The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material
Abstract
:Featured Application
Abstract
1. Introduction
- (I)
- Potential impacts of temporal variations in CO2 stream composition and mass flow that occur in larger pipeline networks on transport, injection, and geological storage of CO2.
- (I)
- (II) Flexibility of individual steps and the whole CCS process chain in response to this temporal variability [8].
1.1. Interaction of CO2 and Conventional Hydrated Cements
1.2. Interaction of Wollastonite and CO2
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
2.3. Experimental Setup
3. Results and Discussion
3.1. Microstructure (SEM)
3.2. PXRD Analysis
3.3. DSC-TG/MS/IR Measurements
3.4. Discussion of the PXRD and DSC-TG/MS Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- NOAA (National Oceanic and Atmospheric Administration); Earth System Research Laboratory. Trends in Atmospheric Carbon Dioxide. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 18 December 2017).
- Benson, S.M.; Orr, F.M., Jr. Carbon Dioxide Capture and Storage. MRS Bull. 2008, 33, 303–305. [Google Scholar] [CrossRef]
- Locher, F. Zement–Grundlagen der Herstellung und Verwendung, 1st ed.; Verlag Bau+Technik GmbH: Düsseldorf, Germany, 2000; p. 522. ISBN 978-3-7640-0400-2. [Google Scholar]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing, Thomas Telford Services Ltd.: London, UK, 1997; p. 459. ISBN 0-7277-2592-0. [Google Scholar]
- Pöllmann, H. Mineralogical strategies to reduce CO2 in the fabrication of alternative cements. Ibausil Conf. Rep. 2015, 1, 111–129. [Google Scholar]
- Rice, J.; Ferry, J. Buffering, Infiltration, and the Control of Intensive Variables during Metamorphism. Rev. Miner. Geochem. 1982, 10, 263–326. [Google Scholar]
- Svensson, K.; Neumann, A.; Pöllmann, H.; Menezes, F.; Lempp, C. Curing by carbonatisation of Wollastonite. GDCh–Tag. Bauchem. 2017, 52, 80–83. [Google Scholar]
- CLUSTER. Joint Research Project CLUSTER. Available online: www.bgr.bund.de/CLUSTER/ (accessed on 18 December 2017).
- Gartner, E.; Hirao, H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 2015, 78, 126–142. [Google Scholar] [CrossRef]
- Vilani, C.; Spragg, R.; Tokpatayeva, R.; Olek, J.; Weiss, W. Characterizing the Pore Structure of Carbonated Natural Wollastonite. In Proceedings of the 4th International Conference on the Durability of Concrete Structures, West Lafayette, IN, USA, 24–26 July 2014. [Google Scholar]
- Sahu, S.; DeCristofaro, N. Solidia CementTM–Part One of a Two-Part Series Exploring the Chemical Properties and Performance Results of Sustainable Solidia CementTM and Solidia ConcreteTM; Solidia Technologies: Piscataway, NJ, USA, 2013; pp. 1–12. [Google Scholar]
- Abbasi, E.; Hassanzadeh, A.; Abbasian, J. Regenerable MgO-based surbent for high temperature CO2 removal from syngas: 2. Two-zone variable diffusivity shrinking core model with expanding product layer. Fuel 2013, 105, 128–134. [Google Scholar] [CrossRef]
- Longo, R.C.; Cho, K.; Brüner, P.; Welle, A.; Gerdes, A.; Thissen, P. Carbonation of Wollastonite(001) Competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Dunctional Theory. Am. Chem. Soc. Appl. Mater. Interfaces 2015, 7, 4706–4712. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Lothenbach, B.; Geiker, M.R.; Kaufmann, J.; Leemann, A.; Ferreiro, S.; Skibsted, J. Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cem. Concr. Res. 2016, 88, 60–72. [Google Scholar] [CrossRef]
- Abdoulghafour, H.; Gouze, P.; Luquot, L.; Leprovost, R. Characterization and modeling of the alteration of fractured class-G Portland cement during flow of CO2-rich brine. Int. J. Greenh. Gas Control 2016, 48, 155–170. [Google Scholar] [CrossRef]
- Luquot, L.; Abdoulghafour, H.; Gouze, P. Hydro-dynamically controlled alteration of fractured Portland cements flowed by CO2-rich brine. Int. J. Greenh. Gas Control 2013, 16, 167–179. [Google Scholar] [CrossRef]
- Ozyurtkan, M.H.; Radonjic, M. An experimental study of the effect of CO2 rich brine on artificially fractured well-cement. Cem. Concr. Compos. 2014, 45, 201–208. [Google Scholar] [CrossRef]
- Yalcinkaya, T.; Radonjic, M.; Willson, C.; Bachu, S. Experimental Study on a Single Cement-Fracture Using CO2 Rich Brine. Energy Procedia 2011, 4, 5225–5342. [Google Scholar] [CrossRef]
- Carey, W.J.; Svec, R.; Grigg, R.; Zhang, J.; Crow, W. Experimental investigation of wellbore integrity and CO2-brine flow along casing-cement microannulus. Int. J. Greenh. Gas Control 2010, 4, 272–282. [Google Scholar] [CrossRef]
- Barlet-Gouédard, V.; Rimmelé, G.; Porcherie, O.; Quisel, N.; Desroches, J. A solution against well cement degradation under CO2 geological storage environment. Int. J. Greenh. Gas Control 2009, 3, 206–216. [Google Scholar] [CrossRef]
- Wigand, M.; Kaszuba, J.P.; Carey, W.J.; Hollis, K.W. Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface. Chem. Geol. 2009, 265, 122–133. [Google Scholar] [CrossRef]
- Nakano, K.; Ohbuchi, A.; Mito, S.; Xue, Z. Chemical interactionof well composite samples with supercritical CO2 along the cement–sandstone interface. Energy Procedia 2014, 63, 5754–5761. [Google Scholar] [CrossRef]
- Zhang, L.; Dzombak, D.A.; Nakles, D.V.; Hawthorne, S.B.; Miller, D.J.; Kutchko, B.G.; Lopano, C.L.; Strazisar, B.R. Characterization of pozzolan-amended wellbore cement exposed to CO2 and H2S gas mixtures under geologic carbon storage conditions. Int. J. Greenh. Gas Control 2013, 19, 358–368. [Google Scholar] [CrossRef]
- Zhang, L.; Dzombak, D.A.; Nakles, D.V.; Hawthorne, S.B.; Miller, D.J.; Kutchko, B.G.; Lopano, C.L.; Strazisar, B.R. Rate of H2S and CO2 attack on pozzolan-amended Class H well cement under geologic squestration conditions. Int. J. Greenh. Gas Control 2014, 27, 299–308. [Google Scholar] [CrossRef]
- Mito, S.; Xue, Z.; Satoh, H. Experimental assessment of well integrity for CO2 geological storage: Batch experimental results on geochemical interactions between a CO2-brine mixture and a sandstone-cement-steel sample. Int. J. Greenh. Gas Control 2015, 39, 420–431. [Google Scholar] [CrossRef]
- Wolterbeek, K.T.; Hangx, S.J.T.; Spiers, C.J. Effect of CO2-induced reactions on the mechanical behaviour of fractured wellbore cement. Geomech. Energy Environ. 2016, 7, 26–46. [Google Scholar] [CrossRef]
- Kutchko, B.G.; Strazisar, B.R.; Hawthorne, S.B.; Lopano, C.L.; Miller, D.J.; Hakala, A.J.; Guthrie, G.D. H2S-CO2 reaction with hydrated Class H well cement: Acid-gas injection and CO2 Co-sequestration. Int. J. Greenh. Gas Control 2011, 5, 880–888. [Google Scholar] [CrossRef]
- Bube, C.; Metz, V.; Bohnert, E.; Garbev, K.; Schild, D.; Kienzler, B. Long-Term cement corrosion in chloride-rich solutions relevant to radioactive waste disposal in rock salt–Leaching experiments and thermodynamic simulations. Phys. Chem. Earth 2013, 64, 87–94. [Google Scholar] [CrossRef]
- Jain, J.; Deo, O.; Sahu, S.; DeCristofaro, N. Solidia CementTM–Part Two of a Series Exploring the Chemical Properties and Performance Results of Sustainable Solidia CementTM and Solidia ConcreteTM; Solidia Technologies: Piscataway, NJ, USA, 2014; pp. 1–17. [Google Scholar]
- Jain, J.; Atakan, V.; DeChristofaro, N.; Jeong, H.; Olek, J. Performance of Calcium Silicate-based Carbonated Concretes vs. Hydrated Concretes under Freeze-thaw Environments; Solidia Technologies: Piscataway, NJ, USA, 2015; pp. 1–8. [Google Scholar]
- Ashraf, W.; Olek, J.; Atakan, V.; Hyungu, J. Effects of High Temperature on Carbonated Calcium Silicate Cement (CSC) and Ordinary Portland Cement (OPC) Paste. In Proceedings of the 5th International Conference on Durability of Concrete Structures, Shenzhen, China, 30 June–1 July 2016. [Google Scholar]
- Huijgen, W.J.J.; Witkamp, G.-J.; Comans, R.N.J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem. Eng. Sci. 2006, 61, 4242–4251. [Google Scholar] [CrossRef]
- Daval, D.; Martinez, I.; Corvisier, J.; Findling, N.; Goffé, B.; Guyot, F. Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling. Chem. Geol. 2009, 262, 262–277. [Google Scholar] [CrossRef]
- Min, Y.; Li, Q.; Voltolini, M.; Kneafsey, T.; Jun, Y.-S. Wollastonite Carbonation in Water-Bearing Supercritical CO2: Effects of Particle Size. Environ. Sci. Technol. 2017, 51, 13044–13053. [Google Scholar] [CrossRef] [PubMed]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The Highscore suite. Powder Diffr. 2014, 29, 13–18. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Döbelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN–A new fundamental parameters based Rietveld program for laboratory X-ray sources, it’s use in qualitative analysis and structure investigations. Comm. Powder Diffr. Int. Union Crystallogr. CPD Newsl. 1998, 20, 5–8. [Google Scholar]
- Brady, P.V. The Effect of Silicate Weathering on Global Temperature and Atmospheric CO2. J. Geophys. Res. 1991, 96, 18101–18106. [Google Scholar] [CrossRef]
- Salje, E.; Viswanathan, K. The Phase Diagram Calcite-Aragonite as Derived from the Crystallographic Properties. Contrib. Mineral. Petrol. 1976, 55, 55–67. [Google Scholar] [CrossRef]
- Sunagawa, I.; Takahashi, Y.; Imai, H. Strontium and aragonite-calcite precipitation. J. Mineral. Petrol. Sci. 2007, 102, 174–181. [Google Scholar] [CrossRef]
Phase | g of CO2 per g Phase | Raw Materials |
---|---|---|
C3S Alite | 0.58 | 3 CaCO3/SiO2–OPC |
C2S Belite | 0.51 | 2 CaCO3/SiO2 |
CS Wollastonite | 0.38 | CaCO3/SiO2 |
C3A | 0.49 | CaCO3/Al2O3 |
CA | 0.28 | CaCO3/Al2O3 |
CA2 | 0.17 | CaCO3/Al2O3 |
C2F | 0.32 | CaCO3/Fe2O3 |
C2A | 0.41 | CaCO3/Al2O3 |
C4AF | 0.36 | CaCO3/Al2O3/Fe2O3 |
C3A3Cs Sulfoaluminate | 0.22 | CaCO3/Al2O3/CaSO4 |
Element (Oxides) | Content (wt %; Normalized) |
---|---|
SiO2 | 50.55 |
CaO | 45.95 |
Fe2O3 | 0.52 |
Al2O3 | 0.52 |
MgO | 0.17 |
MnO | 0.13 |
TiO2 | 0.05 |
K2O | 0.03 |
SrO | 0.01 |
LOI 1 | 2.09 |
Total | 100.02 |
Temperature (K) | Pressure (MPa) | Reaction Time (h) |
---|---|---|
296 | 2 | 0, 24, 48, 72, 96, 120, 144 |
323 | 2 | 0, 6, 18, 24, 48 |
333 | 2 | 0, 3, 6, 12, 18, 24 |
Temperature (K) | Pressure (MPa) | Reaction Time (h) |
---|---|---|
333 | 0.2, 0.5, 1.0, 1.5, 2.0, 2.6, 4.0, 5.0 | 6 |
Phase | Raw Material | Carbonated Wollastonite |
---|---|---|
Content (wt %) | Content (wt %) | |
Wollastonite | 90 ± 1 | 4 ± 1 |
Calcite | 5 ± 1 | 29 ± 1 |
Aragonite | 1 ± 1 | 21 ± 1 |
Amorphous | 4 ± 1 | 45 ± 1 |
Activation Energies | Rate Constants | kJ/mol |
---|---|---|
EA (323–296 K) | −3.79 × 10−6 ± 2.36 × 10−7 | 63.88 ± 0.2 |
EA (333–296 K) | −3.32 × 10−5 ± 1.87 × 10−6 | 58.88 ± 0.6 |
EA (333–323 K) | −5.42 × 10−5 ± 1.95 × 10−6 | 43.70 ± 2.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svensson, K.; Neumann, A.; Menezes, F.F.; Lempp, C.; Pöllmann, H. The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material. Appl. Sci. 2018, 8, 304. https://doi.org/10.3390/app8020304
Svensson K, Neumann A, Menezes FF, Lempp C, Pöllmann H. The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material. Applied Sciences. 2018; 8(2):304. https://doi.org/10.3390/app8020304
Chicago/Turabian StyleSvensson, Kristoff, Andreas Neumann, Flora Feitosa Menezes, Christof Lempp, and Herbert Pöllmann. 2018. "The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material" Applied Sciences 8, no. 2: 304. https://doi.org/10.3390/app8020304
APA StyleSvensson, K., Neumann, A., Menezes, F. F., Lempp, C., & Pöllmann, H. (2018). The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material. Applied Sciences, 8(2), 304. https://doi.org/10.3390/app8020304