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Abstract: Terahertz waves have attracted much attention mainly because of their potential in imaging,
security checking, nondestructive testing, and information and communication technologies. In the
past few years, there has been an extensive effort to investigate terahertz wave control devices. Liquid
crystal (LC) devices are strong candidates for high-performance terahertz wave control devices
because of their controllability at low drive voltages and their low power consumption. In this study,
we fabricated an electrically tunable phase control device by using a hydrogen-bonded LC material.
We investigated the performance of the LC phase shifter by using a far infrared continuous wave
laser. We also estimated the birefringence and absorption properties of the hydrogen-bonded LC
at 2.5 THz by using Jones matrix calculations. The measurements and calculation results indicated
that the hydrogen-bonded LC showed no dichroism at 2.5 THz. Based on the absorption properties,
we believe that it could be a strong candidate for use in future terahertz devices.
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1. Introduction

The terahertz region of the electromagnetic wave spectrum ranges from 0.1 to 10 THz. Over the
last few decades, there has been considerable interest in terahertz applications, such as imaging,
security checking, nondestructive testing, and in information and communication technologies [1].
In order to successfully achieve these terahertz applications, terahertz wave control devices, including
a beam former, a lens, an antenna, and a polarization control device, are essential. It is beneficial if
these devices are tunable and have low absorption loss. To realize tunability in terahertz wave control
devices, variable-focus terahertz lens using pumping oil [2], electrostatically actuated diffraction
gratings [3], magnetically tunable ferrofluid [4], electrically tunable metamaterial [5], electrically
tunable graphene-based polarizer [6], and optically tunable terahertz filter [7] have been demonstrated.

Another advantageous possibility is the use of high-performance liquid crystal (LC)-based devices
in a terahertz application due to its controllability at low drive voltage and its low power consumption
without any mechanical movement. Nose and coworkers reported the optical properties of LCs in
the terahertz frequency region using a far infrared (FIR) continuous wave (CW) laser in 1997 [8].
They revealed that LCs exhibited birefringence in the terahertz frequency region, and thus the LCs
were shown to be a promising material for terahertz devices. Koch and coworkers reported the
optical properties of LCs in a terahertz frequency region by using terahertz time-domain spectroscopy
(TDS) [9]. They reported the properties of many LCs in the terahertz region [10–14] and in terahertz
wave control devices [15–17]. Pan and coworkers also reported the terahertz properties of many LCs
using terahertz TDS [18–23] and many types of terahertz phase control devices using the birefringence
of LCs in the terahertz frequency region [24–28]. Several authors have reported the improvement of the
LC-based terahertz phase shifter. A transparent electrode is very important for an electrically tunable
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LC-based terahertz phase shifter. Pan and coworkers have reported tunable LC terahertz phase shifters
by using indium-tin-oxide nanowhiskers as transparent electrodes [28]. Lu and coworkers also have
reported a high transmittance tunable LC terahertz phase shifter using porous graphene electrodes [29].
Since the LC-based terahertz phase shifter needs a large cell gap (500 µm or more), improvement
in response speed is an important subject. To achieve high speed operation, the introduction of a
reflection structure [30], polymer-stabilized LC (PSLC) [17], and electrospun nanofiber [31] have been
reported. In addition, the development of LC material is also important for high-performance terahertz
LC phase shifters. Recently, LCs with high birefringence in the terahertz region have been reported
by Lu [32] and Koch [14]. These two reports indicate the promise of high-birefringence LCs for use
in LC-based terahertz devices. However, all the reported nematic LCs exhibited dichroism in the
terahertz region. In other words, the absorption in the ordinary direction αo was not equal to the
extraordinary absorption αe. Previously, we investigated phase-shifting interferometry by using an LC
phase shifter and reported that the dichroism of the LC caused unwanted variation in the intensity of
the terahertz phase shifter [33]. Therefore, LC materials with no dichroism are significant not only in
phase-shifting interferometry, but also in future terahertz applications.

In this study, we fabricated an electrically tunable phase control device by using a hydrogen-bonded
LC material. We investigated the performance of the LC phase control device by using an FIR
CW laser and estimated the birefringence and absorption properties of the hydrogen-bonded LC at
2.5 THz. We also simulated the operational properties of the LC phase control device by using Jones
matrix calculations.

2. Materials and Methods

Figure 1 shows the molecular structure of the hydrogen-bonded LC. This material exhibited
a thermotropic liquid crystalline phase due to the intermolecular hydrogen bonding between two
identical molecules. Hydrogen bonding has an important role in supramolecular LCs [34]. In this
study, a hydrogen-bonded liquid crystal (LC1) was introduced to a phase control device. LC1 is a
mixture of molecules (as seen in Figure 1) that vary by alkyl chain length. We also studied a standard
nematic LC (E44) for comparison.
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Figure 1. Molecular structure of hydrogen-bonded liquid crystal.

Figure 2 shows the structure of an electrically tunable phase shifter for terahertz waves. The LC
material was injected into a normal sandwich cell. Both inner surfaces of the substrates were
treated with antiparallel rubbing after coating the planar alignment layer with polyimide (SE2170,
Nissan Chemical Industries, Tokyo, Japan) to obtain homogeneous alignment. The cell thickness
was determined by using sheet spacers. The thickness of the LC layer was 800 µm for terahertz
operation. To keep the high transmittance of the terahertz wave, we used quartz substrates and
Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) (PEDOT/PSS) electrodes. The direction of
the LC molecules (director) could be controlled by an external electrical field.

Figure 3 shows the experiment setup. In this study, the terahertz wave intensity profiles were
measured by using an FIR CW laser as a signal source. This laser was the major source of a coherent CW
with a powerful terahertz radiation above 0.3 THz. Here a CO2 laser was used for pumping the CH2F2

gas, and a frequency of 2.5 THz was used for our measurements. We placed the LC device between two
wire-grid paralyzers, and the intensity of the terahertz wave was detected by a pyroelectric detector.
To eliminate the influence of laser power variation, we checked the power of the THz wave by using
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pyroelectric detector 1 at all times. An accurate transmittance was obtained by using the intensity of
pyroelectric detector 2 normalized by the intensity of detector 1.Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 9 
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The polarization state of the transmitted terahertz wave through the LC device was calculated
by using the Jones matrix method [35]. Figure 4 shows the Jones matrix calculation model of a
homogeneous-alignment LC device in the terahertz region. In this situation, the electric fields of the
transmitted terahertz wave Ex and Ey are described as follows:[

Ex

Ey

]
= PAW

[
cos ΨP
sin ΨP

]
, (1)

where Ψp is the angle of the polarizer as defined in Figure 4. The Jones matrix of the analyzer PA and
that of the homogeneous LC device W in Equation (1) are written as

PA = R(ΨA)

[
1 0
0 0

]
R(−ΨA), (2)

W = R(Ψi)

 exp
(
− iΓ

2

)
exp
(
− 2πn′′e d

λ

)
0

0 exp
(

iΓ
2

)
exp
(
− 2πn′′o d

λ

)
R(−Ψi), (3)

where λ is the wavelength of the incident terahertz wave, d is the thickness of the LC layer, and n”
is the imaginary part of the complex refractive indices of the LC. Here, subscripts of e or o mean the
extraordinary and ordinary refractive indices, respectively. The R(Ψ) and Г are given as

R(Ψ) =

[
cos Ψ − sin Ψ
sin Ψ cos Ψ

]
, (4)

Γ =
2π|n′e − n′o|d

λ
, (5)
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where n′ is the real part of the complex of refractive indices of the LC.
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3. Results and Discussions

Figure 5 shows the transmitted terahertz intensity of LC1 as a function of the applied voltage.
The data were obtained by using an FIR CW laser as shown in Figure 3. We placed the LC device
between the polarizers of closed Nicols. The direction of the polarizers and the director of the LC
device were ΨP = 45◦, ΨA = −45◦, and Ψi = 0◦, respectively. The transmitted 2.5 THz wave was
measured by varying the voltage applied to the LC device. Figure 5a shows the result from LC1,
and the result of E44 is shown in Figure 5b for comparison.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 9 
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Figure 5. Transmitted terahertz intensity of (a) a hydrogen-bonded liquid crystal (LC1) and (b) a
standard nematic LC (E44) as a function of the applied voltage.

We successfully observed the transmittance oscillation by increasing the applied voltage.
The threshold voltage was high in both cases of LC1 and E44, which was due to the influence of
the PEDOT/PSS electrodes. We believe that the threshold voltage will be lower once the fabrication
process of the PEDOT/PSS electrodes has been optimized.

The oscillation of transmittance shown in Figure 5 arose from the variation in polarization after
passing through the LC device. In the case of E44, the transmittance oscillated with decreasing
intensity, as shown in Figure 5b. This is due to the difference in the absorption coefficient between the
extraordinary and ordinary direction. In the case of E44, the extraordinary absorption coefficient was
smaller than that of the ordinary directions [33]. The electric field in the x direction felt the extraordinary
absorption, and the electric field in the y direction felt the ordinary direction of absorption at 0 V.
However, upon increasing the voltage, the LC molecules rose up, and the electric fields in both the
x and y directions gradually felt the ordinary direction of absorption. Since the ordinary absorption
coefficient in E44 was larger than the extraordinary absorption coefficient, the total transmittance
decreased. Conversely, the transmittance oscillation doses did not decrease in the case of LC1, as shown
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in Figure 5a. These results indicate that LC1 had the same value of ordinary and extraordinary
absorption coefficients.

We previously reported that the birefringence of E44 is 0.2 [33]. The thickness of the LC layer
was 800 µm in this case, and the retardation R of the E44 phase shifter was 160 µm. The frequency of
the incident wave was 2.5 THz, which corresponded to a wavelength of 117.7 µm. This value means
that two minima appeared in the transmittance versus applied voltage plot, which correlated with
the result shown in Figure 5b. Since there were also two minima in Figure 5a, the birefringence of
LC1 might have been about 0.2 at 2.5 THz. To estimate the values of the birefringent and absorption
coefficients of LC1, we investigated the dependence of transmittance on the director angle Ψi.

Figure 6 shows the experimental and calculated terahertz transmittance of LC1 at 2.5 THz. Here,
we placed the sample between the polarizers of a parallel Nicols, and then we rotated the sample.
The graph shows the transmittance as a function of LC director angle Ψi. Since we set the direction
of the polarizers ΨP = ΨA = 0◦, the data for Ψi = 0◦, 180◦, and 360◦ corresponded to the results of the
electric field of the terahertz wave that was parallel to the LC director. On the other hand, the data
when Ψi = 90◦ and 270◦ showed the results of the terahertz wave that was perpendicular to the LC
director. In Figure 6, the transmittances of these two cases were almost the same. This result indicates
that the extraordinary and ordinal absorption coefficients of LC1 had the same value. The solid line
in Figure 6 shows the calculated results of the terahertz transmittance by using the Jones matrix
calculation. We set the parameters as follows: ΨP = ΨA = 0◦, d = 800 µm. The calculation data showed
a good fit with the experimental data when we set ∆n = 0.17, n′′e = 0.022, and n′′o = 0.060. In this study,
we took into account the attenuation of the two substrates by setting the absorption coefficient of the
quartz substrates at αs = 0.5 cm−1. This value was consistent with the reported value [36], and the
transmittance decreased by 95% when the thickness of each substrate was 500 µm.
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Figure 6. Experimental and calculation terahertz transmittance of LC1 at 2.5 THz.

Table 1 shows the birefringence, absorption coefficients, and dielectric anisotropy of LC1. In the
case of LC1, which consisted of hydrogen bonding, αe and αo = 37 cm−1 and ∆n = 0.17 at 2.5 THz.
Here we also show the reported values of birefringence, absorption coefficients, and dielectric
anisotropy for several LCs from References [8,12,22,32,33]. The birefringence of LC1 at 2.5 THz
was not remarkably high compared to the LCs shown in Table 1. In addition, absorption coefficients
of LC1 were slightly high or nearly the same as reported values of 2.5 THz in Table 1. It should
be noted that the absorption coefficients αe and αo of the hydrogen-bonded LCs were almost of the
same value. Since the hydrogen-bonded LC exhibits nondichroism, it is easy to design terahertz
control devices the same way as with Si or other nondichroism materials [2–7]. On the other hand, the
dielectric anisotropy of LC1 was 0.6, and this value was smaller than that of common LCs used for
other terahertz applications. This result indicates that rise time (the switching time between off-state
and on-state) of the LC phase shifter became slow compared to the cases of using the other LCs, as seen
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in Table 1. We did not measure the relaxation time (the switching time between on-state and off-state),
but we confirmed that the response of the LC1 phase shifter was almost same as with the case of
E44. We believe that introduction of a reflection structure [30], a polymer-stabilized LC [17], and an
electrospun nanofiber [31] is effective in improving the relaxation time of the LC1 phase shifter.

Table 1. Birefringence, absorption coefficients, and dielectric anisotropy of LC1. For comparison,
reported values of various LCs are given.

Liquid Crystal f (THz) ∆n n”
e αe (cm−1) n”

o
αo

(cm−1) ∆ε6

LC1 2.5 0.17 0.035 37 0.035 37 0.6 (1 kHz)
E44 1 2.5 0.2 0.022 23.5 0.06 64.1 16.8 (1 kHz)
K15 2 2.5 0.165 0.0159 16.9 0.0379 40.4 20.07 (1 kHz)
E7 3 1 0.14 0.015 3 0.035 7 13.8 (1 kHz)

NJU-LDn-4 4 1.6 0.314 0.0526 12 0.0352 18 6.01 (1 kHz)
1825 5 2.5 0.371 0.0363 19 0.0262 13.7 17.0 (1.5 kHz)

1 Results from Reference [33]. 2 Results from Reference [8]. 3 Results from Reference [22]. 4 Results from
Reference [32]. 5 Results from Reference [12]. 6 ∆ε = ε// − ε⊥.

More detailed measurements are in progress to characterize the broadband terahertz optical
properties of the hydrogen-bonded LC.

Figure 7 shows the simulation results of the polarization condition of the transmitted terahertz
wave calculated by using the Jones matrix method. The transmitted terahertz wave polarization
condition just after the LC phase shifter is displayed. We set the parameters as follows: Ψp = 45◦,
Ψi = 0◦, d = 800 µm, and λ = 117.7 µm. Figure 7 shows the polarization conditions for retardation when
R = ∆nd = λ, λ/2, and λ/4, which correspond to phase shifts of 360◦, 180◦, and 90◦, respectively.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 9 
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Figure 7. Simulation results of the polarization conditions of a transmitted terahertz wave. We set the
absorption values for (a) zero (no loss), (b) LC1, and (c) E44. Retardation of the LC device was λ, λ/2,
and λ/4.

Figure 7a shows the calculation results without losses for the ideal case. In this instance, the
output terahertz wave was linearly polarized at R = λ and R = λ/2 and was circularly polarized at
R = λ/4. As shown in Figure 7a, the direction of the electric fields corresponded to the input terahertz
wave at R = λ and is 90◦ rotated from input terahertz wave at R = λ/2.

Figure 7b,c shows the calculation results by using LC losses, as shown in Table 1. In the case
of LC1, the intensity of the output became lower, but a ±45◦ linearly polarized terahertz wave was
obtained at R = λ and λ/2. Conversely, since E44 exhibited dichroism at 2.5 THz, the direction of the
output linear polarized terahertz wave deviated from ±45◦ at R = λ and λ/2, as shown in Figure 7c.
In addition, an exact circular polarized output was obtained at R = λ/4 in the case of LC1. However, the
polarization of the output terahertz wave became ellipsoidal in the case of E44 because of its dichroism
at 2.5 THz. These results indicate that a phase control device using LC1 was almost operating ideally at
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2.5 THz because there was no dichroism. We believe that the hydrogen-bonded LC will be particularly
useful in future LC-based terahertz devices.

4. Conclusions

In this study, we introduced hydrogen-bonded LC materials in an LC-based phase control device,
and the transmittance properties were measured by using an FIR CW laser. The hydrogen-bonded LC
phase control device was electrically tunable by using a PEDOT/PSS electrode. The birefringence and
adsorption coefficients were estimated by fitting the experiment data using the Jones matrix calculation.
We discovered that the extraordinary and ordinal absorption coefficients of the hydrogen-bonded LCs
were almost of the same value. We also simulated the polarization conditions of the transmitted
terahertz wave, which were calculated by using the Jones matrix method. In the case of the
hydrogen-bonded LC device, the output terahertz wave polarization was ±45◦ linearly polarized at
R = λ and λ/2, and circularly polarized at R = λ/4. On the basis of the absorption properties and the
behavior of the hydrogen-bonded LC, we believe that it could be a strong candidate for use in future
terahertz devices.
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