A Deeper Insight on the Stability of Water-Induced Reconstruction of Anatase (001) Surface
Abstract
:1. Introduction
2. Methods
3. Results
- Provided that the total energy of the real system is obtained by summing the DFT and the dispersion energy terms, , the interaction between the water molecules in bulk water is accounted for by the dispersion energy only ();
- the dispersion energy change occurring in a real system when one water molecule is dissociatively adsorbed from the bulk water to the surface is obtained in a Born Oppenheimer Molecular Dynamics (BOMD) run as detailed recently [27]; this contribution is supposed to be due only to the change of the dispersion energy interaction between water molecules and between the TiO slab and water molecules (the dispersion energy change due to the TiO re-arrangement is neglected); BOMD simulations were performed on on the anatase unreconstructed and fully hydrated (001) surface with the mixed Gaussian and plane wave (GPW) method as implemented in the CP2K package [38]. The details and technicalities of the simulations can be found in a recent article that was mostly focussed on the study of the water structure [39];
- the contribution to the dispersion energy change due to the interaction between the adsorbed (and dissociated) water and the TiO slab is measured from the ground states of the water reconstructed and the unreconstructed surfaces;
- the dispersion energy of one water molecule in bulk water is measured and averaged from BOMD of bulk water at room temperature; for this term we have obtained ;
- the contribution to the adsorption energy coming from the interaction between the slab and the bulk water above it is dominated by the medium-long range interactions and thus by the dispersion part of the energy.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Density Functional Theory |
GGA | Generalized Gradient Approximation |
PBE | Perdew-Burke-Ernzerhof |
WIR | Water Induced Reconstruction |
BOMD | Born-Oppenheimer Molecular Dynamics |
References
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Zhang, X.; Trykc, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Yang, Z.P.; Cheng, H.E.; Chang, I.H.; Yu, I.S. Atomic Layer Deposition TiO2 Films and TiO2/SiNx Stacks Applied for Silicon Solar Cells. Appl. Sci. 2016, 6, 233. [Google Scholar] [CrossRef]
- Ivanoff, C.J.; Widmark, G.; Hallgren, C.; Sennerby, L.; Wennerberg, A. Histologic evaluation of the bone integration of TiO2 blasted and turned titanium microimplants in humans. Clin. Oral Implant. Res. 2002, 12, 128–134. [Google Scholar] [CrossRef]
- Vittadini, A.; Casarin, M.; Selloni, A. Chemistry of and on TiO2-anatase surfaces by DFT calculations: A partial review. Theor. Chem. Acc. 2007, 117, 663–671. [Google Scholar] [CrossRef]
- Sun, C.; Liu, L.M.; Selloni, A.; Lu, G.Q.M.; Smith, S.C. Titania-water interactions: A review of theoretical studies. J. Mater. Chem. 2010, 20, 10319–10334. [Google Scholar] [CrossRef]
- Gala, F.; Agosta, L.; Zollo, G. Water Kinetics and Clustering on the (101) TiO2 Anatase Surface. J. Phys. Chem. C 2016, 120, 450–456. [Google Scholar] [CrossRef]
- Agosta, L.; Zollo, G.; Arcangeli, C.; Buonocore, F.; Gala, F.; Celino, M. Water driven adsorption of amino acids on the (101) anatase TiO2 surface: An ab initio study. PCCP 2015, 17, 1556–1561. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Local ordering and electronic signatures of submonolayer water on anatase TiO2 (101). Nat. Mater. 2009, 8, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Agosta, L.; Gala, F.; Zollo, G. Water Diffusion on TiO2 Anatase Surface. AIP Conf. Proc. 2015, 1667, 020006-1–020006-9. [Google Scholar]
- Gong, X.Q.; Selloni, A. Reactivity of Anatase TiO2 Nanoparticles: The Role of the Minority (001) Surface. J. Phys. Chem. B Lett. 2005, 109, 19560–19562. [Google Scholar] [CrossRef] [PubMed]
- Fazio, G.; Ferrighi, L.; Valentin, C.D. Spherical versus faceted anatase TiO2 nanoparticles: A model study of structural and electronic properties. J. Phys. Chem. C 2015, 119, 20735–20746. [Google Scholar] [CrossRef]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 15, 155409. [Google Scholar] [CrossRef]
- Vittadini, A.; Selloni, A.; Rotzinger, F.P.; Grätzel, M. Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces. Phys. Rev. Lett. 1998, 81, 2954. [Google Scholar] [CrossRef]
- Hengerer, R.; Bolliger, B.; Erbudak, M.; Gratzel, M. Structure and stability of the anatase TiO2 (101) and (001) surfaces. Surf. Sci. 2000, 460, 162–169. [Google Scholar] [CrossRef]
- Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of Anatase Nanosheets with Exposed (001) Facets via Chemical Vapor Deposition. J. Am. Chem. Soc. 2009, 131, 3152–3153. [Google Scholar] [CrossRef]
- Lee, W.J.; Sung, Y.M. Synthesis of Anatase Nanosheets with Exposed (001) Facets via Chemical Vapor Deposition. Cryst. Growth Des. 2012, 12, 5792–5795. [Google Scholar] [CrossRef]
- Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced Photocatalytic CO2-Reduction Activity of Anatase TiO2 by Coexposed {001} and {101} Facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef]
- Tachikawa, T.; Yamashita, S.; Majima, T. Evidence for Crystal-Face-Dependent TiO2 Photocatalysis from Single-Molecule Imaging and Kinetic Analysis. J. Am. Chem. Soc. 2011, 133, 7197–7204. [Google Scholar] [CrossRef]
- Angelis, F.D.; Valentin, C.D.; Fantacci, S.; Vittadini, A.; Selloni, A. Theoretical Studies on Anatase and Less Common TiO2 Phases: Bulk, Surfaces, and Nanomaterials. Chem. Rev. 2014, 114, 9708–9753. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Tan, S.; Feng, H.; Cheng, Z.; Zhao, J.; Zhao, A.; Wang, B.; Luo, Y.; Yang, J.; Hou, J.G. Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface. Nat. Commun. 2013, 4, 2214. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, M.; Selloni, A. Stress-Driven Reconstruction of an Oxide Surface: The Anatase TiO2(001) (1 × 4) Surface. Phys. Rev. Lett. 2001, 87, 266105. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Sun, H.; Saidi, W.A.; Nguyen, M.C.; Wang, C.Z.; Ho, K.; Yang, J.; Zhao, J. Role of Surface Stress on the Reactivity of Anatase TiO2 (001). J. Phys. Chem. Lett. 2017, 8, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Ignatchenko, A.; Nealon, D.G.; Dushane, R.; Humphries, K. Interaction of water with titania and zirconia surfaces. J. Mol. Catal. A Chem. 2006, 256, 57–74. [Google Scholar] [CrossRef]
- Selcuk, S.; Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 2016, 15, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Selçuk, S.; Selloni, A. Surface Structure and Reactivity of Anatase TiO2 Crystals with Dominant {001} Facets. J. Phys. Chem. C 2013, 117, 6358–6362. [Google Scholar] [CrossRef]
- Vitale, E.; Zollo, G.; Agosta, L.; Gala, F.; Brandt, E.G.; Lyubartsev, A. Stress Relief and Reactivity Loss of Hydrated Anatase (001) Surface. J. Phys. Chem. C 2018, 122, 22407–22417. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Santra, B.; Michaelides, A.; Scheffler, M. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: Benchmarks approaching the complete basis set limit. J. Chem. Phys. 2007, 127, 184104. [Google Scholar] [CrossRef] [Green Version]
- Moellmann, J.; Ehrlich, S.; Tonner, R.; Grimme, S. A DFT-D study of structural and energetic properties of TiO2 modifications. J. Phys. Condens. Matter 2012, 24, 424206. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Lopez, E.; Varilla, L.A.; Seriani, N.; Montoya, J.A. TiO2 anatase’s bulk and (001) surface, structural and electronic properties: A DFT study on the importance of Hubbard and van der Waals contributions. Surf. Sci. 2016, 653, 187–196. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Esch, T.; Gadaczek, I.; Bredow, T. Surface structures and thermodynamics of low-index of rutile, brookite and anatase - a comparative DFT study. Appl. Surf. Sci. 2014, 288, 275–287. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. CP2K: Atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 15. [Google Scholar] [CrossRef]
- Agosta, L.; Brandt, E.G.; Lyubartsev, A.P. Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics. J. Chem. Phys. 2017, 147, 024704. [Google Scholar] [CrossRef]
- Ponti, G.; Palombi, F.; Abate, D.; Ambrosino, F.; Aprea, G.; Bastianelli, T.; Beone, F.; Bertini, R.; Bracco, G.; Caporicci, M.; et al. The role of medium size facilities in the HPC ecosystem: The case of the new CRESCO4 cluster integrated in the ENEAGRID infrastructure. IEEE HPCS 2014, 6903807, 1030–1033. [Google Scholar]
Surface Reconstruction | (eV) | (J/m) | (kbar) | (kbar) |
---|---|---|---|---|
(2 × 2) | −1.38 | 0.32 | −12.38 | −0.76 |
(2 × 3) | −2.16 | 0.30 | −17.06 | 1.71 |
(2 × 4) | −2.61 | 0.37 | −20.50 | 2.7 |
(2 × 6) | −2.98 | 0.55 | −25.29 | 2.93 |
Surface Reconstruction | (eV) | (eV) | (J/m) |
---|---|---|---|
(2 × 2) | −0.0302 | −1.06 | 0.51 |
(2 × 3) | 0.0057 | −1.82 | 0.42 |
(2 × 4) | 0.0476 | −2.25 | 0.47 |
(2 × 6) | 0.1355 | −2.58 | 0.62 |
Site | (2 × 3) eV | (2 × 4) eV |
---|---|---|
t | −0.455 | −0.542 |
t | −0.329 | −0.367 |
t | −0.644 | −0.672 |
t | −0.486 | −0.528 |
t | - | −0.542 |
t | - | −0.528 |
r | −0.344 | −0.411 |
r | −0.689 | −0.705 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zollo, G.; Vitale, E. A Deeper Insight on the Stability of Water-Induced Reconstruction of Anatase (001) Surface. Appl. Sci. 2018, 8, 2522. https://doi.org/10.3390/app8122522
Zollo G, Vitale E. A Deeper Insight on the Stability of Water-Induced Reconstruction of Anatase (001) Surface. Applied Sciences. 2018; 8(12):2522. https://doi.org/10.3390/app8122522
Chicago/Turabian StyleZollo, Giuseppe, and Eugenio Vitale. 2018. "A Deeper Insight on the Stability of Water-Induced Reconstruction of Anatase (001) Surface" Applied Sciences 8, no. 12: 2522. https://doi.org/10.3390/app8122522
APA StyleZollo, G., & Vitale, E. (2018). A Deeper Insight on the Stability of Water-Induced Reconstruction of Anatase (001) Surface. Applied Sciences, 8(12), 2522. https://doi.org/10.3390/app8122522