From Thermal Inspection to Updating a Numerical Model of a Race Bicycle: Comparison with Structural Dynamics Approach
Abstract
:Featured Application
Abstract
1. Introduction
2. Test-Case Description
2.1. Thermal Experiments
2.2. Structural Dynamics Experiments
2.3. Numerical Simulation
- a thin uniform layer of paint 0.11 mm thick;
- a CFRP layer 25% of the overall thickness with a global fiber orientation of ;
- a CFRP layer 25% of the overall thickness with a global fiber orientation of ;
- a CFRP layer 25% of the overall thickness with a global fiber orientation of ;
- a CFRP layer 25% of the overall thickness with a global fiber orientation of .
3. Methodology
3.1. Thermal Experiments
3.2. Modal Analysis Theory
3.3. Finite Element Model Updating
3.4. Adaptive Response Surface Method
- Starting reference simulation points are selected, and an adapted object function is defined by taking into account the difference between the FE model values and the optimal target values.
- The FE model is replaced by an interpolation-based meta-model of response surfaces to decrease optimization time, but this replacement remains an accurate approximation.
- The optimization routine is run on the specific object function to find the minimum of the meta-model. An optimization routine is used according to a genetic algorithm computation to find the optimum speed of the complex numerical model.
- The estimated parameter values are used as input parameters for an improved FE model that corrects the meta-model.
- Only the points that are closer to the minimum are used to form the response surface (pan & zoom function).
3.5. Optimized Parameter Choice
3.5.1. Thermal Case
3.5.2. Modal Case
3.6. Objective Function
4. Results and Discussion
4.1. Thermal Case
4.2. Model Case
4.3. Comparison
- The mode shapes are only measured in one degree of freedom instead of three, which results in missing mode shape data along the two other degrees of freedom. The main reason for this consists in the complexity of 3D non-contact vibration analysis. However, this problem does not occur when thermal data is used as a reference.
- By performing model updating using vibrational data to evaluate local material thickness, it can be seen that the combination of local measurement and global responses biases the local thickness measurement.
- Although estimating the thermal properties as structural properties is more complex, the thermal results appear to be better matched.
- The thermal updating routine is far more time-consuming in contrast to modal updating. However, the thermal measurements on the structure are easier to perform.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chung, D.D.L. Carbon Fiber Composites; Butterworth-Heinemann: Oxford, UK, 1994; Available online: https://www.sciencedirect.com/science/article/pii/B9780080500737500105 (accessed on 2 December 2012). [CrossRef]
- Meola, C.; Boccardi, S.; Carlomagno, G.M.; Boffa, N.D.; Monaco, E.; Ricci, F. Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics. Compos. Struct. 2015, 134, 845–853. [Google Scholar] [CrossRef]
- Czichos, H. (Ed.) Handbook of Technical Diagnostics; Springer: Berlin, Germany, 2013; pp. 3–9. [Google Scholar]
- Peeters, J. Optimised Failure Detection and Advanced Non-Destructive Inspection Using Active IR Thermography and Numerical Modelling. Ph.D. Thesis, University of Antwerp, Antwerp, Belgium, 2017. [Google Scholar]
- Hellier, C. Handbook of Nondestructive Evaluation; McGraw-Hill Education: New York, NY, USA, 2001. [Google Scholar]
- Vollmer, M.; Möllmann, K. Infrared Thermal Imaging: Fundamentals, Research and Applications; Wiley-VCH: Berlin, Germany, 2010. [Google Scholar]
- Maldague, X. Theory and Practice of Infrared Thermography for Nondestructive Testing; Wiley: New York, NY, USA, 2001; p. 684. [Google Scholar]
- Chaudhuri, P.; Santra, P.; Yoele, S.; Prakash, A.; Reddy, D.; Lachhvani, L.; Govindarajan, J.; Saxena, Y. Non-destructive evaluation of brazed joints between cooling tube and heat sink by IR thermography and its verification using FE analysis. NDT E Int. 2006, 39, 88–95. [Google Scholar] [CrossRef]
- Jeong, W.; Earls, C.; Philpot, W.; Zehnder, A. Inverse thermographic characterization of optically unresolvable through cracks in thin metal plates. Mech. Syst. Signal Process. 2012, 27, 634–650. [Google Scholar] [CrossRef]
- Susa, M.; Ibarra-Castanedo, C. Pulse thermography applied on a complex structure sample: Comparison and analysis of numerical and experimental results. In Proceedings of the IV Conferencia Panamericana de END, Buenos Aires, Argentina, 22–26 October 2007; p. 12. [Google Scholar]
- Lau, S.; Almond, D.; Milne, J. A quantitative analysis of pulsed video thermography. NDT E Int. 1991, 24, 195–202. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Ibarra-castanedo, C.; Klein, M.; Maldague, X. Nondestructive Evaluation of Carbon Fiber Bicycle Frames Using Infrared Thermography. Sensors 2017, 17, 2679. [Google Scholar] [CrossRef] [PubMed]
- Bowkett, M.; Thanapalan, K. Comparative analysis of failure detection methods of composites materials’ systems. Syst. Sci. Control Eng. 2017, 5, 168–177. [Google Scholar] [CrossRef]
- Friswell, M.I.; Mottershead, J.E. Finite Element Model Updating in Structural Dynamics; Springer: Dordrecht, The Netherlands, 1995; Volume 38. [Google Scholar]
- Marwala, T. Finite-Element-Model Updating Using Computational Intelligence Techniques; Springer: Berlin/Heidelberg, Germany, 2010; p. 263. [Google Scholar]
- Sun, R.; Chen, G.; He, H.; Zhang, B. The impact force identification of composite stiffened panels under material uncertainty. Finite Elem. Anal. Des. 2014, 81, 38–47. [Google Scholar] [CrossRef]
- Steenackers, G. Finite Element Model Updating and Optimization of Mechanical Systems Making Use of Regressive Techniques. Ph.D. Thesis, Vrije Universiteit Brussel, Brussels, Belgium, 2008. [Google Scholar]
- Abd El-Ghany, K.M.; Farag, M.M. Expert system to automate the finite element analysis for non-destructive testing. NDT E Int. 2000, 33, 409–415. [Google Scholar] [CrossRef]
- Foti, D.; Diaferio, M.; Giannoccaro, N.I.; Mongelli, M. Ambient vibration testing, dynamic identification and model updating of a historic tower. NDT E Int. 2012, 47, 88–95. [Google Scholar] [CrossRef]
- Meo, M.; Zumpano, G. Damage assessment on plate-like structures using a global-local optimization approach. Optim. Eng. 2008, 9, 161–177. [Google Scholar] [CrossRef]
- Mottershead, J.; Friswell, M. Model Updating In Structural Dynamics: A Survey. J. Sound Vib. 1993, 167, 347–375. [Google Scholar] [CrossRef]
- Steenackers, G.; Guillaume, P. Finite element model updating taking into account the uncertainty on the modal parameters estimates. J. Sound Vib. 2006, 296, 919–934. [Google Scholar] [CrossRef]
- Cheng, H.C.; Tsai, Y.H.; Chen, K.N.; Fang, J. Thermal placement optimization of multichip modules using a sequential metamodeling-based optimization approach. Appl. Therm. Eng. 2010, 30, 2632–2642. [Google Scholar] [CrossRef]
- Peeters, J.; Arroud, G.; Ribbens, B.; Dirckx, J.; Steenackers, G. Updating a finite element model to the real experimental setup by thermographic measurements and adaptive regression optimization. Mech. Syst. Signal Process. 2015, 64–65, 428–440. [Google Scholar] [CrossRef]
- Peeters, J.; Ibarra-Castanedo, C.; Khodayar, F.; Mokhtari, Y.; Sfarra, S.; Zhang, H.; Maldague, X.; Dirckx, J.; Steenackers, G. Optimised dynamic line scan thermographic detection of CFRP inserts using FE updating and POD analysis. NDT E Int. 2018, 93, 141–149. [Google Scholar] [CrossRef]
- Heylen, W.; Lammens, S.; Sas, P. Modal Analysis Theory and Testing; K.U. Leuven: Leuven, Belgium, 1998. [Google Scholar]
- Steenackers, G.; Presezniak, F.; Guillaume, P. Development of an adaptive response surface method for optimization of computation-intensive models. Comput. Ind. Eng. 2009, 57, 847–855. [Google Scholar] [CrossRef]
- Maldague, X.; Galmiche, F.; Ziadi, A. Advances in pulsed phase thermography. Infrared Phys. Technol. 2002, 1, 175–181. [Google Scholar] [CrossRef]
- Sfarra, S.; Ibarra-Castanedo, C.; Lambiase, F.; Paoletti, D.; Di Ilio, A.; Maldague, X. From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: Results compared. Meas. Sci. Technol. 2012, 23, 115601. [Google Scholar] [CrossRef]
- Vavilov, V.; Taylor, R. Theoretical and practical aspects of the thermal nondestructive testing of bonded structures. Res. Tech. NDT Test. 1982, 5, 240–279. [Google Scholar]
- Maldague, X.; Marinetti, S. Pulse phase infrared thermography. J. Appl. Phys. 1996, 79, 2694. [Google Scholar] [CrossRef]
- Thomas, R.L.; Pouch, J.J.; Wong, Y.H.; Favro, L.D.; Kuo, P.K.; Rosencwaig, A. Subsurface flaw detection in metals by photoacoustic microscopya. J. Appl. Phys. 1980, 51, 1152–1156. [Google Scholar] [CrossRef]
- Guillaume, P. Modal Analysis. In Control Systems, Robotics and Automation—VOL V; Unbehauen, H., Ed.; Hindawi Publishing Corporation: Cairo, Egypte, 2009; p. 558. Available online: http://mech.vub.ac.be/avrg/publications/ModalAnalysis.pdf (accessed on 1 January 2010).
- Hao, H.; Xia, Y. Vibration-based damage detection of structures by genetic algorithm. J. Comput. Civ. Eng. 2002, 16, 222–229. [Google Scholar] [CrossRef]
Value | Units | |
---|---|---|
Young’s modulus E1 | 65 | GPa |
Young’s modulus E2, E3 | 14.9 | GPa |
Poisson’s ratio NU12, NU23 | 0.058 | |
Poisson’s ratio NU13 | 0.024 | |
Shear modulus G12, G13 | 3.5 | MPa |
Shear modulus G23 | 1.4 | MPa |
Mass density | 1570 | Kg/m |
Thermal conductivity | 60 | (W/m·K) |
Thermal conductivity | 4.2 | (W/m·K) |
Specific heat capacity | 1000 | (J/(Kg·K)) |
Coefficient of convection | 10 | W/(m·K) |
Emissivity | 0.85 |
No | Test (Hz) | FE_init (HZ) | Relative Difference (%) | FE_opt (Hz) | Relative Difference (%) |
---|---|---|---|---|---|
1 | 102.813 | 93.581 | 98.252 | ||
2 | 138.438 | 107.621 | 131.874 | ||
3 | 206.563 | 190.744 | 200.493 | ||
4 | 242.500 | 233.786 | 243.152 | 0.27 | |
5 | 278.125 | 282.703 | 1.65 | 295.033 | 6.08 |
6 | 367.500 | 310.999 | 342.514 | ||
7 | 382.188 | 325.293 | 359.383 | ||
8 | 454.375 | 525.076 | 15.56 | 477.142 | 5.01 |
9 | 569.688 | 377.917 | 484.327 | ||
10 | 593.125 | 397.058 | 512.527 |
Lower Limit | Upper Limit | |
---|---|---|
Excitation power (W) | 100 | 500 |
Excitation duration (s) | 2.0 | 20 |
Frame rate (Hz) | 5.0 | 50 |
Experimental Geometric Measured Value (mm) | Thermal Model Computation (mm) | Error (%) | Structural Model Computation (mm) | Error (%) | |
---|---|---|---|---|---|
Saddle tube (top) | 2.64 | 2.53 | 2.68 | 1,5 | |
Head tube (top) | 4.05 | 4.05 | 0,0 | 3.19 | |
Lower tube (middle) | 2.05 | 2.09 | 2,0 | 1.59 | |
Top Tube (middle) | x | 2.28 | x | 2.65 | x |
Rear Tube (middle) | x | 3.55 | x | 2.21 | x |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steenackers, G.; Peeters, J.; Verspeek, S.; Ribbens, B. From Thermal Inspection to Updating a Numerical Model of a Race Bicycle: Comparison with Structural Dynamics Approach. Appl. Sci. 2018, 8, 307. https://doi.org/10.3390/app8020307
Steenackers G, Peeters J, Verspeek S, Ribbens B. From Thermal Inspection to Updating a Numerical Model of a Race Bicycle: Comparison with Structural Dynamics Approach. Applied Sciences. 2018; 8(2):307. https://doi.org/10.3390/app8020307
Chicago/Turabian StyleSteenackers, Gunther, Jeroen Peeters, Simon Verspeek, and Bart Ribbens. 2018. "From Thermal Inspection to Updating a Numerical Model of a Race Bicycle: Comparison with Structural Dynamics Approach" Applied Sciences 8, no. 2: 307. https://doi.org/10.3390/app8020307
APA StyleSteenackers, G., Peeters, J., Verspeek, S., & Ribbens, B. (2018). From Thermal Inspection to Updating a Numerical Model of a Race Bicycle: Comparison with Structural Dynamics Approach. Applied Sciences, 8(2), 307. https://doi.org/10.3390/app8020307