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Featured Application: Two new 1:1:1:1 quaternary Heusler based half-metals have been designed
by means of the first-principles method, and their half-metallic properties are quite robust to the
hydrostatic strain or tetragonal distortion.

Abstract: By using the first-principles method, the electronic structures and magnetism of equiatomic
quaternary Heusler alloys FeRhCrSi and FePdCrSi were calculated. The results show that both
FeRhCrSi and FePdCrSi compounds are ferrimagnets. Both compounds are half-metals and their
half-metallicity can be maintained in a wide range of variation of the lattice constant under hydrostatic
strain and c/a ratio range under tetragonal distortion, implying that they have low sensitivity to
external interference. Furthermore, the total magnetic moments are integers, which are typical
characteristics of half-metals. The calculated negative formation energy and cohesive energy indicate
that these two alloys have good chemical stability. Furthermore, the value of the elastic constants
and the various moduli indicate the mechanical stability of these two alloys. Thus, FeRhCrSi and
FePdCrSi are likely to be synthesized in the experiment.

Keywords: first-principles method; half-metallicity; equiatomic quaternary Heusler compounds

1. Introduction

Since the first half-metal (HM) NiMnSb compound was discovered in 1983 [1], the HM materials
have attracted more and more scholars and researchers to investigate. The HM material has a
very novel electronic structure, showing semiconducting property in on spin channel and metallic
property in the other spin channel [2,3]. This special electronic structure results in a perfect 100% spin
polarization near the Fermi level, which makes HM a novel spintronic material. Until now, many
different structures of materials have been found to be half-metallic, such as Heusler compounds,
dilute magnetic semiconductors, and ferromagnetic metallic oxides, etc. [1–8]. Among them, Heusler
compounds are of great importance and present many unique physical properties, including the
adjustable electronic structure and relative high Curie temperature [9,10], etc.

Heusler compounds, which have a general formula X2YZ, are a class of intermetallic compounds
(also called full-Heusler compounds). In the formula X2YZ, X and Y atoms are usually transition
metals, and Z is a main group element [11]. For full-Heusler compounds, there are two possible,
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different atomic arrangement fashions: the Cu2MnAl-type and Hg2CuTi-type structure [12]. Specially,
when X and Y are the same atoms, the D03 structure is formed [13,14]. And when one of the X atoms is
substituted with a vacant, the C1b structure is formed [15]. When one of the X atoms is substituted by
another different transition mental, the equiatomic quaternary Heusler compounds (EQHs) (LiMgPdSn
structure) with the chemical formula of XMYZ are formed. Recently, several series of EQHs have been
found and attracted wide attention. Compared with the binary and ternary Heusler HMs that have
been mentioned above, the biggest advantage of the EQH HMs is their lower dissipation, which is
caused by their lesser amount of atomic arrangement disorder in experiment [16].

Felser et al. have predicted several EQHs to be theoretical HM ferromagnets and have synthesized
them experimentally, such as CoFeMnZ (Z = Al, Si, Ga, Ge), NiFeMnGa and NiCoMnGa [17–20].
Alijani et al. have showed that NiFeMnGa and NiCoMnGa alloys are HM ferromagnets [14]. Gao et al.
Reported that CoFeCrAl and CoFeCrSi compounds are several excellent HM ferromagnets [21].
Karimain et al. found that the NiFeTiP and NiFeTiSi alloys are true HM ferromagnets and that the
NiFeTiGe has a near HM character [22]. All the above mentioned EQHs are those with 3d transition
elements. Very recently, a series of new EQHs with a 4d transition element have been reported.
Some of them are as follows: Berri et al. have investigated the robust half-metallicity of the ZrCoTiZ
(Z = Si, Ge Ga and In) [23]. The half-metallic and mechanic characters of ZrRhHfZ (Z = Al, Ga and
In) [24] and FeCrRuSi [25] were investigated by Wang et al. Guo et al. have reported the excellent
half-metallic property of ZrFeVZ (Z = Al, Ga and In) [26]. The new reports of EQHs with a 4d
transition element expand the research scope of the spintronic materials. Thus, we can conclude that
4d-transition-elements-contained HMs are new potential spintronic materials worth researching.

In our present work, the electronic, magnetic, half-metallic and mechanical properties of
two newly designed EQH compounds, FeRhCrSi and FePdCrSi, were investigated by using the
first-principles method. We also have discussed the effect of the hydrostatic strain and tetragonal
distortion on their half-metallic properties. And the calculated results indicate that their half-metalicity
can be kept in a wide lattice constant range and c/a ratio range. Moreover, the chemical stability and
the mechanical properties of FeRhCrSi and FePdCrSi have also been studied in details.

2. Materials and Methods

The electronic and magnetic structures were calculated by using CASTEP code, which was
based on the density functional theory (DFT) [27–29]. The ultrasoft pseudopotential was used to
described the interactions between the valence electrons and the atomic core. The exchange-correlation
energy was calculated under the generalized gradient approximation (GGA) [30,31]. For all calculated
cases, the cut-off energy of 450 eV was chosen. The k-points mesh was set as 10 × 10 × 10 [32,33].
The convergence tolerance for all the calculations was selected as a difference on total energy within
5 × 10−6 eV/atom.

3. Results

3.1. Total Energy and Structural Stability

For the LiMgPdSn-type EQH compounds FeRhCrSi and FePdCrSi, due to the different atomic
arrangements of them, there are three possibly different crystal structures (here, named as type-1,
type-2, and type-3), shown in Figure 1a–c. The atom positions in Wychoff coordinates are also shown
in Table 1. In order to get the ground state properties of FeRhCrSi and FePdCrSi, the geometry
optimization was performed by calculating the total energy of the FeRhCrSi and FePdCrSi compounds
at different lattice constants for the three possible crystal structures. The calculated total energy (Et) as
the function of lattice constants (a) for FeRhCrSi and FePdCrSi compounds (Et-a curves) are shown
in Figure 2. It can be clearly seen that both FeRhCrSi and FePdCrSi compounds of type-1 structure
have the lowest total energy, which means the type-1 structure is the most stable configuration.
Considering the different magnetic states of these compounds, the total energy as a function of
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the lattice constants for the type-1 structure FeRhCrSi and FePdCrSi compounds in ferromagnetic
(FM), ferrimagnetic (FIM), and nonmagnetic (NM) states has been calculated (as shown in Figure 3.
From Figure 3, it can be found that both FeRhCrSi and FePdCrSi compounds in the FIM state show
the lowest total energy. Therefore, for both FeRhCrSi and FePdCrSi compounds, the type-1 structure
in the FIM state was the most stable state. Thus, we will focus on discussing the physical properties of
these compounds with a type-1 structure and FIM state in the following parts of this paper. And the
obtained equilibrium lattice constants at their ground states for FeRhCrSi and FePdCrSi are 5.82 Å and
5.87 Å, respectively, and the results have been shown in Table 2. The small difference of the optimized
lattice constants between FeRhCrSi and FePdCrSi compounds derive from the close ionic radii between
Rh and Pd atoms.
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Table 2. The optimized equilibrium lattice constant a0 (Å), the total and partial magnetic moments
(µB) at the equilibrium lattice, the formation energy Ef and cohesive energy Ec (eV) for the equiatomic
quaternary Heusler (EQH) compounds FeRhCrSi and FePdCrSi.
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3.2. Electronic, Magnetic, and Half-Metallic Properties

In this part, the electronic and magnetic structure of FeRhCrSi and FePdCrSi at their equilibrium
lattice constants have been discussed in detail. The calculated band structures of FeRhCrSi and
FePdCrSi compounds have been displayed in Figure 4. From Figure 4a,b, it can be found that both
FeRhCrSi and FePdCrSi compounds show quite similar band structure characters. In the majority-spin
channel, the Fermi level is located in an indirect band gap. The conduction band minimum (CBM)
appears at the X point and the valence band maximum (VBM) occurs at the G point of the Brillouin
zone. The values of the indirect band gaps in the majority-spin channel are 0.336 eV and 0.177 eV for
EQH compounds FeRhCrSi and FePdCrSi, respectively. However, their bands show a metallic cross
over at the Fermi level in the minority-spin channel. This results in their 100% spin polarization. Thus,
the EQH compounds FeRhCrSi and FePdCrSi are HMs.

Figure 5a,b show the calculated total and partial density of states (DOS) of FeRhCrSi and FePdCrSi
at their equilibrium lattice constants. From Figure 5, one can further understand their electronic
structures. It can be seen that there is a metallic overlapping with the Fermi level in the minority-spin
channel for both the EQH compounds FeRhCrSi and FePdCrSi. By contrast, in the majority-spin
direction, the Fermi level locates in a relative wide energy gap (the half-metallic gap). Therefore,
the EQH compounds FeRhCrSi and FePdCrSi are HMs that are consistent with the above discussion
of their band structures. For FeRhCrSi and FePdCrSi compounds, because of the similar atomic
configuration, they present two quite similar total and partial DOS. Here, we take the FeRhCrSi
compound as an example and give a detailed discussion on the DOS. From Figure 5a, it can be found
that the DOS is mainly dominanted by the Si atom in the lower energy region (−7 eV–5 eV) for the
two spin directions. In the energy region −5 eV to −3 eV, the DOS are mainly occupied by Rh-4d
states. In the range of −3 eV to −1 eV, except a small contribution of Rh-4d and Cr-3d states, both spin
channels are dominated by Fe-3d states. In the energy region around the Fermi level (−1 eV to 1 eV),
the energy peak is the result of the common contribution of Fe, Rh, and Cr atoms with d orbitals. It can
be observed that, in the minority spin, the main contribution to the DOS is the strong hybridization
among the Fe-3d state, Rh-4d state, and Cr-3d state around the Fermi level. In the majority spin,
the energy gap mainly comes from the covalent hybridization between the nearest neighbor atoms: Fe
and Cr. Galanakis et al. [34] have reported that the formation of the bonding and antibonding states
can arise from the strong covalent hybridization between the lower-energy d states (higher-valent)
transition metal atom (such as Fe) and the higher-energy d states (lower-valent) transition metal (such
as Cr). And then, the half-metallic band gap generates between the bonding and antibonding bands.
It has also been reported that, due to the strong intra-atomic exchange interaction, the low valence
transition metal atom usually has a large spin splitting [35]. From Figure 5a, it can be found that,
compared with Fe and Rh atoms, the Cr atom with a lower valent has a larger spin splitting. Thus,
the Cr atom is the main contributor to the total magnetic moment of the FeRhCrSi compound.
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The total and partial magnetic moments at the equilibrium lattice constant are listed in Table 2.
The total magnetic moments (Mt) are integers for both FeRhCrSi and FePdCrSi compounds, which are
3 µB and 4 µB, respectively. The Mt follows the Slater–Pauling behavior, which can be expressed by Mt

= Zt-24, where Zt is the total number of valence electrons [35,36]. It can be found that the Mt is mainly
from the Cr atom (3.10 µB and 3.44 µB for FeRhCrSi and FePdCrSi, respectively) and this is consistent
with the above DOS discussion. Meanwhile, Fe, Rh, and Pd atoms have a small contribution to Mt.
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Furthermore, due to the anti-parallel atomic magnetic moment among the Fe, Rh/Pd, and Cr atoms,
both FeRhCrSi and FePdCrSi compounds exhibit a ferrimagnetic character.

3.3. Structural Stability

In order to test whether FeRhCrSi and FePdCrSi compounds can be synthesized and form a
stable phase experimentally, the formation energy Ef and cohesive energy Ec were calculated in this
work. The calculated values of the Ef and Ec are listed in Table 2. Taking FeRhCrSi as an example,
the formation energy can be expressed by

E f = Etot − Ebulk
Fe − Ebulk

Rh − Ebulk
Cr − Ebulk

Si (1)

Here, Etot is the total energy of FeRhCrSi, Ebulk
Fe , Ebulk

Rh , Ebulk
Cr and Ebulk

Si are the total energies for
each Fe, Rh, Cr, and Si atoms in their bulk states [37]. The bulk states that adopted in our calculation of
Fe and Cr are body centered cubic(b.c.c) structure, Pd and Rh are face centered cubic(f.c.c) structure,
and Si is diamond cubic(d.c) structure. The cohesive energy is expressed by

Ec = Etot − Eiso
Fe − Eiso

Rh − Eiso
Cr − Eiso

Si (2)

Here, Eiso
Fe , Eiso

Rh, Eiso
Cr and Eiso

Si refer to the energies of each isolated atom [37]. It can be found that
formation energies for these alloys are both negative values, which are −3.12 eV for FeRhCrSi and
−1.97 eV for FePdCrSi, indicating that these two alloys are stable and cannot be decomposed easily.
Furthermore, these alloys have great negative cohesive energies, which are −20.41 eV for FeRhCrSi
and −18.66 eV for FePdCrSi, implying that they have good chemical stability in practice and are likely
to be synthesized in the experiment.

3.4. Mechanical Properties

In this section, we discuss the mechanical properties of the FeRhCrSi and FePdCrSi compounds.
For cubic crystals, there are only three independent single-crystal elastic constants (C11, C12 and C44).
According to these three elastic constants, other important elastic moduli can be calculated as the
following formulas:

B =
C11 + 2C12

3
(3)

GV =
C11 − C12 + 3C44

5
(4)

GR =
5C44(C11 − C12)

4C44 + 3(C11 − C12)
(5)

G =
GV + GR

2
(6)

E =
9GB

2B + G
(7)

δ =
3B − 2G

2(3B + G)
(8)

A =
2C44

C11 − C12
(9)

Here, B is the bulk modulus, GV is the Voigt’s shear modulus, GR is the Reuss’s shear modulus, G
is the shear modulus, E is the Young’s modulus, δ is the Possion’s ratio, and A is the anisotropy factor.



Appl. Sci. 2018, 8, 2370 8 of 13

Based on the above elastic moduli, we can examine the mechanical stability of these two EQHs
FeRhCrSi and FePdCrSi according to the following Born and Huang [38] generalized stability criteria:

C44 > 0;
C11 − C12

2
; B =

C11 + C12

2
> 0; C12 < B < C11 (10)

Table 3 lists all the calculated elastic constants for FeRhCrSi and FePdCrSi. From these calculated
values, one can clearly see that our results for C11, C12, and C44 follow the generalized stability criteria.
Thus, the FeRhCrSi and FePdCrSi compounds are mechanically stable.

Table 3. The calculated elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E
(GPa), Pugh’s ratio B/G and anisotropy factor A for the EQH compounds FeRhCrSi and FePdCrSi.

Compounds C11 C12 C44 B G E B/G A

FeRhCrSi 294.7 112.9 106.6 173.5 100.0 251.7 1.74 1.17
FePdCrSi 179.4 121.5 75.1 140.8 45.9 124.2 3.07 2.59

Moreover, the Pugh’s ratios B/G of FeRhCrSi and FePdCrSi compounds are 1.74 and 3.07,
respectively. According to Pugh’s criteria, the material tends to be ductile when the Pugh’s ratio
is larger than 1.75. Otherwise, the material tends to be brittle when the Pugh’s ratio is less than 1.75.
From Table 3, it can be seen that the Pugh’s ratio of FeRhCrSi is less than 1.75, which indicates that
FeRhCrSi is brittle. However, the Pugh’s ratio of FePdCrSi is larger than 1.75, thus suggesting that
FePdCrSi is ductile. Furthermore, the stiffness of the material can be characterized by Young’s modulus
E. The material will become stiffer when the value of E is higher. Thus, it can be said that the FeRhCrSi
is stiffer than FePdCrSi.

3.5. Strain Effect on the Electronic and Magnetic Properties

In fact, the half-metallic character of HMs is very sensitive to external conditions (such as the
temperature and train effect) in its application on spintronic devices. The change of the lattice constants
can destroy the half-metallicity. Thus, the band structures and magnetism of FeRhCrSi and FePdCrSi
under the strain effect (including hydrostatic strain and tetragonal deformation) have been calculated to
test the thermal expansion and external strain effect on the half-metallicity of them. Here, the conduction
band minimum (CBM) and the valence band maximum (VBM) as functions of the lattice constant and c/a
ratio in the majority spin channel were calculated and plotted to describe the change of the half-metallic
behavior of the FeRhCrSi and FePdCrSi compounds (as shown in Figures 6 and 7).
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Figure 6 shows the CBM and VBM values under different hydrostatic strain for FeRhCrSi
and FePdCrSi. From Figure 6, it can be obviously found that the half-metallicity of FeRhCrSi and
FePdCrSi compounds can be kept in wide lattice constants that range from 5.28 Å–5.85 Å for FeRhCrSi
and 5.61 Å–5.92 Å for FePdCrSi, respectively. This indicates that these two EQHs can keep their
half-metallic properties in the lattice distortion range of −9.3% to 0.5% and −4.4% to 1% (relative to
their equilibrium lattice constants). For FeRhCrSi and FePdCrSi compounds, it can be clearly seen
that its half-metallic property is very robust to the lattice constant compression. Their half-metallicity
cannot be destroyed until the lattice constant is compressed to 5.28 Å (by −9.3%) for FeRhCrSi and
5.61 Å (by −4.4%) for FePdCrSi, their conduction bands have an overlapping with the Fermi level
at 5.28 Å and 5.61 Å. However, the half-metallicity of FeRhCrSi is relatively sensitive to the lattice
constant expansion and their half-metallic properties will be destroyed when their lattice constants are
expanded by about 0.5% and 1% for FeRhCrSi and FePdCrSi compounds, respectively.

Figure 7a,b show the VBM and CBM values under different c/a ratios in the range of 0.96–1.10
and 0.95–1.04 for FeRhCrSi and FePdCrSi, respectively. In this case, the cubic unit cells are compressed
or stretched into a tetragonal one and the volumes of them are kept unchanged. As seen in Figure 7,
it seems that their half-metallic properties are also robust to the tetrogonal deformation of lattice
constants for FeRhCrSi and FePdCrSi compounds. In detail, FeRhCrSi and FePdCrSi compounds
can keep their half-metallic properties when the c/a ratios change from 0.99 to 1.08 and 0.97 to 1.02,
respectively. As the c/a ratios of FeRhCrSi and FePdCrSi decreases or increases from 1.0, their CBM
value decrease and the value of VBM increases. Finally, this leads to the reduction or disappearance
of their half-metallic band gaps. In order to further observe the change of the half-metallic bang gap
with the tetragonal distortion, several majority-spin band structures around Fermi level at different
c/a ratios for FeRhCrSi compound have been shown in Figure 8. From Figure 8, it can be clearly seen
that the half-metallic band gap of FeRhCrSi decreases with tetragonal distortion and disappears at
c/a = 0.97 and c/a = 1.02.
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In the next section, we will give a detailed discussion about the effect of the hydrostatic strain and
tetragonal deformation on the magnetism of FeRhCrSi and FePdCrSi compounds. In Figures 9 and 10,
the curves of the total and partial magnetic moments as functions of lattice constants and c/a ratios
for FeRhCrSi and FePdCrSi are given. Clearly, one can observe that the total and partial magnetic
moments of FeRhCrSi and FePdCrSi present quite a similar behavior with the change of the lattice
constants and c/a ratios. From Figure 9, one can clearly observe that the total magnetic moments
of both the FeRhCrSi and FePdCrSi compounds are always fixed into an integer value of 3 µB and
4 µB in the whole variational range. The atomic moments of the Fe and Cr atoms are very sensitive to
the hydrostatic strain. The atomic moment of the Fe atom decreases with the increasing of the lattice
constant. Whereas, the atomic moment of the Cr atom shows a growing trend with the increase of the
lattice constant. Thus, the total magnetic moments of FeRhCrSi and FePdCrSi compounds can keep a
fixed value in the whole variational range of the lattice constant. In Figure 10, one can observe that
both the total and atomic magnetic moments of FeRhCrSi and FePdCrSi almost maintain an invariant
constant with the variation of c/a ratios. This indicates that the magnetic properties of the FeRhCrSi
and FePdCrSi are also not sensitive to the tetraganal deformation.
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4. Conclusions 

In summary, we have calculated the electronic, magnetic, half-metallic, structural stability and 
the mechanical properties of the new designed EQH compounds FeRhCrSi and FePdCrSi by using 
the first-principles method. The conclusions are listed as below: 

(1) FeRhCrSi and FePdCrSi compounds are two new ferrimagnetic HMs with a wide half-metallic 
band gap of 0.336 eV and 0.177 eV, respectively. 

(2) The half-metallicity of the FeRhCrSi and FePdCrSi compounds are very robust to the hydrostatic 
strain or tetragonal distortion. Especially for FeRhCrSi, the half-metallicity can be kept in a wide 
lattice constant range (5.28 Å–5.85 Å) under hydrostatic strain and a c/a ratios range (0.98–1.08) 
under tetragonal distortion, respectively. 

(3) The total magnetic moment of FeRhCrSi and FePdCrSi compounds are 3 μB and 4 μB, 
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(4) The large negative values of the calculated formation energy and cohesion energy show the 
direct evidence of the chemical and thermal stability for FeRhCrSi and FePdCrSi compounds. 
This indicates that they are likely to be synthesized in the experiment. 

(5) The elastic constants and the various moduli indicate the mechanical stability of FeRhCrSi and 
FePdCrSi compounds. 
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4. Conclusions

In summary, we have calculated the electronic, magnetic, half-metallic, structural stability and the
mechanical properties of the new designed EQH compounds FeRhCrSi and FePdCrSi by using the
first-principles method. The conclusions are listed as below:

(1) FeRhCrSi and FePdCrSi compounds are two new ferrimagnetic HMs with a wide half-metallic
band gap of 0.336 eV and 0.177 eV, respectively.

(2) The half-metallicity of the FeRhCrSi and FePdCrSi compounds are very robust to the hydrostatic
strain or tetragonal distortion. Especially for FeRhCrSi, the half-metallicity can be kept in a wide
lattice constant range (5.28 Å–5.85 Å) under hydrostatic strain and a c/a ratios range (0.98–1.08)
under tetragonal distortion, respectively.

(3) The total magnetic moment of FeRhCrSi and FePdCrSi compounds are 3 µB and 4 µB, respectively,
which obey the Slater–Pauling rule: Mt = Zt-24. The main contributor of the total magnetic
moments are both Cr atom for FeRhCrSi and FePdCrSi.

(4) The large negative values of the calculated formation energy and cohesion energy show the
direct evidence of the chemical and thermal stability for FeRhCrSi and FePdCrSi compounds.
This indicates that they are likely to be synthesized in the experiment.

(5) The elastic constants and the various moduli indicate the mechanical stability of FeRhCrSi and
FePdCrSi compounds.
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