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Abstract: In large-scale and sparse scenes, such as farmland, orchards, mines, and substations,
3D simultaneous localization and mapping are challenging matters that need to address issues such
as maintaining reliable data association for scarce environmental information and reducing the
computational complexity of global optimization for large-scale scenes. To solve these problems,
a real-time incremental simultaneous localization and mapping algorithm called MIM_SLAM is
proposed in this paper. This algorithm is applied in mobile robots to build a map on a non-flat
road with a 3D LiDAR sensor. MIM_SLAM’s main contribution is that multi-level ICP (Iterative
Closest Point) matching is used to solve the data association problem, a Fisher information matrix
is used to describe the uncertainty of the estimated pose, and these poses are optimized by the
incremental optimization method, which can greatly reduce the computational cost. Then, a map
with a high consistency will be established. The proposed algorithm has been evaluated in the real
indoor and outdoor scenes as well as two substations and benchmarking dataset from KITTI with
the characteristics of sparse and large-scale. Results show that the proposed algorithm has a high
mapping accuracy and meets the real-time requirements.
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1. Introduction

In recent years, the simultaneous localization and mapping (SLAM) based on a 3D LIDAR
sensor have become an important topic in robotics due to the rise of autonomous driving technology.
Meanwhile, the building of a map has become the basis for an autonomous mobile robot to complete
tasks such as inspection and autonomous navigation [1] in some harsh environments.

The research on SLAM can be traced back to Smith et al. [2] of Stanford University in the
1980s. They published a seminal paper on SLAM, and later generations have done considerable
work on it. Among them, the algorithms such as Extended Kalman Filters [3], Extended Information
Filters [4], and Rao-Blackwellized Particle Filters [5] based on a filtering idea all adopt the Bayesian
state estimation theory to estimate the posterior probability of the system’s state. However, the essence
of this kind of algorithm is only optimizing the local state of the system. As the distance traveled by the
robot increases, it is difficult to establish a high consistency map. Another kind of algorithm is the graph
optimization that was first proposed by Lu and Milio [6]. The essence of this algorithm is maintaining
all the observation and space constraints between observations, then using the maximum likelihood
method to estimate the pose of the robot. Better mapping results can be obtained in large-scale scenes
using the global optimization method.
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Although the SLAM problem has been thoroughly researched, there are still many problems
to be solved, including the fact that computational complexity will increase from two-dimensions
to three-dimensions, and how to ensure a consistent map with the increase of the size of mapping
and reliable data association with less information in sparse environments. Combining these issues,
Zlot [7] utilizes a rotating 2D LIDAR sensor to achieve high-precision map construction in a wide mine,
but it cannot be applied online. Olufs [8] proposes a data association method in sparse environments,
but it is only suitable for solving the localization problem under known maps. Huang [9] proposes
a sparse local submap joining filter (SLSJF) for map-building in large-scale environments. However,
this depends on environmental features. Moosmann [10] and Nüchter [11] propose a real-time SLAM
framework, and the experiments in some scenarios have achieved good results, but the results of the
mapping are not tested for large-scale and sparse environments. Zhang [12] estimates the pose of the
robot by extracting the feature points in the scene, but it is difficult to establish a closed-loop map as
the map size expands. Wang [13] proposes a multi-layer matching SLAM in large-scale and sparse
environments, but it only solves the data association in a 2D scene. The algorithm will be ineffective
when the robot drives on a non-flat road. Therefore, this paper is dedicated to solving the following
two problems:

� In sparse environments, due to the scarce environmental information perceived by a 3D LIDAR
sensor and the non-flat road, data association is easy to fall into a local minimum. Liu [14]
proposes a LiDAR SLAM method in natural terrains which fuses multiple sensors including two
3D LiDAR. Therefore, the robustness of data associated with a lower accumulated error should
be strengthened.

� In large-scale environments, it is difficult to obtain a reasonable pose estimation when the
robot returns to a region it has previously explored and then generates an inconsistent map.
Liang [15] addresses the laser-based loop closure problem by fusing visual information. Hess [16]
can achieve real-time mapping in indoor scenes, and it may fail in the closing loop due to
the incremental computation in large-scale outdoor scenes. How to reduce the computational
complexity of graph optimization is also a problem that needs to be improved.

To solve these problems, we propose a real-time incremental SLAM algorithm called the
MIM_SLAM based on a multi-level ICP matching method. This paper is organized as follows.
We continue in the next section with an overview of the algorithm. Section 3 details the process
of the MIM_SLAM algorithm. Then, we follow up with the experimental results and analysis in
Section 4 and finally provide a summary in Section 5.

2. Algorithm Overview

Figure 1 shows the overall MIM_SLAM algorithm framework. The MIM_SLAM algorithm
simplifies the SLAM problem into the data association and the incremental pose graph optimization.
Firstly, the data association problem is solved by the multi-level ICP matching method which includes
matching the time-neighbor frame, matching the current frame with the map, and matching the current
frame with an area-neighbor keyframe. Then the uncertainty of the estimated pose is described via
the Fisher information matrix. After the above steps, this algorithm can obtain the transformation
matrix Tij and covariance matrix Σij between pose xi and pose xj, which can be saved in the pose
graph. Finally, the incremental QR decomposition method [14] is used to optimize the pose graph.
In the next section, the MIM_SLAM algorithm will be described in detail.
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Figure 1. The proposed MIM_SLAM algorithm framework. 
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Figure 1. The proposed MIM_SLAM algorithm framework.

3. Algorithm Description

3.1. SLAM as an Incremental Optimization Problem

This part analyzes the SLAM problem from the probabilistic model and transforms the problem
into a least squares problem based on the maximum a posteriori estimate. Then, the incremental QR
decomposition method [17] is used to solve the least squares problem.

We denote robot pose by X = {xi} with i ∈ 0 . . . M, the landmark by L =
{

lj
}

with j ∈ 1 . . . N,
control input given through wheeled odometry and IMU by U = {ui} with i ∈ 1 . . . M, landmark
measurement by Z = {zi} with i = 1 . . . M. The SLAM problem is equivalent to estimating the
posterior probability distribution:

P(X, L|Z, U)

= P(L|Z, X, U)P(X|Z, U)

= P(L|Z, X)P(X|Z, U)

(1)

From Equation (1), it can be seen that the landmark L depends on the observations and robot
pose sequences, so the SLAM problem is further simplified to the pose estimation problem utilizing
Baye’s rule P(X|Z, U) = P(Z|X, U)P(X|U)/P(Z|U). In this paper, we just consider the online
SLAM problem [4], which only involves estimating the posterior over the momentary pose, this is
P(xM|z1:M, u1:M).

P(xM|z1:M, u1:M)

= P(z1:M |xM ,u1:M)P(xM |u1:M)
P(z1:M |u1:M)

= P(zM |xM ,z1:M−1,u1:M)P(xM |z1:M−1,u1:M)
P(zM |z1:M−1,u1:M)

= ηP(zM|xM)P(xM|z1:M−1, u1:M)

= ηP(zM|xM)
∫

P(xM|xM−1, z1:M−1, u1:M)P(xM−1|z1:M−1, u1:M)dxM−1

= ηP(zM|xM)
∫

P(xM|xM−1, uM)P(xM−1|z1:M−1, u1:M−1)dxM−1

= ηP(x0)
M
∏
i=1

P(xi|xi−1, ui)P(zi|xi)

(2)

In Equation (2) line 4 to 5, it is derived using the theorem of total probability. P(x0) is a prior on
the initial state, P(xi|xi−1, ui) is the motion model, and P(zi|xi) is the measurement model.
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To estimate the pose of the robot, we transform the SLAM problem into the least-squares problem
based on the maximum a posteriori estimate. The maximum a posteriori estimate X∗ and L∗ for
the trajectory and map are obtained by minimizing the negative log of the joint probability from
Equation (2):

X∗ = −argmin
X

η

{
M
∑

i=1
log P(xi|xi−1, ui)

+
M
∑

i=1
log P(zi|xi)

} (3)

L∗ = {(x∗1 , z1), . . . , (x∗i , zi)} (4)

Both of the motion model and measurement model are generally assumed such that they meet
the Gaussian distribution. Then, both of them can be converted to the following form:

xj ∼ N(xi ⊕ Tij, Σij) (5)

where the operator ⊕ denotes the coordinate transformation. Tij and Σij represent respectively the
transformation matrix and covariance matrix between pose xi and pose xj, which will be obtained
through the multi-level ICP matching method and uncertainty estimation method in the next two
paragraphs. Additionally, it can be written as follows:{

xi = f (xi−1, ui) + mi
zi = g(xi) + ni

(6)

where mi is the motion noise, and ni is the measurement noise. This leads to the following nonlinear
least squares problem:

X∗ = argmin
X

{
M
∑

i=1
‖ f (xi−1, ui)− xi‖2

mi

+
M
∑

i=1
‖g(xi)− zi‖2

ni

} (7)

Since the above model has non-linear functions that are not easy to solve, they must be linearized,
as Gauss-Newton [18] and Levenberg-Marquardt [19] has done. It can eventually be transformed into
the general least-squares problem as follows, and the specific derivation can refer to the literature [14].

θ∗ = argmin
θ

‖Aθ − b‖2 (8)

where the vector θ contains all pose variables, and the matrix A is a large and sparse Jacobian matrix.
The problem in Equation (8) is apparently solved by the Cholesky decomposition method, but the

essential problem is the number of calculations involved in solving the information matrix AT A. Thus,
applying standard QR decomposition to matrix A:

A = Q

[
R
0

]
(9)
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Apply Equation (9) to the least squares problem in Equation (8). As Q is an orthonormal matrix,
QTQ = I (I is identity matrix). Thus, an additional term QT is added to the second line in (10),
which doesn’t change the length of the vector Aθ − b.

‖Aθ − b‖2 = ‖Q
[

R
0

]
θ − b‖

2

= ‖QTQ

[
R
0

]
θ −QTb‖

2

= ‖
[

R
0

]
θ −

[
d
e

]
‖

2

= ‖Rθ − d‖2 + ‖e‖2

(10)

where [d, e]T = QTb is defined, and (10) obtain the minimum ‖e‖2 if and only if Rθ = d. Now,
the SLAM problem has been solved by the above analysis. However, as a new observation arrives,
the Jacobian matrix A does not significantly change. Thus the results of the QR decomposition at
previous times can be used as the iterative initial value and the process is incremental, which can
significantly reduce computational complexity.

3.2. The Multi-Level ICP Matching Method

Before detailing this method, it is useful to understand the ICP algorithm. The standard ICP [20]
(Iterative Closest Point) algorithm firstly establishes the point-to-point correspondence between the
two point clouds by the nearest neighbor principle and then establishes the matching error function.

Finally, it computes a transformation matrix so that the error function is minimized. In the past
30 years, many ICP variant algorithms [21] have been proposed. In this paper, an ICP variant algorithm
that calls point-to-plane ICP [22] is used. Compared with the standard ICP, the robustness and accuracy
are better. This algorithm is listed as Algorithm 1.

Algorithm 1: Point-to-plane ICP.

Input: Two point cloud: A = {ai}, B = {bi}; An initial transformation: T0

Output: Transformation TAB which aligns A and B; Fitness Score: Score f itness
1: T ← T0

2: while not converged do
3: for i← 1 to N do
4: mi ← FindClosestPointInA(T · bi)

5: if ‖mi − T · bi‖ ≤ dmax then wi ← 1
6: else wi ← 0
7: end
8: end

9: T ← argmin
{

∑
i

wi‖ηi · (T · bi −mi)‖2
}

10: end
11: TAB ← T
12: Score f itness = ∑

i
wi‖ηi · (T · bi −mi)‖2

The observation of the 3D LiDAR sensor is denoted as zk at time k. There are data associations
between all previous observations z1:k−1 and the current observation included in zk. A traditional scan
matching method associates zk with zk−1 at last time, or associates zk with all previous observations
z1:k−1. These two methods either have a substantial accumulated error, or have large amounts of
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calculations which cannot meet online applications. In this paper, the data association is divided into
two categories: continuous in time and continuous in area.

For observations that are continuous in the time, the method firstly utilizes the ICP algorithm to
associate zk and zk−1, and a rough estimation of the current robot’s pose can be obtained. The initial
value of ICP is obtained by using a Kalman filter to merge the wheeled odometry with IMU. Because
the inter-frame matching cannot obtain the accurate pose estimation, the next step will match the
current frame with the map to further eliminate the accumulated error.

As shown in Figure 2, Mi denotes the global map at time i and TW
i denotes the pose of the robot in

the world coordinate system at time i. TL
i+1 denotes the transformation matrix from time i + 1 to time i

(that is, the output of inter-frame matching). zi+1 denotes the observation at time i + 1. The process for
matching the current frame with the map is as follows:

� Finding the nearest neighbor in Mi for each point in zi+1, and saving it as mi+1. We use the
combination of octree and approximate nearest neighbor algorithm in PCL [23] for speeding up.

� Taking zi+1 and mi+1 as the input of Algorithm 1, the transformation matrix Topt can be obtained
after registering the two point clouds.

� The pose of the robot at time k + 1 is TW
i+1 = TW

i · TL
i+1 · Topt.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 15 

For observations that are continuous in the time, the method firstly utilizes the ICP algorithm to 

associate kz  and 1kz − , and a rough estimation of the current robot’s pose can be obtained. The initial 

value of ICP is obtained by using a Kalman filter to merge the wheeled odometry with IMU. Because 

the inter-frame matching cannot obtain the accurate pose estimation, the next step will match the 

current frame with the map to further eliminate the accumulated error. 

As shown in Figure 2, iM  denotes the global map at time i  and W

iT  denotes the pose of the 

robot in the world coordinate system at time i . 1

L

iT +  denotes the transformation matrix from time 

1i +  to time i  (that is, the output of inter-frame matching). 1iz +  denotes the observation at time 

1i + . The process for matching the current frame with the map is as follows: 

▪ Finding the nearest neighbor in iM  for each point in 1iz + , and saving it as 1im + . We use the 

combination of octree and approximate nearest neighbor algorithm in PCL [23] for speeding up. 

▪ Taking 1iz +  and 1im +  as the input of Algorithm 1, the transformation matrix optT  can be 

obtained after registering the two point clouds. 

▪ The pose of the robot at time 1k +  is 1 1

W W L

i i i optT T T T+ +=   . 

W

iT

iM

1iz +

1

L

iT +

 

Figure 2. The matching process of the current frame and map. 

The effectiveness of the above scan matching method is verified as shown in Figure 3. The white 

point clouds denote the map that SLAM has established. The blue point clouds denote the point 

clouds after inter-frame matching. The redpoint clouds denote the point clouds after matching the 

current frame with the map. It can be seen that the accumulated error in the process of inter-frame 

matching is obviously eliminated. 

 
(a) Scene 1 

 
(b) Scene 2 

Figure 3. An example of the matching process. 

For observations that are continuous in the area, the robot returns to a region that it has 

previously explored. In particular, in large-scale and sparse environments, the accumulative error 

cannot be completely eliminated when the robot travels a long distance if only the above two 

matching processes are considered. So the following method matches the current frame iz  with the 

area-neighbor keyframe z  based on a priori of pose estimation. If the matching score is less than a 

certain threshold, the pose constraint between ix  and x  will be established. The process is listed 

as Algorithm 2. The initial parameter is: 0 0{(0, , )}L x z= , 0d = . 
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The effectiveness of the above scan matching method is verified as shown in Figure 3. The white
point clouds denote the map that SLAM has established. The blue point clouds denote the point clouds
after inter-frame matching. The redpoint clouds denote the point clouds after matching the current
frame with the map. It can be seen that the accumulated error in the process of inter-frame matching is
obviously eliminated.
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Figure 3. An example of the matching process.

For observations that are continuous in the area, the robot returns to a region that it has previously
explored. In particular, in large-scale and sparse environments, the accumulative error cannot be
completely eliminated when the robot travels a long distance if only the above two matching processes
are considered. So the following method matches the current frame zi with the area-neighbor keyframe
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zτ based on a priori of pose estimation. If the matching score is less than a certain threshold, the pose
constraint between xi and xτ will be established. The process is listed as Algorithm 2. The initial
parameter is: L = {(0, x0, z0)}, d = 0.

Algorithm 2: Matching the current frame with an area-neighbor keyframe.

Input: Current pose and observation: xi, zi
Output: Transformation Tiτ which aligns zi and zτ

1: calculate d = d + ‖xi − xi−1‖
2: if d < dthre then
3: return null
4: end
5: foreach (kτ , xτ , zτ) in L do
6: if k− kτ > kthre then
7: if ‖xt − xτ‖ < xthre then
8: put zt and zτ into Algorithm 1, get T and Score f itness
9: if Score f itness < Sthre then
10: Tiτ ← T
11: return Tiτ
12: end
13: end
14: end
15: end
16: L = L ∪ (ki, xi, zi), d = 0, k = k + 1
17: return null

3.3. Uncertainty Estimation

After multi-level ICP matching, the transformation matrix Tij between pose xi and pose xj can be
obtained, but we still need to know the exact uncertainty estimation, namely the covariance matrix Σij.
However, an incorrect covariance matrix may damage the established map.

In this paper, the inversion of the Fisher information matrix is used as the covariance. The Fisher
information matrix is defined as the function of the expected measurement and the surface slope
scanned by the laser sensor [24]. Liu [24] and Wang [25] give the derivation of the Fisher information
matrix based on a two-dimensional probability grid. It is now extended to three-dimensions. The Fisher
information matrix is discretized:

L̂(p) =
N

∑
i=1

1
σ2

i
(

∆riE
∆p

)
T
(

∆riE
∆p

) (11)

∆riE
∆p

=

[
∆riE
∆x

,
∆riE
∆y

,
∆riE
∆z

,
∆riE
∆ϕ

,
∆riE
∆ψ

,
∆riE
∆θ

]
(12)

where p = [x, y, z, ϕ, ψ, θ] is the pose of the robot, and σ2
i is the noise variance of the i-th 3D laser range

finder scan ray. N is the total number of scan rays. riE is the expected distance from the robot to the
nearest obstacle along the i-th scan ray. To calculate Equation (12) efficiently, the point cloud map is
converted into a three-dimensional grid map. Thus riE can be computed as follows:

riE =

s
∑

j=1
rijµij

s
∑

j=1
µij

(13)
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where rij is the distance between the robot and the j-th voxel along the direction of an i-th scan ray.
µij is the occupancy value of the corresponding voxel. s is the sequence number of the ending voxel.
By combining Equation (11) and Equation (12), we obtain:

L̂(p) =
N

∑
i=1

1
σ2

i



∆r2
iE

∆x2
∆r2

iE
∆x∆y

∆r2
iE

∆x∆z
∆r2

iE
∆x∆ϕ

∆r2
iE

∆x∆ψ
∆r2

iE
∆x∆θ

∆r2
iE

∆x∆y
∆r2

iE
∆y2

∆r2
iE

∆y∆z
∆r2

iE
∆y∆ϕ

∆r2
iE

∆y∆ψ
∆r2

iE
∆y∆θ

∆r2
iE

∆x∆z
∆r2

iE
∆y∆z

∆r2
iE

∆z2
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(14)

According to the Cramér–Rao Bound theory [26], the lower bound of covariance can be determined
by the inversion of the Fisher information matrix. Finally, the uncertainty of the pose estimation can
be obtained:

cov(p) = L̂−1(p) (15)

4. Experimental Results and Analysis

As shown in Figure 4, the mobile robot called SmartGuard [27] is used to verify the proposed
algorithm. It is a completely autonomous robotic system that can inspect substation equipment.
SmartGuard is equipped with a wheeled odometry, an IMU, and a 3D LIDAR (RS-Lidar-16).
The RS-Lidar-16 can measure out to 150 m with a high precision,±2 cm, and it has a +15 to−15-degree
vertical field of view. It continuously scans the 360-degree surrounding environment at a 10 Hz frame
rate and at 300,000 points/sec. The capability of the computer that runs the SLAM algorithm is as
follows: Intel Core i5-6300HQ CPU 2.3 Hz and 8 G DDR3 RAM.
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Figure 4. The mobile robot (SmartGuard) for experiments.

4.1. Indoor and Outdoor Mapping Test

To verify the mapping performance, the proposed algorithms have been tested in several different
indoor and outdoor environments (Figure 5). Figure 5a shows that the proposed MIM_SLAM algorithm
can build a consistency map with lower accumulated errors after a 180 m long loop. Figure 5b shows
that the consistency map can also be generated from a narrow and long corridor. As shown in
Figure 5c,d, in the wide range of the parking lot, the robot traveled approximately 1600 m at a speed of
0.6 m/s; the trajectory is shown in Figure 5c. The map shown in Figure 5c is still accurate and clear.
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4.2. Large-Scale and Sparse Scenes Test

Two substations are selected to verify the validity of the MIM_SLAM algorithm in the larger-scale
and sparse environments. A general substation comprises thousands of square meters, and its electrical
equipment needs to include a sufficient distance for electrical safety. We first tested in substation A
shown in Figure 6. During the experiment, the robot traveled approximately 600 m at a speed of
0.6 m/s and the 3D LIDAR sensor collected a total of 10,080 frames. The plan and the environment of
substation A are shown in Figure 6. The red line denotes the robot’s trajectory ABCDA. The point cloud
maps established by the MIM_SALM and the LOAM [12] which has been considered state-of-the-art
in LiDAR SLAM are shown in Figure 7.

Intuitively, the MIM_SLAM algorithm has a high consistency map compared with the LOAM.
Due to the accumulated error, the estimated pose has a great deviation when the robot travels from
area A along the red track shown in Figure 6, and then returns back to area A. The LOAM cannot
effectively handle the data association at this moment, which leads to the wrong association and
damage to the established map. In this paper, the multi-level ICP matching method takes into account
this situation and generates a reliable constraint between the two poses. The incremental optimization
method is used to optimize the global pose. Thus the final map has a high consistency.
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Next, we tested it in substation B. Compared with substation A, this was larger. Meanwhile,
the electrical equipment is placed more sparsely, and less information is gathered by the 3D LIDAR
sensor. During the experiments, the robot traveled approximately 1450 m at a speed of 0.6 m/s, and the
LIDAR sensor collected a total of 24,220 frames. The plan and the environment of substation B are
shown in Figure 8. The red line denotes the robot’s trajectory ABCDEABFGDC. The point cloud maps
established by the MIM_SLAM algorithm and the LOAM are shown in Figure 9.

It can be seen from the observation of the two scenes given in Figure 8 that the electrical equipment
is distributed more sparsely, and more than 70% of the laser rays reach the maximum measurement
range. As shown in Figure 9a, both contour lines of the map established by the MIM_SLAM algorithm
are at right angles at areas F and G. Additionally, when the robot returned back to the area C, the details
of the point cloud map at area C showed that the telegraph poles and the road edge are clearly visible,
and there is no incorrect point cloud accumulation. Because the LOAM cannot effectively process the
data association of the closed-loop area, the performance is very poor in this situation, which has more
closed-loop areas in large-scale environments, as shown in Figure 9b.
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4.3. Mapping Accuracy Test

In order to analyze the mapping accuracy quantitatively, we selected two substations with
large-scale and sparse characteristics which are shown in Figures 6 and 8, also the standard ICP [20]
and the LOAM [12] algorithm was selected to compare with the MIM_SLAM algorithm. In the
experiments, the robot is controlled running at a speed of 0.6 m/s on a flat road along a straight line
with a length of 10 m. The accuracy of mapping is defined as the robot’s localization error ε [28],
expressed as follows:

ε = 1
N

N−1
∑

i=0
‖ei‖

ei = (x0 ⊕ Ti)− (x∗0 ⊕ T∗i )
(16)

where x0 and x∗0 denote the initial pose. ⊕ is the standard motion composition operator. Ti denotes
the transformation matrix of the estimated pose xi relative to the initial pose x0. T∗i denotes the
transformation matrix of the true pose x∗i relative to the initial pose x∗0 . ‖·‖ is the 2-Norm used
in this paper. For the robot to navigate in three-dimensional environments, ei is represented as
(xe, ye, ze, ϕe, ψe, θe). Then ε can be divided into two parts: translation error and rotation error.

ε =
1
N

N−1

∑
i=0
‖trans(ei)‖+

1
N

N−1

∑
i=0
‖rot(ei)‖ (17)

Since it is difficult to obtain the true pose of the robot, 20 points are selected from the robot’s
trajectory. The first point is taken as the initial pose. For the next 19 points, the difference value of the
localization results relative to the initial pose is calculated. The difference value of the true pose can be
measured by the tape. In Table 1, the localization error is tested with the standard ICP, the LOAM and
the MIM_SLAM algorithms under substation A and B. It can be seen that the MIM_SLAM algorithm
is more precise. If there is a closed-loop area on the robot’s path, the MIM_SLAM algorithm will be
better than the LOAM. The processing time per frame using different approaches is calculated and
shown in Table 2. MIM_SLAM has a similar time consuming compared to the LOAM and meets the
real-time requirements. In Section 4.4, this will be further analyzed in the benchmark dataset.

Table 1. The localization error results of different approaches/scenes.

Standard ICP LOAM MIM_SALM

Trans. Error (unit: m)
A 0.213 ± 0.148 0.064 ± 0.057 0.052 ± 0.043
B 0.282 ± 0.177 0.075 ± 0.066 0.066 ± 0.062

Rot. Error (unit: deg)
A 2.5 ± 1.9 1.8 ± 1.2 1.6 ± 1.4
B 3.1 ± 2.2 2.5 ± 2.1 2.2 ± 1.8
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Table 2. The average time consumption per frame for different approaches/scenes.

Standard ICP LOAM MIM_SALM

Processing Time (unit: s)
A 0.0405 0.1036 0.0886
B 0.0416 0.1067 0.0932

4.4. Benchmarking Datasets Test

Then, datasets from the KITTI odometry benchmark [29] are used to evaluated MIM_SLAM.
The datasets take advantage of the autonomous driving platform Annieway to develop novel
challenging real-world computer vision benchmarks. The autonomous driving platform is equipped
with a 360◦ Velodyne HDL-64E laser scanner and two high-resolution color and grayscale video
cameras. Accurate ground truth is provided by a GPS localization system. We selected three typical
types of environments: “urban” with building around (sequence 07), “country” on small roads with
vegetation in this scene (sequence 03), and “highway” where roads are wide and lower dynamic
(sequence 06).

(1) Sequence 03: This dataset is designed to verify that MIM_SLAM can achieve a low drift pose
estimation in sparse vegetation environment. The mapping result is shown in Figure 10a and
the trajectory and the ground truth are shown in Figure 11a. Due to the scarce stable features
in this scene, there is a bit of position deviation after 420 m of traveling compared with the
ground truth in Figure 11a. To evaluate the pose estimation accuracy, we use the evaluation
method in the KITTI odometry benchmark which calculated the translational and rotational errors
for all possible subsequences of length (100, 200, . . . , 800) meters. As is shown in Figure 12a,
both LOAM and MIM_SLAM achieve lower drift values compared with the standard ICP method,
and MIM_SLAM is slightly worse than LOAM.

(2) Sequence 06: We use this dataset to verify that MIM_SLAM can effectively process the data
association of the closed-loop area shown in Figures 10 and 11. From Figure 12b, it can be seen
that the translational and rotational errors are lower compared to the standard ICP, and slightly
better than LOAM.

(3) Sequence 07: This urban road scene is highly dynamic and large-scale. The vehicle travels
approximately 660 m at a speed of 6.2 m/s. The mapping result is shown in Figure 10c and
the trajectory and the ground truth are shown in Figure 11c. Intuitively, the details of the point
cloud map are clear. The estimated pose and the ground truth are almost overlapping. The pose
estimation error is shown in Figure 12c quantitatively.
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5. Conclusions

For large-scale and sparse environments, we propose a novel MIM_SLAM algorithm in this paper,
which simplifies the SLAM problem to the least-squares optimization problem. The contribution of this
paper is that the multi-level ICP matching method is proposed to solve the data association problem and
the uncertainty estimation is handled by the Fisher information matrix. It considers the accumulated
errors in two aspects: matching between time-neighbor frames (building a low-drift LiDAR odometry)
and matching between area-neighbor frames (dealing with the data association at a revisited area).
Moreover, multi-level matching and incremental optimization reduce the computational complexity
while ensuring mapping accuracy, we can achieve accurate mapping and real-time applications.
Additionally, its application is not only limited to mobile robots, and it can potentially be extended to
other vehicles, e.g., UAVs. Experimental results show that it can effectively build a high consistency
map with a smaller amount of environmental information and the large-scale scenes, and it also
achieves similar or better accuracy compared with the standard ICP and the state-of-the-art LOAM
algorithm in the KITTI dataset. Additionally, there are some limitations in high dynamic scenes.
Our future work will focus on the construction of a more robust data association method, we will
integrate the output of our multi-level ICP matching with an IMU in a Kalman filter to further reduce
the accumulated error.
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