Form-Finding of Funicular Geometries in Spatial Arch Bridges through Simplified Force Density Method
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Spatial Arch Bridges and Funicularity
1.2. Validity of the Force Density Method (FDM)
2. Application of the Simplified Force Density Method to Arch Bridges
3. Formulation and Flowchart
3.1. Formulation
3.2. Flow Chart
4. Discussion of the Simplified FDM
5. Case studies: Examples of Application
6. Conclusions
Funding
Conflicts of Interest
References
- Jorquera-Lucerga, J.J. Estudio del Comportamiento Resistente de los Puentes Arco Espaciales (A Study on the Structural Behaviour of Spatial Arch Bridges). Ph.D. Thesis, Technical University of Madrid (UPM), Madrid, Spain, 2007. Available online: http://oa.upm.es/812/1/JUAN_JOSE_JORQUERA_LUCERGA.pdf (accessed on 7 February 2007). (In Spanish).
- Jorquera-Lucerga, J.J. Structural behaviour of spatial arch bridges. In Proceedings of the IASS Symposium on Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Valencia, Spain, 28 September–2 October 2009. [Google Scholar]
- Billington, D.P. Robert’s Maillart’s Bridges: The Art of Engineering; Princeton University Press: Princeton, NJ, USA, 1979. [Google Scholar]
- Laffranchi, M.; Marti, P. Robert´s Maillart´s concrete arch bridges. J. Struct. Eng. 1997, 123, 1280–1286. [Google Scholar] [CrossRef]
- Hussain, N.; Wilson, I. The Hulme Arch Bridge, Manchester. In Proceedings of the ICE-Civil Engineering, London, UK, February 1999; Volume 132, pp. 2–13. Available online: https://trid.trb.org/view/499313 (accessed on 10 December 2018).
- Johnson, J.; Curran, P. Gateshead Millennium Bridge—An eye-opener for engineering. In Proceedings of the ICE-Civil Engineering, London, UK, February 2003; Volume 156, pp. 16–24. Available online: https://www.icevirtuallibrary.com/doi/abs/10.1680/cien.2003.156.1.16 (accessed on 25 May 2015).
- Mairs, D. York Millennium Bridge—A footbridge with an inclined arch, UK. Struct. Eng. Int. 2001, 3, 172–174. [Google Scholar] [CrossRef]
- Tzonis, A.; Caso, R. Santiago Calatrava: The Bridges; Thames & Hudson: London, UK, 2005. [Google Scholar]
- Tarquis Alfonso, F.; Hue Ibargüen, P. Juscelino Kubitschek Bridge. In Proceedings of the III ACHE Conference, Zaragoza, Spain, 14–17 November 2005. (In Spanish). [Google Scholar]
- Schlaich, J.; Moschner, T. Die Ripshorsterbrücke über den Rheine-Herne-Kanal. (The Ripshorst Bridge over the Rhine-Herne Canal.) Bautechnik 1999, 76, 459–462. (In German) [Google Scholar]
- Sarmiento-Comesías, M. Structural Behaviour and Design Criteria of Spatial Arch Bridges. Ph.D. Thesis, Technical University of Catalonia, Barcelona, Spain, 2015. [Google Scholar]
- Hudecek, M. Structural Behaviour of Spatial Arch Bridges. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2017. [Google Scholar]
- García-Guerrero. El Puente Arco Espacial Como una Evolución Tipológica (The Spatial Arch Bridge as a Typological Evolution). Ph.D. Thesis, Technical University of Cartagena, Cartagena, Spain, 2018. (In Spanish). [Google Scholar]
- Baus, U.; Schlaich, M. Footbridges, Construction, Design, History; Birkhäuser, Verlag: Basel, Switzerland, 2008. [Google Scholar]
- Strasky, J. Stress Ribbon and Cable-Supported Pedestrian Bridges, 2nd ed.; ICE Publishing: Westminster, London, UK, 2011. [Google Scholar]
- Masonry at MIT. Available online: http://web.mit.edu/masonry/ (accessed on 10 September 2018).
- Form-Finding Lab at Princeton University. Available online: http://formfindinglab.princeton.edu/ (accessed on 10 September 2018).
- Block Research Group. Available online: http://block.arch.ethz.ch/ (accessed on 10 September 2018).
- Schlaich, M.; Bleichar, A.; Nier, M. Die Weinbergbrücke in Rathenow. (The Weinberg Bridge in Rathenow). Bauingenieur 2016, 91, 71–80. (In German) [Google Scholar]
- Jorquera-Lucerga, J.J.; Manterola-Armisén, J. An iterative form-finding method for antifunicular shapes in spatial arch bridges. Comput. Struct. 2012, 108–109, 42–60. [Google Scholar] [CrossRef]
- Jorquera-Lucerga, J.J. Three-dimensional antifunicular geometries in spatial arch bridges. In Proceedings of the 37th IABSE Symposium, Madrid, Spain, 3–5 September 2014. [Google Scholar]
- Beghini, A.; Beghini, L.L.; Schultz, J.A.; Carrion, J.; Baker, W.F. Rankine’s theorem for the design of cable structures. Struct. Multidiscip. Optim. 2013, 48, 877–892. [Google Scholar] [CrossRef]
- Lachauer, L.; Block, P. Interactive Equilibrium Modelling. Int. J. Space Struct. 2014, 29, 25–37. [Google Scholar] [CrossRef]
- Schek, H.J. The force density method for form-finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 1974, 3, 115–134. [Google Scholar] [CrossRef]
- Lewis, W. Tension Structures Form and Behavior; Thomas Telford: London, UK, 2003. [Google Scholar]
- Buchholdt, H.A. An Introduction to Cable Roof Structures, 2nd ed.; Thomas Telford: London, UK, 1985. [Google Scholar]
- Tibert, G. Numerical Analyses of Cable Roof Structures. Ph.D. Thesis, KTH, Stockholm, Sweden, 1999. [Google Scholar]
- Asadi HHariri-Ardebili, M.A.; Mirtaheri, M.; Zandi, A.P. Force density ratios of flexible borders to membrane in tension fabric structures. Struct. Eng. Mech. 2018, 67, 555–563. [Google Scholar] [CrossRef]
- Adriaenssens SBlock, P.; Veenendaal, D.; Williams, C. Shell Structures for Architecture: Form Finding and Optimization; Routledge: Abingdon, UK, 2014. [Google Scholar]
- Computers & Structures Inc. SAP 2000 Analysis Reference Manual; CSI: Berkeley, CA, USA, 1998. [Google Scholar]
- The Mathworks Inc. Matlab: The Language of Technical Computing; Release 7.6 Reference Manual; The Mathworks Inc.: Natick, MA, USA, 2012. [Google Scholar]
- Romo-Martín, J.; Jorquera-Lucerga, J.J. Puente arco sobre la variante GI-131 en Urnieta (Arch bridge over the GI-131 road in Urnieta). In Proceedings of the ACHE V. Conference, Barcelona, Spain, 25–27 October 2011. (In Spanish). [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorquera-Lucerga, J.J. Form-Finding of Funicular Geometries in Spatial Arch Bridges through Simplified Force Density Method. Appl. Sci. 2018, 8, 2553. https://doi.org/10.3390/app8122553
Jorquera-Lucerga JJ. Form-Finding of Funicular Geometries in Spatial Arch Bridges through Simplified Force Density Method. Applied Sciences. 2018; 8(12):2553. https://doi.org/10.3390/app8122553
Chicago/Turabian StyleJorquera-Lucerga, Juan José. 2018. "Form-Finding of Funicular Geometries in Spatial Arch Bridges through Simplified Force Density Method" Applied Sciences 8, no. 12: 2553. https://doi.org/10.3390/app8122553
APA StyleJorquera-Lucerga, J. J. (2018). Form-Finding of Funicular Geometries in Spatial Arch Bridges through Simplified Force Density Method. Applied Sciences, 8(12), 2553. https://doi.org/10.3390/app8122553