unstructured terrain. This terrain has strong
unstructured feature, and we use its scanned point clouds to do the following registration experiment.
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Figure 3. System hardware and main experiment object. (a) System hardware; (b) Main experiment
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Table 1. Information of Main Sensors.

Equipment Specifications

Laser scanner (vlp-16) Measurement range: up to 100 m, Accuracy: ±3 cm (typical),
Angular resolution(horizontal): 0.1–0.4◦, 100 × 65 mm, 0.83 kg

IMU (Xsens MTi-700) Latency: <2 ms, Gyroscopes: 450◦/s, Accelerometers:
200 m/s2, 57 × 42 × 23 mm, 0.055 kg

Encoder (E6B2-CWZ6C) Incremental, Resolution: 1000 P/R, Maximum speed:
6000 r/min, φ40 mm, 0.085 kg

4.1. Validity Validation of our Improved ICP Algorithm

To verify the performance of our improved ICP algorithm, the point clouds of two consecutive
frames of unstructured terrain shown in Figure 3b are used for registration experiments. Figure 4
shows the registration process. More specifically, Figure 4a is the point cloud after initial registration
and filtering. Since the two point clouds still have a certain dislocation, the local features in the point
cloud are not obvious. Figure 4b shows the key point extraction result of Figure 4a. It can be seen that
the key points are concentrated in the area where the neighborhood undulates greatly. This clearly
shows that our key point extraction method not only greatly reduces the number of points but also
fully preserves the local features of unstructured terrain point cloud.

Figure 4c shows the links between the key points. Due to the existence of feature-similar points,
there is a case where one point is linked to multiple points. However, as all the linked lines are parallel
to each other, this proves that the overall accuracy of the linked point search is high. Figure 4d shows
the results of the registration. Compared with Figure 4a, the gully feature is obvious, and the bulges
and pits are aligned, which verifies the good performance of our ICP algorithm.
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4.2. Superiority Validation of our Improved ICP Algorithm

To verify the superiority of our improved ICP algorithm for the point cloud registration of
unstructured terrains, we take two point cloud pairs to conduct contrast experiments. Our experiment
process is described below:

(1) Conduct initial registration and filtering for the original point cloud pair to obtain the source
point cloud and the target point cloud.

(2) Use our improved ICP algorithm to register target point cloud with source point cloud, and then
record the data.

(3) Use our key point extraction method to obtain the key point sets of the source point cloud and
the target point cloud, and then use traditional ICP algorithm, 4PC improved ICP algorithm [28]
and IPDA (Integrated Probabilistic Data Association) algorithm [29] separately to register the
two key point sets, and finally record the data.

We take the points in source point cloud as the object to find the nearest neighbor point in the
target point cloud. When the point-to-point distance exceeds a certain threshold, these two points
will be regarded as the points outside the overlap area and then be abandoned, the root mean square
error (RMSE) of the remaining point-to-point distances is calculated as the evaluation standard of
registration accuracy. The result is shown in Table 2. Compared with the traditional ICP algorithm
and 4PC improved ICP algorithm, the single iteration time of our algorithm is greatly reduced, and
the error is smaller. This is because the traditional ICP algorithm is based on the nearest distance to
find the link points, it is not suitable for density-uneven and high-noise field unstructured terrain
point cloud. The 4PC improved ICP algorithm replaces the original greedy search strategy by using
a 4-points consistent point search strategy. Although it can improve the efficiency of traditional ICP
algorithm and deal with the noise in point cloud, its ability is restricted. The IPDA algorithm improves
standard ICP data association policy by using Probabilistic Data Association. Compared with the
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IPDA algorithm, the registration speed of our improved ICP algorithm is much faster, but slightly
less accurate in registration. Because of the special data association and weight calculation, the IPDA
algorithm is so time-consuming and not suitable for fast reconstruction.

Figure 5 shows the registration result of PCPair2 (point cloud pair) using different algorithms.
The 3D graph is the 3D reconstruction of source point cloud and target point cloud. As shown in this 3D
graph, there are four distinct gullies. After the accurate registration using our improved ICP algorithm
and IPDA algorithm, the four gullies in the two point clouds have been aligned and the features
of result point cloud are obvious. In contrast, when using the traditional ICP algorithm and 4PC
improved ICP algorithm to register, the gullies have obvious misalignment due to the registration error.
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Table 2. Result Comparison of Different Registration Algorithms.

Point Cloud Pair
(Point Number) Algorithm Key Point

Number
Iteration
Number

Average
Registration

Time/ms

Registration
Error/m

PCPair1 (17456,17728)

Our improved ICP 677,561 8 632 0.004456
Traditional ICP 677,561 7 1226 0.009770

4PC improved ICP 677,561 6 956 0.008124
IPDA 677,561 8 5120 0.004221

PCPair2 (17920,17856)

Our improved ICP 580,576 12 762 0.003982
Traditional ICP 580,576 15 1490 0.004877

4PC improved ICP 580,576 13 1162 0.004543
IPDA 580,576 12 6235 0.003542

4.3. Necessity Validation of the Initial Registration

To verify the validity and necessity of the initial registration, we take three point cloud pairs of
the unstructured terrain (Figure 3b) to conduct experiments. Each point cloud pair consists of two
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point clouds of consecutive frames. The experiments register three point cloud pairs in two cases:
(i) initial registration and accurate registration; (ii) accurate registration only.

The experimental results are shown in Table 3. As can be seen, the iteration number and
registration time increase significantly without initial registration, and the registration error also
increases relatively. Figure 6 shows the results of registration with and without initial registration.
More specifically, Figure 6a shows the original point cloud. Figure 6b shows the point cloud after
initial registration. Figure 6c shows the point cloud after accurate registration. Figure 6d shows the
point cloud by using our two-step registration method, i.e., initial registration and accurate registration.
It is clear that this results in higher accuracy than the single-step registration approach.
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Table 3. Result of Registration with and without Initial Registration.

Point
Cloud Pair

Without Initial Registration With Initial Registration

Iteration
Number

Average
Registration

Time/ms

Registration
Error/m

Iteration
Number

Average
Registration

Time/ms

Registration
Error/m

PCPair1 13 1043 0.006954 8 632 0.004456
PCPair2 14 1030 0.004543 12 762 0.003982
PCPair3 12 960 0.004643 11 696 0.004572

4.4. Fast Acquisition of Point Cloud Information for Timeliness Demand

To verify the feasibility in the real-world application, we conducted experiments using our
built-in-house mobile platform to perform the continuous scanning and registration of point clouds
for unstructured terrains. After acquiring the terrain point cloud of the current frame, the system
performs the initial registration and accurate registration on it with the terrain point cloud of the
previous frame, and then transforms it into the global coordinate system. Table 4 presents the program
implementation of this process. In the experiment, the speed of our mobile platform is set to 0.5 m/s,
the acquisition frequencies of terrain point cloud, IMU data, and encoder data are set to 1 Hz, 100 Hz,
and 100 Hz, respectively.
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To fully verify the validity and universality of our method for unstructured terrains, we chose
three types of unstructured terrains as the experiment sites, as shown in Figure 7. More specifically,
Figure 7a shows an unstructured terrain with small gullies and stones; Figure 7c shows an unstructured
terrain with deep pits and stones; and Figure 7e shows an unstructured terrain with big bulges and
stones. The experiment results are shown in Figure 7b,d,f. The characteristics of the actual terrain are
well expressed by the terrain point cloud being generated, such as ditch, ridge, pit, bulge, and stone.

To further verify the quality of registration, we take three points A, B, and C that are easy to
distinguish as shown in Figure 7. Firstly, we measure the distance from A to B in the actual terrain and
terrain point cloud, denoted as dAB and d′AB respectively. Then, we measure the distance from A to C
in the actual terrain and terrain point cloud, denoted as dAC and d′AC, respectively. Finally, we calculate
τ = dAB · d′AC/dAC · d′AB.

Table 4. Pseudo Code of Fast Registration of Point Clouds.

Algorithm 1 Align Point Clouds (C, L, P, D).

Input: Point cloud of current frame C, point cloud of previous frame L, IMU data set P, encoder data set C
Output: Point cloud of current frame that transformed to the global coordinate
�Initial registration
for each p1 ∈ P do
if L.timestamp = p1.timestamp then �Find corresponding attitude data by time stamp

return p1
end if

end for
for each d1 ∈ D do
if L.timestamp = d1.timestamp then �Find corresponding displacement data by time stamp

return d1
end if

end for
transformCloud(L, p1, 0) �Function: transform the point cloud of previous frame into its own navigation
coordinate system
for each p2 ∈ P do
if C.timestamp = p2.timestamp then �Find corresponding attitude data by time stamp

return p2
end if

end for
for each d2 ∈ D do
if C.timestamp = d2.timestamp then �Find corresponding displacement data by time stamp

return d2
end if

end for
transformCloud(C, p2, d2 − d1) �Function: transform the point cloud of current frame to the navigation
coordinate system of previous frame
�Accurate registration
pairTransform← pairAlign(L, C) �Function: accurate registration, return the matrix
�Transform the point cloud to the global coordinate system which is the navigation coordinate system of the
first input point cloud

transformPointCloud(C, globalTransform ∗ pairTransform)
�Calculate the transformation from C1 to C2, C1 is the point cloud obtained by transforming C into its own
navigation coordinate system, C2 is the point cloud obtained by transforming c into the navigation coordinate
system of previous frame.

transform_← computeTransform(p2, d2 − d1)
�Update global transformation

globalTransform← globalTransform ∗ pairTransform ∗ transform_
return C
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Table 5 presents the details of measurement and calculation of deformation. The deviation
between the measured value in the point cloud and the actual value is in the millimeter range and τ is
close to 1. These show that the translation and rotation deformation of terrain point clouds is small,
and it can provide accurate information of the actual unstructured terrain. Therefore, our two-step
registration method can be applied to the fast point cloud reconstruction of various unstructured
terrains and is fast enough so that the information can be acquired quickly.
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Table 5. Measurement and Calculation of Deformation.

Unstructured Terrain
Actual Terrain/m Terrain Point Cloud/m

τ= dAB·d′AC
dAC·d′ABdAB dAC d

′
AB d

′

AC

Small gully terrain 2.59 2.61 2.5222 2.5310 0.9958
Deep pit terrain 2.62 2.03 2.5923 1.9909 0.9912
Big bulge terrain 4.01 2.87 3.9622 2.8281 0.9972

5. Conclusions

This paper proposes a two-step registration method for fast point cloud reconstruction of
unstructured terrains. Our method firstly uses multi-sensor data and dead reckoning for initial
registration. The improved ICP algorithm is then used to perform accurate registration. There are
two major contributions made in this paper. One is a simple and effective key point extraction and
feature description method deployed for accurate registration, and another is the introduction of
adaptive threshold to accelerate iterative convergence. Experimental results show that our two-step
registration method is simple and effective, and can be applied to the timely acquisition of unstructured
terrain information.

In general, continuous registrations bring cumulative errors, which could ultimately affect the
accuracy of the acquired unstructured terrain point cloud. In the future work, we will consider
introducing a suitable graph optimization method to reduce the cumulative error and ensure the
timely implementation.
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