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Abstract: The paper presents a solution to the problem of person recognition by social robots via
a novel brain-inspired multi-modal perceptual system. The system employs spiking neural network
to integrate face, body features, and voice data to recognize a person in various social human-robot
interaction scenarios. We suggest that, by and large, most reported multi-biometric person recognition
algorithms require active participation by the subject and as such are not appropriate for social
human-robot interactions. However, the proposed algorithm relaxes this constraint. As there are no
public datasets for multimodal systems, we designed a hybrid dataset by integration of the ubiquitous
FERET, RGB-D, and TIDIGITS datasets for face recognition, person recognition, and speaker
recognition, respectively. The combined dataset facilitates association of facial features, body shape,
and speech signature for multimodal person recognition in social settings. This multimodal dataset is
employed for testing the algorithm. We assess the performance of the algorithm and discuss its merits
against related methods. Within the context of the social robotics, the results suggest the superiority
of the proposed method over other reported person recognition algorithms.

Keywords: social robots; person recognition; multimodal machine perception; spiking
neural network

1. Introduction

Recognizing people whom we have met before is, an indispensable attribute that is often taken
for granted, yet playing a central role in our social interactions. It is suggested that humans can
remember up to 10,000 faces (persons); though this is, an upper cognitive limit as, an average
person remembers far less faces—around 1000 to 2000 different faces (persons) [1]. Humans are also
remarkable in seamless and fast completion of various perceptual tasks, including object recognition,
animal recognition, and scene understanding, to name a few. Acclaimed neurologist and author,
the late Oliver Sacks, opined that the human brain is far less “prewired” than previously thought.
In his highly readable and masterfully written book, “the Mind’s Eye” [2], he talks about brain plasticity
and how all the senses collectively contribute to form a perception of the world around us: “Blind people
often say that using a cane enables them to “see” their surroundings, as touch, action, and sound are immediately
transformed into a “visual” picture. The cane acts as a sensory substitution or extension”. Within this setting,
we mostly recognize people from their faces, though other characteristics such as voice, body features,
height, and similar attributes often contribute to the recognition process.

In the context of the social robotics, it is very much desired that social robots, like
humans, effortlessly distinguish familiar persons in their social circles without any intrusive
biometric verification procedure. Consider how we recognize members of our family, co-workers,
and close friends. Their faces, voices, their body shape, and features, etc., are holistically involved in
the recognition process and the absence of one or more of these attributes usually do not influence
the outcome of the recognition. There has been a large body of research that employs one or more
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biometric parameters for person re-identification for applications such as surveillance, security, or
forensics systems. These features/parameters are derived from physiological and/or behavioral
characteristics of humans, such as fingerprint, palm-print, iris, hand vein, body, face, gait, voice,
signature, and keystrokes. Some of these features can be extracted non-invasively, such as face, gait,
voice, odor, or body shape. In a parallel development, there are significant and impressive research
studies that are focusing on face recognition which are generally non-invasive; however, it is important
to distinguish the problem of person recognition from the face recognition.

Motivated by the above and noting that the problem of person recognition in social settings
has not been investigated as widely as the related problems of person re-identification and face
recognition; we propose a non-invasive multi-modal person recognition system that is inspired by
the generic macrostructure of the human brain sensory cortex and is specifically designed for social
human-robot interactions.

The rest of the paper is organized as follows: in Section 2, we outline the current state-of-art in
multimodal person re-identification and face recognition systems. In Section 3, we present the detailed
architecture and implementation of the proposed perceptual system for person recognition application.
We will then include simulation studies and discuss the merits of the algorithm as opposed to other
related methodologies in Section 4. We conclude the paper in Section 5.

2. Related Studies

The main thrust of the paper is to address the problem of person recognition in social settings.
The problem presents new challenges that are absent in person re-identification scenarios such as
surveillance, security, or forensics systems. Among these challenges are how to cope with changes
in the general appearance of a subject due to attire change, extreme face and body poses, and/or
variation in lighting. These challenges are further compounded by the fact that a concurrent presence
of all biometric modalities is not always guaranteed. Moreover, the social robot is expected to
complete the recognition task relatively fast (within the range of human reaction time in social settings).
In addition, intrusive biometric verification procedure obviously is ruled out for social human-robot
interaction scenarios. Nevertheless, multimodal biometric systems that non-invasively extract
physiological and/or behavioral characteristics of humans, such as face, gait, voice, and body shape
features have been reported to solve the person re-identification problem in social settings [3–6].
In such applications, the problem is treated as, an association task where a subject is recognized across
camera views at different locations and times [7]. Due to the low resolution cameras and unstructured
environments, these systems employ features such as, color, texture, and shape in order to identify
individuals across a multi-camera network. However, these features are highly sensitive to variations
in the subjects’ appearance such as outfit or facial changes.

A person recognition system solely relying upon face recognition leads to erroneous detection if
facial or environmental features change—such as growing beard, or substantial occlusion, variation in
lighting, etc. There are also reported studies based on soft-biometric features that are non-invasive
and are not much affected if the subject appears in different clothing [8,9]. Though, these methods
rely upon a single biometric modality to extract specific auxiliary features. The performance of
such systems is dramatically deteriorated in the absence of that dominant modality. A significant
effort has been devoted to use face information as the main biometric modality in multimodal
biometric recognition [9–11]. Within these classifications, multimodal biometric person recognition
systems were proposed in [3,12]. These multimodal algorithms included a mixture of face, iris,
fingerprint, and palm-print features. However, most of these studies also require other biometric
features that cannot be extracted without the active cooperation of the subject, such as fingerprints,
iris, and palm-prints. Hence, the overall multimodal biometric systems developed in most research
studies fall within the invasive biometric system category. In contrast to the above methodologies, we
introduce a non-invasive algorithm that does not require the cooperation of the subject as a requirement
for its proper operation.
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Since gait can be extracted non-intrusively from a distance, it is considered as, an important
feature in developing person recognition systems. Gait is referred to as the particular manner in which
a person walks and it is classified among the non-invasive attributes [13]. Zhou et al. [4] proposed
a non-intrusive video-based person identification system based on integration of information from
side face and gait features. The features are extracted non-invasively and fused at either feature
level [4] or at the match score level [5]. In [3], the outputs of non-homogeneous classifiers, which
are developed based on acoustic features from voice and visual features from face, are fused at the
hybrid rank/measurement level to improve the identification rate of the system. Deep learning
algorithms have also been used to address the problem of face recognition and action recognition,
respectively [14,15]. Despite the fact that the above-mentioned studies are non-invasive multimodal
biometric identification systems, the fusion methods that are employed in these systems require the
concurrent presence of all biometric modalities for proper functioning, whereas the architecture that is
reported in this paper relaxes this condition.

BioID [16] is a commercial multimodal biometric authentication system that utilizes synergetic
computer algorithms to classify visual features (face and lip movements) and the vector quantifier to
classify audio features (voice). The outputs of these classifiers are combined through different criteria
to complete the recognition. In [8,17], facial information and a set of soft biometrics such as weight,
clothes, and color were used to develop a non-intrusive person identification system, whereby the
weight feature was estimated at a distance by the assessment of the anthropometric measurements
that were derived from the subject’s image captured by a standard resolution surveillance camera.
The overall performance of the system was affected by the detection rate of the facial soft biometrics.
In [13], the height, hair color, head, torso, and legs were used as complementary parameters along
with the gait information for recognizing people. In order to improve the recognition rate of the
system, the authors selected sets of these features along with gait information to be manually extracted
from a set of surveillance videos. An intelligent agent-based decision-making person identification
system was also reported in [18]. The system achieved a recognition rate of 97.67% when face, age,
and gender information were used and a recognition rate of 96.76% when fingerprint, gender, and age
modalities were provided to the system. A recent survey paper provides, an overview on using soft
biometric (e.g., gender) as complementary information to primary biometrics (e.g., face) in order to
enhance the performance of the person identification system [19]. Some researchers have applied
multimodal biometrics systems to address related problems, such as action recognition [20], speaker
identification [21], and face recognition [22].

The main shortcoming of these systems is that their different components require different time
scales for proper operation, which limits their functionality in reaching decisions as compared to the
human response time in different social contexts scenarios. For example, when the face is not detected
due to extreme pose, partial occlusion, or/and poor illumination; the biometric features extracted
from the face are not available and consequently the system fails to complete the recognition process.
In contrast to these methods, the proposed approach overcomes this constraint by adjusting the
threshold value of spiking neurons and exploiting available biometric features in order to compromise
between the reliability of the decision and the natural perceptual time of the attended task (Section 3
of the paper).

Most of the aforementioned studies have been developed and discussed from a surveillance and
security perspectives rather than the social human-robot interaction. Also, these person identification
systems have been developed relying upon the combination of at least one dominant modality
and a host of auxiliary biometrics or a mixture of invasive and non-invasive biometrics. Small
number of research studies has tackled the problem of person recognition and face recognition in
the context of cognitive developmental robotics [23,24]. We would like to emphasize that we present
a person recognition algorithm incorporating multimodal biometrics features that is non-intrusive,
is not affected by changes in appearance (i.e., outfit change), and works within the range of human
social interaction rate (human response time). Moreover, all of the studies that were reported in
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multimodal biometric systems assume simultaneous presence of all the considered biometric features.
This assumption is, however, relaxed in the proposed algorithm.

3. Architecture of the Person Recognition System

In this section, we present the architecture of the multi-modal person recognition algorithm
in social settings. Figure 1 depicts the proposed system (Figure 1a) next to the architecture of the
human/primate sensory cortex. Figure 1b shows a simplified architecture of the biological process
as is widely accepted in neuroscience and psychophysics literature [25,26]. The architecture of the
human sensory cortex is complex; it is thus naïve to claim, an exact reconstruction. Within this
pretext, Figure 1a shows our interpretation, which is a much simpler functional “engineered replica”
with a one-to-one correspondence to the biological system. In particular, although the pathways for
each modality in the human sensory cortex are parallel; there are strong couplings between these
pathways particularly after the primary receptive fields. In addition, the human sensory cortex
is directly involved in motivation, memory, and emotions. In the proposed architecture, we have
neither included the coupling effects of modalities nor have we considered emotions and memory.
However, we have strictly adhered to the spirit of the multimodal parallel pathways. As depicted in
Figure 1b„ an attended stimulus undergoes modality-specific processing (unimodal association cortex)
before it converges at the higher level of the sensory cortex (multimodal association cortex) to form
a perception [25–29].
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Figure 1. The proposed framework of brain-inspired multimodal perceptual system for social robots.

An attended stimulus to each of the visual, auditory, and somatosensory (touch, pressure,
pain, etc.) systems undergoes a preprocessing and a feature extraction module, i.e., V1 and V2 in visual,
A1 and A2 in auditory, and S1 and S2 in somatosensory pathways. When excited by a real-world
stimulus, the corresponding neural systems of the human sensory system (vision, auditory, and tactile)
map the stimulus’s attributes to available modalities. A similar structure is employed in the proposed
system as elaborated in Figure 2 whereby each sensor modality and even different types of information
within a sensor modality are processed in parallel and through independent processing pathways at
the early stages of the perception process (feature extraction modules and dedicated processing units).
The outputs of these independent pathways (intermediate outputs) converge at the higher level
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(temporal binding) to form the final outcome of the perception process. Also, in the biological system,
an attended stimulus is mapped by population of neurons distributed across and within the cortical
hierarchy, the binding or perceptual grouping is accomplished by synchronization of neural firings
among population of neurons that form the cell assembly [26]. Then, the integration of the outputs
of these cell assemblies in parallel with the search for the best match of the attended pattern, within
the library of representations stored in memory, and perceive the attended stimulus. The findings
from neuroscience and psychophysics suggest that the formation of cell assemblies is controlled by
the following principles: (1) population of neurons in a specific cell assembly must have similar
receptive field properties, (2) each cell assembly maps one feature or quality of the attended stimulus,
and (3) population of neurons in the same cell assembly fire in temporal synchrony with each other.

We have incorporated these principles in the proposed architecture, as shown in Figure 1a and
further elaborated in Figure 2. The first principle is depicted by connecting each sensory modality to
a dedicated pre-processing and feature extraction module (corresponding to primary and secondary
sensory cortex), which in turn generates a set of feature vectors representing different attributes of the
attended stimulus. Feeding each of these feature vectors to its corresponding Dedicated Processing
Unit (DPU) satisfies the second principle. Each feature vector is then processed by its respective DPU,
which in turn, contributes to the production of the Intermediate Outputs (IOs). In the rest of this paper,
we refer to the outputs generated by each DPU as simply IOs. The variation in the processing time
that is required to generate the IOs and the availability of biometric modalities in the sensory system
streams are handled by the binding modules. Psychophysics and psychological research studies
suggest that the face recognition process uses two type of information: configural information and
featural information, which are available at low and high spatial frequency, respectively. The former is
used in early stage of recognition process and requires less processing time whereas the latter is used
to refine and rectify the recognition process at the later stage and requires more processing time [30,31].
IOs will be transformed into temporal spikes in order to be processed by the temporal binding system.
At the last stage, the output of the temporal binding module is compared with, an adaptive threshold
setting to either complete the perception process or to wait for more information from other sensor
modalities. This adaptive threshold is controlled by two factors: the desired reliability of the final
outcome and how fast a decision is required. In some scenarios, a fast response is more important than,
an accurate response; thus, the threshold will be reduced to accommodate such scenarios. For example,
in the context of social robots, the natural (in the human sense) and relatively fast response is more
desirable than, an accurate but slow response [32]. In some situations, when, an urgent decision
is required, humans process a real-world stimulus by exploiting the most discriminant feature [33].
In such cases, a fast processing route is selected as the outcome at final convergence zone even the
threshold value is not satisfied. However, in other situations when accurate response is more important
than fast response, humans may take longer time and look for other cues to perceive reliably and
accurately. The proposed framework accommodates both conditions by incorporating, an adaptive
threshold. The proposed architecture is customized to address the person recognition problem in
social contexts, as shown in Figure 2. However, the same architecture may be adapted to solve other
perceptual tasks that are vital in social robotics, including but not limited to, object recognition, scene
understanding, or affective computing.
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For the specific problem of person recognition, the architecture employs auditory as well as vision
modalities. Though, the framework readily allows for the integration of additional modalities (tactile,
olfaction) for other applications. As shown in Figure 2, when the sensory system (vision, auditory)
is excited by a real-world stimulus, the corresponding receptive field system generate a map for
the available stimulus’s attributes in a parallel manner. We refer to this stage in the architecture
as pre-processing and feature extraction modules. It is well documented in psychophysics and
neuroscience research where not only the processing of different sensor modalities is performed by
independent routes of processing, but also different kinds of information within the same modality are
processed by independent processing paths [26,34,35].

The capability of the perceptual system to finalize the perceptual task (person recognition in
this study) in the absence of concurrent availability of all sensor modalities is utilized by using the
spiking neurons in the binding modules (Section 3.4). For example, if the subject’s face is not available,
then the binding module may use other available cues, such as body features, speech features, or both
of them in order to finalize the recognition process within a reasonable response time (within the norm
of the human response/reaction time). As depicted in Figure 2, a compromise between the reliability
of the outcome and the requirement of quick response (in the order of human natural reaction) is
achieved by, an adaptive threshold (more on that in Section 3.4). We describe each module in more
details in the rest of this section.

3.1. Front-End Sensors and Preprocessing

In order to address the person recognition problem, the visual and auditory pathways
are employed. An RGB camera and a three-dimensional (3D) depth sensor (i.e., Kinect sensor) may be
applied to capture the image and the corresponding depth information (vision modality/pathway),
and a microphone could be employed to process the voice of a subject (auditory modality/pathway).
The Kinect sensor as a 3D multi-stream sensor captures a stream of colored pixels; depth information
associated with these colored pixels, and positioned sound. The data streams from the RGB camera,
3D depth sensor, and the microphone are processed via standard signal and image preprocessing
(filtering and noise removal, thresholding, segmentation, etc.) to be prepared for the feature extraction
module (Figure 2). In this study, however, such preprocessing is not required as we extract the input
data from three databases that already provide preprocessed data.

3.2. Feature Extraction

In this section, we introduce the feature extraction stage, which is analogous to the primary and
secondary sensory cortex in the human brain. The input of this module is the preprocessed data stream
from the vision and auditory modules and its outputs are distinct feature vectors that will be processed
by the respective classifiers as computational models for the DPUs (Figure 2).

The target application of the proposed person recognition system is social robotics. One of the
most important and desirable attributes of the social robots is the ability to recognize individuals in
various settings and scenarios, including challenging scenarios whereby one or more sensor modalities
are temporary not available such as in vision system whereby lighting is inadvertently changed,
or subjects change their outfits. Many reported methodologies have difficulties in coping with such
unstructured settings.

In order to configure the perceptual system to person recognition tasks, three types of features,
which are available in the data streams of auditory and vision system, need to be extracted.
These features are categorized in three groups: the first group is based on spatial relationship, referred
to as configural features; the second group is the appearance-based feature, which relies upon texture
information; and the third group of feature is a voice-based feature which relies upon short-term
spectral feature.
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3.2.1. Vision-Based Feature Vectors

The vision-based feature vectors consist of two groups of feature vectors: The configural features
group and the appearance-based feature group. Most of the feature vectors in the configural features
are available early in the recognition process due to their relatively less computational requirements.
On the other hand, the extraction of the appearance-based feature group is computationally expensive
and is available later in the recognition process. This is also compatible with psychology and
neuroscience findings that spatial information is processed early in the perception process and provides
a coarse categorization scheme for, an attended stimulus.

The Configural Features Group

The group consists of four feature vectors. The first feature vector is represented by the ratios of
the Euclidian distances among the geometric position of a set of fiducial points on a face. These fiducial
facial points are detected by “OpenFace”;, an open source software for facial landmark detector [36].
The second feature vector is based on a cross ratio of the projection lines that are initiated from the
corners of the polygon constructed from a set of predefined fiducial points on a face image. The third
feature vector is constructed by computing the Euclidian distance among a set of selected skeleton
joint positions. The fourth feature vector in this group is the surface-based feature, which is generated
by computing the geodesic distances between the projections of selected pairs of skeleton joints on the
point cloud that represent, an individual’s body. It is worth mentioning that these feature vectors are
purposely selected as they are easy to calculate and available early in perception process. The main
purpose for these feature vectors are to limit the search scope and provide shortlisted candidates for
the attended subject by biasing the top-ranked spiking neurons (see Section 3.4 for more details).

The first feature vector in the configural group consists of eight facial feature ratios, as shown in
the Appendix A (Table A1). Despite the simplicity of this geometric descriptor, it can be shown that
they generate comparable performance in face clustering with respect to other feature vectors that
describe face appearance such as EigenFace and Histogram of Oriented Gradients [37].

The second feature vector was constructed by employing the cross ratio theorem, which is a widely
applied object and shape recognition algorithm in computer vision [38]. The cross ratio value stays
invariant under geometric projection operations such as translation, rotation, and scaling changes [39].
The cross ratio of four collinear points A, B, C, and D in a line L, as shown in Figure 3, is given by:

CRL(A, B, C, D) =
|AC|·|BD|
|BC|·|AD|

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 30 

3.2.1. Vision-Based Feature Vectors 

The vision-based feature vectors consist of two groups of feature vectors: The configural features 
group and the appearance-based feature group. Most of the feature vectors in the configural features 
are available early in the recognition process due to their relatively less computational requirements. 
On the other hand, the extraction of the appearance-based feature group is computationally 
expensive and is available later in the recognition process. This is also compatible with psychology 
and neuroscience findings that spatial information is processed early in the perception process and 
provides a coarse categorization scheme for an attended stimulus. 

The Configural Features Group 

The group consists of four feature vectors. The first feature vector is represented by the ratios of 
the Euclidian distances among the geometric position of a set of fiducial points on a face. These 
fiducial facial points are detected by “OpenFace”; an open source software for facial landmark 
detector [36]. The second feature vector is based on a cross ratio of the projection lines that are 
initiated from the corners of the polygon constructed from a set of predefined fiducial points on a 
face image. The third feature vector is constructed by computing the Euclidian distance among a set 
of selected skeleton joint positions. The fourth feature vector in this group is the surface-based 
feature, which is generated by computing the geodesic distances between the projections of selected 
pairs of skeleton joints on the point cloud that represent an individual’s body. It is worth mentioning 
that these feature vectors are purposely selected as they are easy to calculate and available early in 
perception process. The main purpose for these feature vectors are to limit the search scope and 
provide shortlisted candidates for the attended subject by biasing the top-ranked spiking neurons 
(see Section 3.4 for more details). 

The first feature vector in the configural group consists of eight facial feature ratios, as shown in 
the Appendix A (Table A1). Despite the simplicity of this geometric descriptor, it can be shown that 
they generate comparable performance in face clustering with respect to other feature vectors that 
describe face appearance such as EigenFace and Histogram of Oriented Gradients [37]. 

The second feature vector was constructed by employing the cross ratio theorem, which is a 
widely applied object and shape recognition algorithm in computer vision [38]. The cross ratio value 
stays invariant under geometric projection operations such as translation, rotation, and scaling 
changes [39]. The cross ratio of four collinear points A, B, C, and D in a line L, as shown in Figure 3, 
is given by: ܴܥ(ܣ, ,ܤ ,ܥ (ܦ = .|തതതതܥܣ| .|തതതതܥܤ||തതതതܦܤ|  |തതതതܦܣ|

 
Figure 3. The cross ratio relationship of two viewpoints. 

Figure 3. The cross ratio relationship of two viewpoints.



Appl. Sci. 2018, 8, 387 9 of 30

The same cross ratio, CRL, can also be expressed as ratio of the projection lines XA, XB,
XC, and XD. By using the fact that the XAB triangle area can be calculated using the formulas:
1
2 ∗ h ∗ AB = 1

2 ∗XA ∗XB ∗ sinθ1 and some algebraic manipulation, the cross ratio from point X, can be
expressed as a function of the line segments as in (1) or as a function of projection angles as in (2), where h
is the distance between the focus and the line AB, as depicted in Figure 3.

CRX(A, B, C, D) =
|AC|·|BD|
|BC|·|AD|

(1)

CRX(θ1, θ2, θ2) =
sin (θ1 + θ2)·sin (θ2 + θ3)

sinθ2·sin (θ1 + θ2 + θ2)
(2)

Since the cross ratio value is independent of changes in the viewpoint, the cross ratio of the same
four collinear points A, B, C, and D in a line L from point Y can be expressed in the same way as point
X as in (3) and (4).

CRY(A, B, C, D) =
|AC|·|BD|
|BC|·|AD|

(3)

CRY(θ′1, θ′2, θ′3) =
sin (θ′1 + θ′2)·sin (θ′2 + θ′3)

sinθ′2·sin (θ′1 + θ′2 + θ′3)
(4)

hence, CRX(θ1, θ2, θ3) = CRY(θ′1, θ′2, θ′3). The reader may refer to [39] for detailed proof. Where X
and Y are two different viewpoints, {θ1, θ2, θ3}, {θ′1, θ′2, θ′3} represent the projection angles from point
X and Y respectively as shown in Figure 3.

The same principle is applied to measure the similarity of polygons that are constructed by
selecting five points from the pre-defined fiducial points on a face image, as shown in Figure 4b.
One fiducial point is used as the basis point and the other four must be non-collinear fiducial points to
represent the polygon. The cross ratio of this polygon is regarded as the basis of similarity measure
that is not affected by translation, scaling, rotation, and illumination. More details about the cross ratio
for face recognition can be found in [39]. The set of five cross ratios is calculated by switching the basis
point to one of the polygon’s corners, and the cross ratio values are obtained using (1) to (4).
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Figure 4. (a) Selected fiducial points on image from the FERET database which are used to construct
the configural feature vector, (b) The cross ratio projection based on a polygon constructed from five
fiducial points on face image from the FERET database.

The third feature vector in this group is the skeleton-based feature. The combination of the
distances between the selected skeleton joints, shown in Figure 5a, are used to generate this feature
vector, as described in Table A2 and depicted in Figure 5b (The reader may refer to Appendix B for
further details).
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Figure 5. Selected skeleton joints, geodesic and Euclidean distance among them; (a) Projection of
skeleton joints on the three-dimensional body point cloud, (b) Euclidian distance of selected skeleton
segments, and (c) Sample of geodesic paths used in constructing surface-based feature vector.

The surface-based feature vector is the last vector in the configural features group. This feature
vector is computed using the combination of geodesic distances among the projection of selected
skeleton joints on the three-dimensional body point cloud. First, the selected pairs of the skeleton
joints, which do not usually lie on the point cloud, are projected on the associated closest point on the
three-dimensional body mesh, which is generated from the point cloud. The pair of the projection
points is used to initiate the fast-marching algorithm that provides a good approximation of the shortest
geodesic path between two points on the surface. The fast-marching algorithm uses a gradient descent
of the distance function to extract a good approximation of the shortest path (geodesic), as given by the
Dijkstra algorithm [40]. Figure 5c depicts, an example of geodesic distances used in constructing the
surface-based feature vector. The selected geodesic distances that used to construct the surface-based
feature vector are described in Table A3 (Appendix B).

The Appearance-Based Feature Group

The appearance-based feature consists of a set of multi-scale and multi-orientation Gabor filter
coefficients extracted from the face image at fiducial points. The authors are aware of the availability
of stronger descriptors like Scale-Invariant Feature Transform (SIFT) [41] and Speeded-Up Robust
Features (SURF) [42], both of which can be used to generate feature vectors with high discrimination
power. However, our intention is to process configural information early in the computation through,
an independent processing path in order to limit the number of candidates of, an attended stimulus that
can be refined further by the information available in the appearance-based feature. This interpretation
is also compatible with the findings in neuroscience [34] and psychology [30] on human object and
face recognition, suggesting that spatial information is used in early stages of the recognition.

The regional facial appearance patterns are normally extracted by the Gabor filter as a set of
multi-scale and multi-orientation coefficients that represent the appearance-based feature vector.
The Gabor filter may be applied to the whole face or to specific points on the face [43,44]. Extraction of
Gabor filter coefficients is computationally expensive due to convolution integral operation; therefore,
in order to speed up the computation, the Gabor filter coefficients are only computed at the fiducial
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points shown in Figure 4a. The two-dimensional (2D) Gabor filter centered at (0, 0) in the spatial
domain can be expressed as in (5):

G(x, y, ξx, ξy, σx, σy, θ) =
1

√
π σxσy

e−
1
2

[
(

R1

σx
)

2
+ (

R2

σy
)

2
]

ej(ξx x+ξy y) (5)

where R1 = x cosθ + y sinθ and R2 = −x sinθ + y cosθ, ξx and ξy are spatial frequencies,
σx and σy are the standard deviation of, an elliptical Gaussian along the x and y axes, and θ

represents the orientation. The Gabor filters have a plausible biological model to resemble the
primary visual cortex. Physiological studies suggest that cells in the primary visual cortex usually
have, an elliptical Gaussian envelope with, an aspect ratio of 1.5–2.0; thus, one can infer the
following relation [45]:

ξx = ω cos θ, ξy = ω sin θ

Daugman [46] suggests that simple and complex cells in the primary visual cortex have plane
waves propagating direction along the short axis of the elliptical Gaussian envelope. By defining the
aspect ratio r = σy/σx and assuming that the minimum value of aspect ratio is 1, the Gabor filter
has, an elliptical Gaussian envelope and the plane wave’s propagating direction along the x− axis,
which is the shortest in case of r > 1, can be expressed as (6):

G(x, y, ω, σ, r, θ) =
1√

π r σ
e−

1
2

[(
R1

σ

)2
+

(
R2

rσ

)2
]

ej(ω R1) (6)

where σ = σy and r = σy/σx. Given, an input image I, the response image of the Gabor filter can
be computed using the convolution operation defined as in (7). We convolve the image I with every
Gabor filter kernel in the Gabor filter banks centered at the pixels specified by the fiducial points.

z = ∑
x

∑
y

I(x, y)G(x′ − x, y′ − y, ω, σ, r, θ) (7)

where G(x′ − x, y′ − y, ω, σ, r, θ) is Gabor filter kernel centered at (x′, y′). I(x, y) is the intensity
value of the image I at (x, y) location. The performance of the Gabor filter response in face
recognition and classification tasks is highly affected by the parameters that are used in construction
of the Gabor Kernel bank [44]. One of the well-known Gabor filter banks that is widely
used in many computer vision applications especially object and face recognition tasks is the
“classical bank”. The “classical bank” is characterized by eight orientations and five frequencies
with fmax=0.25 pixel−1, fratio =

√
2, σ = σx = σy =

√
2, and φ = 0 radians. Many previous studies have

been devoted to addressing the problem of finding the Gabor filter parameters, which have optimum
performance on the recognition tasks [43,47–49]. In this study, we adopted the Gabor filter parameters
suggested by [44]. The author of that paper claims that the following parameterization of Gabor
filter extracts the most discriminant information for recognition tasks. The suggested parameters
are: eight orientations, six frequencies (instead of 5) with narrower Gaussian width (σx = σy = 1
instead of

√
2 that is used in classical setting). The rest of the parameters were set the same as

in the “classical bank” setting. The Gabor filter bank responses given in (7) consist of real and
imaginary parts that can be represented as magnitudes and phases components. Since the magnitudes
vary slowly with the position of fiducial points on the face, where the phases are very sensitive to
them, we used only the magnitudes of the Gabor filter responses to generate the appearance-based
feature vector. Hence, we have 48 Gabor coefficients for each fiducial point on the face. The selected
set of Gabor filter kernels and responses are depicted in Figure 6; for demonstration, we selected
one scale {1}, two orientations { π

8 , 5π
8 }, and three frequencies { 0.25

(
√

2)
5 , 0.25

(
√

2)
3 , 0.25√

2
} to create Figure 6a,b.

Figure 6a shows the magnitude of Gabor filtered kernels that were used to compute these coefficients
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at the fiducial points. Figure 6b depicts the magnitude of Gabor filter responses on a sample image
from the FERET database (FERET database will be further discussed in Section 4).Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 30 
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3.2.2. Voice-Based Feature Vector

The voice-based feature vector is computed based on the short-term spectral, specifically,
the so-called mel-frequency cepstral coefficients (MFCCs). We opted for MFCCs for many reasons:
(1) MFCCs are easy to extract compared to other speech features, such as voice source features, prosodic
feature, and spectro-temporal features; (2) MFCCs require relatively less amount of speech data to
be extracted; and (3) MFCCs is text and language independent. Thus, MFCCs feature vector fits the
nature of the person recognition for the social HRI where a real-time response and text-independent
speech signature are crucial for user acceptance of social robot. A modular representation of MFCCs
feature vector extraction is shown in Figure 7.

MFCCs feature vector is computed based on a widely accepted suggestion that the spoken words
cover a frequency range up to 1000 Hz. Thus, MFCCs use linearly spaced filter at low frequency below
1000 Hz and logarithmic spaced filter at high frequency above 1000 Hz. In other words, the filter-bank is
condensed at the most informative part of the speech frequency (more filters with narrow bandwidths
below 1000 Hz) and lengthy-spaced filter-bank is applied at higher frequencies. As depicted in Figure 7,
the first step in the extraction process is to pre-emphasize the input speech signal by applying filter
as in (8).
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Y(n) = X(n)− a ∗ X(n− 1) (8)

where Y(n) is pre-emphasized speech signal, X(n) is the input speech signal, and a pre-emphsized
factor can be any value in the interval [0.95, 0.98]. In the next step (Windowing), the pre-emphasized
speech signal Y(n) is multiplied by smooth window function, here, we used Hamming windows,
as in (9).

W(n) = 0.54− 0.46 ∗ cos(
2πn

N − 1
), 0 ≤ n < N − 1 (9)

The resultant time-domain signal is converted to frequency domain by applying the well-known
Fast Fourier Transform (FFT). The frequency range in the resultant FFT spectrum is very wide
and fluctuated. Thus, the filter-bank that is designed according to Mel scale is applied in order
to get the global shape of the FFT spectrum magnitude which is known to contain the most distinctive
information for speaker recognition. The MFCCs are obtained by applying logarithmic compression
and discrete cosine transform, as in (10). The discrete cosine transform converts log Mel spectrum into
the time domain.

Cn =
M

∑
m
[log S(m)]cos

[
πn
M

(m− 1
2
)

]
(10)

where S(m), m = 1, 2 . . . ., M is output of, an M-channel filter-bank, n is the index of the
cepstral coefficient. In this study, we retained the 12 lowest Cn excluding 0th coefficient.

3.3. Dedicated Processing Units and Generation of the Intermediate Outputs

As explained in the previous section, given a sequence of facial images, 3D mesh, and speech data
for a person in various social settings, six feature vectors are extracted and considered to participate
in the perception of, an attended stimulus in order to recognize the person from different subjects in
the database. The rationale for the choice of the six features is that the algorithm is architecturally and
is functionally inspired by the human perceptual system. It is established that humans have limited
channel capacity of processing the information from their sensory system. This capacity varies in
the range of five to nine according to a seminal research study [50]. These feature vectors are: face
geometry feature, cross ratio feature, skeleton feature, surface distance feature, appearance-based
feature, and speech-based feature (Section 3.2). These features vectors are fed to DPUs in order to
generate IOs. Selection of possible computational models of these DPUs is problem dependent and
relies upon the perceptual task that needs to be addressed, as discussed in previous section.

3.3.1. Dedicated Processing Units for Vision-Based Feature Vectors

For the vision-based feature vector, we adopt classifiers that use various similarity and distance
measures to represent their respective DPUs. These classifiers generate scores that evaluate how similar
or close a subject is from those in the gallery. The interpretation of the best match relies on the types of
distance and similarity measures that were used to generate these scores. For instance, in the case of
various distance measures, such as L2Norm, L1Norm, Mahalanobis distance, and Mahalanobis Cosine;
the minimum score represents the best match (please refer to Appendix A for more details). Whereas in
cases where IOs are calculated using similarity measures, such as Cosine Similarity; the maximum
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score represents the best match. However, in order to unify these measures, such that the maximum
score represents the best match; distance measures, they are further modified as (11).

IOjk =
log (D∗j1 + 1)

log (D∗jk + 1)
(11)

where D∗j1 ≤ D∗j2 ≤ . . . . . . .. ≤ D∗jk, represent various distance measures, IOjk is a unified score value
representing how much the jth subject from the test set match or close to the kth subject from gallery set.
It can be seen from (11) that the smallest distance yields a score value (IO) or a confidence value closer
to one, while the largest distance value produces a very small score (IO) or a confidence value that
is close to zero. These unified scores are then converted into spike times compatible with the inputs
of neurons in the spiking neural network (SNN) at the next stage of hierarchical structure. For each
subject in the test set, each feature vector participating in encoding the attended stimulus is processed
by its respective DPU. In this study, DPUs are selected to be K-Nearest Neighbors (K-NN) classifiers
which use a combination of three of the following similarity and distance measures: L2Norm, L1Norm,
Mahalanobis distance, Mahalanobis Cosine, and Cosine Similarity as detailed in the architecture shown
in Figure 2. Each DPU generates three matrices by adopting three of the aforementioned similarity
and distance measures to compute scores for its associated feature vectors in the evaluation set against
the corresponding feature vectors in the gallery set. However, only for the face appearance feature
vector, the Gabor Jet Similarity measure of each subject in the evaluation set, is computed against the
corresponding face appearance feature vector in the gallery set using (12) and (13).

Simi
a(J, J′) = ∑N

k=1 akia′ki√
∑N

k=1 a2
ki ∑N

k=1 a′2ki

(12)

Sim f ace =
L

∑
i=1

Simi
a(J, J′) (13)

where Simi
a(J, J′) is the similarity between two jets, J and J′ associated with ith fiducial points on the

face of the subject, aki is the amplitude of kth Gabor coefficient at ith fiducial points. N is the number
of wavelet kernels. Sim f ace represents the total similarity between the two faces as the sum of the
similarities over all the fiducial points as expressed in (13).

3.3.2. Dedicated Processing Units for Voice-Based Feature Vector

For the speech-based feature vector, MFCCs (mel-frequency cepstral coefficients) are used as,
an input to K-NN classifier with the aforementioned distance measures. Also, we used MFCCs
that extracted from speech data of all of the speakers in the training data (gallery set) to create
speaker-independent world model or a well-known universal background model (UBM). The UBM
is estimated by training M-component GMM with the popular expectation–maximization (EM)
algorithm [51]. The UBM represents speaker-independent distribution of the feature vectors. Here,
we use 32-compnenent GMM to build the UBM. The UBM is represented by a GMM with 32-compnents,
as denoted by λUBM, that characterized by its probability density function as (14).

p(
→
x |λ) =

M

∑
i=1

wi pi(
→
x ) (14)
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The model is estimated by the weighted linear combination of D-variate Gaussian density function
pi(
→
x ), each parameterized by a mean D× 1 vector, µi, mixing weights, which is constrained by wi ≥ 0,

M
∑

i=1
wi = 1, and a D× D covariance matrix, Σi as (15).

pi(
→
x ) =

1

2πD/2|Σi|1/2 exp{1
2
(x− µi)

′(Σi
−1)(x− µi)} (15)

The purpose of training the UBM is to estimate the parameters of 32-component GMM,
λUBM = {wi,µi, Σi}M

i=1, from the training samples. The next step is to estimate specific GMM
from UBM-GMM for each speaker in the gallery set using maximum a posteriori (MAP) estimation.
The key difference between estimating the parameters of UBM and estimating the specific GMM
parameters for each speaker is that the UBM uses standard iterative expectation-maximization (EM)
algorithm for parameter estimation. On the other hand, specific GMM parameters are estimated by
adapting the well-trained parameters in the UBM to fit a specific speaker model. Since the UBM
represents speaker-independent distribution of the feature vectors, the adaptation approach facilitates
the fast scoring, as there is a strong coupling between speaker’s model and the UBM. It should
be noted that all or some of the GMM’s parameters (λUBM = {w, µ, Σ} can be adapted by MAP.
Here, we adapted only the mean µ to represent specific speaker’s model. Now, Let us assume
a group of speakers s = 1, 2, 3, . . . , S represented by GMMs λs = λ1, λ2, λ3, . . . , λS. The goal is
to find the speaker identity ŝ whose model has the maximum a posteriori probability for a given
observation Xk = {x1, . . . , xT} (MFCCs feature vector). We calculate the posteriori probability
of all of the observations Xk = X1, X2, X3, . . . , XK in probe set against all of the speakers models
λs = λ1, λ2, λ3, . . . , λS in gallery set as (16). As s and k vary from 1 to number of speakers in the
gallery set and the number of utterances in probe set, respectively, the result from (16) is S× K matrix,
namely IO_FVvoice_based. This matrix represents the IOs that are generated from speech-based feature
vector and it will be integrated with other matrices that represent IOs generated from vision-based
feature vectors.

IO_FVvoice_based|{s,k} = Pr(λs|Xk) =
p(Xk|λs)

p(Xk)
Pr(λs)

∣∣∣∣ 1 ≤ s ≤ S
1 ≤ k ≤ K

(16)

Assuming equal prior probabilities of all the speakers, the terms Pr(λs) and p(Xk) are constant for
all speakerx, thus both terms can be ignored in (16). Since each subject in the probe set is represented
as Xk = {x1, . . . , xT}, thus by using logarithmic and assume independence between observations,
calculation of IO_FVvoice_based|{s,k} can be simplified as (17).

IO_FVvoice_based|{s,k} =
T

∑
t=1

log p(xt
k|λs)| 1 ≤ s ≤ S

1 ≤ k ≤ K

(17)

Each feature vector generates IOs matrices, which provide a degree of support for each class
in the gallery set based on several measures within the same feature vector. Also, IOs matrices that
generated from different feature vectors provide a degree of support for each class in the gallery set
in a complementary manner. The weight contribution of the IOs generated from the same feature
vector to the final output is less than that of IOs generated from different feature vectors when they are
integrated in the Spiking Neural Networks (SNN). This will be further discussed in the next section.

The next problem is to distinguish a subject x from the M subjects in the gallery set. Several IOs
matrices are calculated for vision-based feature vector to be integrated with IOs matrices generated
from the speech-based feature vector. Each matrix takes the size of a M × C matrix and its
name is formatted based on the feature vector that generated it. The matrix name is read as
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IO_FVname o f f eature vector. For example, the matrices that are describing the resultant IOs based on the
skeleton feature vector should read as IO_FVskeleton, where M represents the number of subjects in the
gallery set and C is the number of samples in test set.

IO_FVname o f f eature vector =

 io11 · · · io1C
...

. . .
...

ioM1 · · · ioMC

, where IOVj = [ioj1, ioj2, . . . , iojc]

=
[

IOV1 · · · IOVM

]T

where IOVj is the IOs vector, iojk represents how much the jth subject from the test set match or close to
the kth subject from gallery set. This score is associated with a specific feature vector and is generated
based on a certain distance measure that is specified by the name of the matrix.

3.4. Temporal Binding via Spiking Neural Networks

It is known that humans interact with their environment by processing the available information
through multisensory modality streams over time with fading memory property. The same process
is emulated here. In the context of this algorithm, fading memory implies that the effect of
stimuli excitation (represented by IOs) deteriorates moderately if it is not reinforced or refreshed.
We implement this feature through the Leaky Integrate-and-Fire neuron (LIF) model [52] to manifest
the integration of IOs that are generated in the previous stage in the hierarchical architecture of the
proposed system. Figure 8 depicts one block of the spiking neural network (SNN) that is used to
perform the integration process. The overall SNN that is used to integrate the information from various
biometric modalities is constructed by laterally connecting N blocks from the circuit, as shown in
Figure 8, where N represents number of subjects in gallery sets.
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The IOs vectors are fed to LIF neurons in SNN by means of pre-synaptic input spikes, as shown
in Figure 8. IOs vectors, which are generated based on different feature vectors, are fed to independent
branch in the dendritic tree. On the other hand, IOs vectors that are generated based on same feature
vectors are fed to same branch in the dendritic tree. Inspired by neuroscience research studies [53,54],
we suggest that the effect of presynaptic inputs on postsynaptic potential is either sublinear, super
linear, or linear. The effects sum sub-linearly, linearly, or super-linearly if they are delivered to the
same dendritic branch (within-branch) and sum linearly if they are delivered to different dendritic
branches (between-branch). Equation (18) describes the dynamic of postsynaptic potential of LIF
neuron. The dynamic of this neuron can be described as follows: initially at time t = 0, Vm is set to Vinit.
If Vm exceeds the threshold voltage Vthresh, then it fires a spike and it is reset to Vreset and held there
for the length Trefact of the absolute refractory period. The total response of postsynaptic potential
due to different presynaptic inputs within-branch (SynWB) and between-branch (SynBB) is computed
using (18) to (20).

τm
dVm

dt
= −(Vm −Vresting) + Rm·(Isyn(t) + Inoise) (18)
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where τm = Cm·Rm is the membrane time constant, Rm is the membrane resistance, Isyn(t) is the
current supplied by the synapses, Inoise is a Gaussian random variable with zero mean and a given
variance noise, Vm is the membrane potential of LIF neuron, Vinit is the initial condition for Vm at time
t = 0, and Vthresh is the threshold value. If Vm exceeds Vthresh, then a spike is emitted, Vreset is the
voltage to reset Vm to after a spike, and Vresting is the membrane potential of LIF neuron at no activity.

SynWB =
K

∑
i=1

αi Sigmoid(IOi) (19)

SynBB =
K

∑
i=1

αi IOi (20)

where IOi represents the total input to the ith dendritic branch, αi is the ith dendritic branch weight,
K is the number of dendritic branches. Note that the sigmoid function is one possible choice of synaptic
integration function within-branch and can be replaced with other functions, such as hyperbolic
tangent sigmoid function.

It can be noted from (19) and (20) that the balanced IOs that are delivered to same dendritic
branch will sum as follows: (1) small IOs will sum nearly linearly, (2) around average IOs will
sum super-linearly, (3) large IOs will sum sub-linearly. Unbalanced IOs fed to the same branch
generate near-linear summation over the entire range of IOs intensities. Moreover, IOs that are
delivered to independent branches will sum linearly for all of the combinations of IOs intensities.
Synaptic integration in dendritic tree of pyramidal neuron was experimentally proved to demonstrate
similar behavior to the aforementioned forms of summations [55]. These forms of summations provide
a tradeoff between error variance and error bias. Sub-linear summation of within-branch IOs, in case
of large IOs, reduces the error variance by not exaggerating the effect of one aspect of the measure
at the expense of other measures in deriving the final outcome. In addition, the linearly weighted
aggregation of between-branch IOs reduces error bias by means of exploiting various attributes in
deriving the final outcome.

As shown in Figure 8, the integration of IOs is performed using SNN in time domain to emphasize
the temporal binding with fading memory criteria. The IOs represent various scores of confidence;
each one of them provides a degree of support for each subject in the gallery set according to a certain
aspect of measure and based on a specific biometric modality. These scores are introduced to SNN as
presynaptic inputs by means of spikes fired at different times. As described in the previous section,
all of the IOs are unified such that high score is equivalent to best match. In order to introduce the
IOs to LIF neurons, the IOs are converted to spike times using (11) such that a high IO is equivalent
to early firing time. Hence, the neuron which fires first represents the best candidate of the attended
subject (from the gallery set). As LIF neurons receive early spikes, which correspond to high degree
of support, their membrane potential U increases instantaneously. Once the membrane potential U
of one of these neurons crosses the threshold value Vthresh, the neuron fires a spike and all neurons
participating in the process are reset to Vreset. The neuron which fires a spike first, which we refer to as
the winner neuron, represents the best candidate of the attended subjects, and the attended subject is
labeled with class number assigned to that neuron.

The threshold value of the neurons in the SNN controls both the reliability of the perception
outcome and the allowed for the perception time of the attended task. A LIF neuron with a high
threshold value implies that it will not fire until high intensity presynaptic inputs are delivered to its
dendrite branches. These presynaptic inputs may be not available due to the absence of some biometric
features or the need for more processing time. Thus, a compromise between the reliability and the
reasonable perception time can be achieved by controlling the threshold value, according to a specific
scenario of social interaction. As IOs are introduced to LIF neurons in parallel (Figure 8) via presynaptic
inputs, one very high IO may drive a neuron to fire a spike and finalize the perception process. This
sheds light on the superior feature of this model, such that one biometric feature with high discriminant
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power may be enough to finalize the perception process. This feature replicates the ability of humans
to recognize odd features very quickly [56]. In the face perception and recognition, humans focus on
distinctive features, which correspond to very high IOs in this algorithm so that other features may not
need to be used.

Another vital property of this model is the alleviation of the computational cost in the
perception process. As one of the neurons in the final layer fires a spike, all of the neurons that
are participating in the perception of attended stimulus are reset and held at that state for a certain time.
Early spikes correspond to IOs that carry high discriminant power and consequently provide high
degree of support for particular neuron to be the winner neuron and represent the best candidate of
attended subject; however, the neuron receiving the earliest spike is not necessarily the winner neuron.
In some cases, a neuron receives a spike later, but is reinforced immediately with other spikes that will
drive its potential to threshold value and consequently fire a spike before other neurons, which were
received the earliest spikes but were not immediately reinforced with other spikes. As shown in
Figure 9a, even though neuron 1 receives a spike prior to neuron 2, neuron 2 fires a spike earlier than
neuron 1. It can be seen from Figure 9a that the membrane potential of neuron 1 had started increasing
earlier than the membrane potential of neuron 2, but because neuron 2 received a spike and reinforced
immediately with another spike, its membrane potential increased dramatically and had fired before
the membrane potential of neuron 1 reached the threshold value. Figure 9b shows the case that one IO,
which corresponds to a very early input spike, is large enough to drive the neuron’s potential to
threshold value and fires a spike. One can tentatively conclude that a neuron fires a spike either by
a very high IO, corresponding to very early spike that is sufficiently large to drive a neuron’s potential
to threshold, or by more than one high or moderate IO, representing a monotonically decreasing
function and corresponding to spikes that are reinforced each other in time domain. The number of
neurons which represent the final layer of SNN (i.e., outputs of SNN) equals the number of subjects
in the gallery set. Thus, the first neuron fired among these neurons represents the best candidate of
attended subject and the attended stimulus is labeled with the number of that neuron.
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and evokes a spike.
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4. Experimental Results

In this section, we present the experimental results to evaluate the performance of the person
recognition algorithm in social settings. We have included four sets of simulation studies for person
recognition to demonstrate the performance of the person recognition algorithm. The biometrics that
have been extracted from visual and auditory modalities are presented in three groups, as shown
in Figure 10. The biometrics that have been selected to identify a subject in each of the four scenarios
are illustrated in Figure 10.
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4.1. Generation of Multi-Modal Data Set

Our first challenge was that the available public datasets are generally unimodal, and as such,
do not fit to the requirements of the multimodal perception. We resolved this problem by creating
a new dataset from merging of the three datasets: FERET [57], TIDIGITS [58], and RGB-D [59].
FERET database contains a total of 14,126 facial images of 1199 individuals and 364 duplicate sets
of facial images. TIDIGITS is a speech dataset that was originally collected at Texas Instruments Inc.
(Dallas, TX, USA) The TIDIGITS corpus contain 326 speakers (111 men, 114 women, 50 boys
and 51 girls), with each pronouncing 77 digit sequences. The RGB-D is a new database that was
created by Barbosa et al. for the purpose of person re-identification studies based on information from
3D depth sensor. In this dataset, depth information has been obtained for 79 individuals with four
scenarios: frontal view of person walking normally (Walking 1 group), frontal view of person walking
slowly and avoiding obstacles (Walking 2 group), walking with stretched arms (Collaborative group),
and back view of person walking normally (Backward group). Five synchronized information for
each person namely, RGB images, foreground mask, skeleton, 3D mesh, and the estimated floor were
collected in, an indoor environment, whereby the individuals were at least two meters away from the
3D depth sensor.

In order to provide the individual in RGB-D database with facial images from a diverse group
across ethnicity, gender, and age, we randomly selected 79 subjects from FERET database. Then,
we used only frontal view images, which included frontal images at different facial expressions
(fb image), different illuminations (fc image). Also, some subjects in the database wore glasses on
and/or pull their hair back. The duplicate set contains frontal images of a person which was taken
on a different day over one year, and for some individuals more than two years had elapsed between
their first frontal images and the duplicate ones. The number of frontal facial images for each subject in
the selected set varies from two to eight images. These 79 subjects were randomly assigned to subject
in RGB-D database when considering that female subjects from FERET database are assigned to female
subjects from RGB-D.
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In order to complement the new dataset with speech data; we selected 23 subjects from women
group in TIDIGITS dataset and assigned them randomly to female subjects in the new dataset, the rest
of subjects in the new dataset were assigned with speech data from men group in TIDIGITS dataset.

The new dataset provides facial information, speech utterances, and the aforementioned
information that is available on RGB-D database. The facial information is extracted from FERET
database which provides facial frontal images with some differences such as changes in facial
expression, change in illumination level, and variable amount of time between photography sessions.
Also, RGB-D database provides skeleton and depth information that not affected by changing the
outfits of the subjects and their bodies poses. On the other hand, TIDIGITS provide speaker signature
when the subject is not in the field of view of robot’s vision system. It is important to note that the
state-of-art face detection and recognition algorithms fail to provide quick detection and have low
recognition rate when the face is angled or far from the camera, or when the face is partially occluded,
and/or the illumination is poor. However, these situations are common in social HRI scenarios.
In such cases, other biometrics features, such as body information and speech signature, can be used to
compensate missing facial information and recognize, an individual. These characteristics of the new
database fit the requirements of the human-robot interactions in social settings where robust long-term
interaction is a crucial factor for the success of the system.

The new (integrated) dataset has been partitioned into two sets, namely, training (gallery) and
evaluation (probe) sets, as described in experiments 1 to 4. The gallery set was used to build the training
model and the evaluation set was used for testing. The evaluation set is comprised of unseen data, not
used in the development of the system. It is important to emphasize that the chronological order of
the data capture was considered in constructing the evaluation set. Thus, some of the images in the
evaluation set was chosen to be duplicate I and duplicate II, implying that they were taken at different
dates, spanning from one day to two years. By using duplicate I and II images in constructing the
evaluation sets, we ensured that the evaluation set represented closely scenarios that are appropriate
for long-term HRI in social settings. The performance of the proposed architecture was evaluated
in four experiments. Since, the data set has 79 subjects, thus the overall SNN was constructed from
79 circuits, as shown in Figure 8. In this SNN, all of the LIF neurons number 3 are connected laterally
and all blocks have the same dendritic structure shown in Figure 8.

4.2. Experiment 1

For each subject in the probe set, two facial images, fb image and its duplicate I image, were
selected from the FERET database. In addition, two out of five frames from each of skeleton information
and 3D mesh body information were selected randomly from Walking 1 group in the RGB-D database.
The rest of the samples in the FERET and RGB-D databases were used to construct the training
set. Some subjects in the FERET database had only two facial images. In this case, one was used
for training and the other for evaluation. Five feature vectors were constructed, as described in
Section 3. Three of the feature vectors represent facial information, including the facial geometry
feature vector, cross ratio feature vector, and appearance-based feature vector. The rest of the feature
vectors, namely the skeleton feature vector and the surface-based feature vector, represent the body
information of the attended subject. IOs generated based on these features were converted into spike
times and normalized to range from zero to 150 ms, prior to being fed to LIF neurons in SNN, as shown
in Figure 8. The SNN was constructed and simulated using the neural Circuit (CSIM) simulator [60].
The parameters of LIF neurons were set as follows: the weight synapses of neuron 1 and neuron 2
were equal and set at 2000× 10−9. The weight synapses of neuron 3 were set as follows: the weight
synapse of dendritic branch one was set to 2500× 10−9 and weight synapse of dendritic branch two
was set to 2000× 10−9, Vthresh = 0.15, Vreset = −0.067, Vreseting = 0, Cm = 5× 10−8, Vinit = 0.08,
Rm = 1× 106, Tre f act = 0.0025, Inoise = 50× 10−9, Isys(t) represents the input current supplied by the
synapses, i.e., the outputs from the conversion process of IOs into input spike times. These input spike
times were set in the range from zero to 150 ms. This selection is compatible with the natural human
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perception of time. The SNN were simulated for 150 ms. As described in Section 2, the first neuron that
fires a spike represents the best candidate of the attended subject x from the gallery set. The overall
SNN was constructed from 79 circuit blocks, as shown in Figure 8. Therefore, the total number of
LIF neurons was 237. The recognition rates were calculated at two stages in the hierarchical structure
of the SNN, namely stage 1 and stage 2. Stage 1 consists of the list of neurons, labeled as neuron 1
and neuron 2; stage 2 was represented by the list of neurons labeled as neuron 3. The recognition
rate that was calculated from the list of neurons labeled as neuron 1 was based on body information;
the recognition rates that were calculated from the list of neurons labeled as neuron 2 expressed
a recognition rate based on facial information or voice information. Neuron 2 may use face geometry,
face appearance, voice-based feature, or all of them in order to fire a spike. The same applies to
neuron 1, which may use geodesic distances, skeleton distances, or both, in order to drive its potential
to the threshold and consequently evoke a spike. The overall recognition rates were calculated based
on neuron 3, which may use facial information, body information, voice information, or a combination
of them. Cumulative match curves (CMCs) show the probability that the correct match of classification
is found in the N, the most likely candidates, where N (the rank) is plotted on the x-axis. CMCs provide
the performance measure for biometric recognition systems and have been shown to be equivalent to
the ROC of the system [61]. The recognition result was averaged over ten runs; the cumulative match
curves (CMCs) were plotted for these recognition results and are shown in Figure 11a–c.
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described in Figure 11b.

4.3. Experiment 2

In this experiment, the probe set was constructed as follows: for body information, we used the
collaborative group from the RGB-D database as the training set and two frames out of five from
Walking 2 group as the probe set. For facial information, the probe set was constructed from fb image
and duplicate II image. The rest of the samples in the FERET database was used to construct the training
set. It can be noted that the probe and training sets were constructed in this manner to demonstrate the
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performance of the system in a real-world scenario where the enrolment process of the attended subject
happened when the subject’s posture was different from that of the recognition process. All the other
configurations of SNN were similar to the experiment 1. The recognition result was averaged over ten
runs. The cumulative match curves (CMCs) were plotted for these recognition results and are shown
in Figure 12a–c. The overall recognition rate is degraded as result of using different groups from the
RGB-D database for training and evaluation. Hence, the same person is represented in one posture in
gallery set and a different posture in the probe set. Another reason for the performance degradation is
the use of the duplicate II image set to construct the probe set for the face information. This is a huge
challenge for the state-of-the-art face recognition algorithms due to changes in illumination, aging,
and facial expressions. Nevertheless, the proposed algorithm works reasonably well.
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from the RGB-D database, (b) CMC based on face information calculated on fb and duplicate II images
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body information is evaluated as described in Figure 12a and face information is evaluated as described
in Figure 12b.

4.4. Experiment 3

We emulated a real-world scenario of HRI in social settings where biometric modalities that
represent person identity are not concurrently available due to the sensor limitation or the occlusion of
some parts of the person. To replicate this scenario, we converted the IOs generated from the body
information into temporal spikes in range of 0–150 ms while the IOs that are generated from the face
information were converted into temporal spikes in the range of 30–150 ms In this way, we made
the body information available before the face information. This scenario replicates a situation
where a person can be identified from his skeleton and body shape before face biometric modalities
are available. Here, we assumed that the back view of the attended person is captured by the RGB-D
sensor at the beginning of the recognition process and after a short time the attended person turned
toward the camera in such a way that the face information becomes available. Hence, two frames out
of five from the backward group in the RGB-D database are used to construct the probe set. For facial
information, the probe set was constructed from fb image and duplicate II image, the same as in
experiment 2. The rest of the samples in the FERET and RGB-D databases were used to construct
the training set. All of the configurations of SNN are similar to the first experiment. The recognition
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result was averaged over ten runs, and the cumulative match curves (CMCs) were plotted for these
recognition results, as shown in Figure 13a–c. The recognition rates are still good, despite the fact that
biometric modalities are available at different times. We have not seen any other algorithm that copes
with this scenario.Appl. Sci. 2018, 8, x FOR PEER REVIEW  23 of 30 
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the FERET database, (c) CMC based on temporal binding of face and body information where body
information is evaluated as described in Figure 13a and face information is evaluated as described
in Figure 13b.

4.5. Experiment 4

In this experiment, we emulated another challenging scenario of HRI in social settings when
a subject’s face is not detected either due to distance between the robot and the subject or due to titled
viewing angle of the camera and the head orientation. However, we assume that some utterances from
subject’s speech can be captured by robot’s auditory system, as well as 3D mesh for subject’s body is
available in robot’s vision stream of data. In this scenario, the subject’s speech signature and his/her
body information are available. Here, we assumed that the audio signal is recorded first and the voice
activity detector is applied such that only the voice signal is fed to speech feature extraction module.
Also, we assumed that speech utterances of the attended person are captured by a microphone at the
beginning of the recognition process, and after a short time, the attended person shows in camera’s
view facing opposite way such that back view of body information becomes available. Thus, for each
subject, two frames out of five from the backward group in the RGB-D database were used to construct
the probe set for body information. The rest of the samples in the RGB-D database was used to
construct the training set. For speech signature, the probe set was constructed by selecting seven
utterances (each utterance in range of 1 to 1.7 s duration) out of 77 utterances from TIDIGITS database
for each subject. The rest of the samples in the TIDIGITS database was used to construct the training set.
Despite the fact that short speech utterances (such as the ones used in constructing the probe set for
speech signature) reduce the recognition rate, we used them in our implementation to demonstrate its
reasonable performance in this challenging HRI scenario. All of the configurations of SNN are similar
to the first experiment. The recognition result was averaged over ten runs, and the cumulative match
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curves (CMCs) were plotted for these recognition results, as shown in Figure 14a–c. The recognition
rates are still good, despite the fact that biometric modalities are available at different times and only
two of them are available. We have not seen any other algorithm that copes with this scenario.Appl. Sci. 2018, 8, x FOR PEER REVIEW  24 of 30 
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RGB-D database, (b) CMC based on speech information calculated on selected utterances from the
TIDIGTS database, and (c) CMC based on temporal binding of speech and body information where
body information is evaluated as described in Figure 14a and speech information is evaluated as
described in Figure 14b.

5. Discussions

In this section, we outline some design guidelines for the proposed system. The results suggest that
the recognition rates using one modality or one source of information (i.e., recognition rate calculated
at stage 1, represented by neuron 1 and neuron 2) are very close to other studies reported in literature
which use similar modalities. However, when the outcomes of these modalities are represented as
IOs and introduced to the temporal binding mechanism, the recognition rates dramatically improved.
One key distinction of the proposed approach from other works is that it employs efficient processing
of available information in multimodal sensors streams. The efficient processing is manifested by
using a limited number of feature vectors and a limited number of elements in each vector in order
to reduce the processing time of the feature vectors. For instance, the appearance-based feature
vector can be constructed by applying the Gabor filter to the whole face, which may enhance the
recognition rate, as calculated based on face information, and consequently increase the overall
recognition performance of the system. However, the Gabor filter uses convolution operator which
comes with a high computational cost. Hence, we applied the Gabor filter to selected fiducial points to
reduce computational cost and exploit other biometric features in order to emphasize the real-time
fashion of social human-robot interaction. The proposed approach exploits the fact that every modality
participating in the encoding process of the attended subject possesses complementary information
and has a discriminative level, which may be sufficient to independently identify a person and classify
the individual to the correct class. In the case that the discriminative level of one modality is not
sufficient to drive the system to the required threshold and finalize the identification process, it can be
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combined with other modalities at the intermediate level in a synergistic fashion to satisfy the required
threshold, and consequently achieve higher performance.

One of the significant challenges of the person recognition tasks in social settings is that not all
biometric modalities are available at the same time, due to a dynamic environment, human activities,
and sensor limitations. Additionally, the nature of the HRI in social settings demands a perceptual
system that is capable of providing a decision within the range of human response time; i.e., a human’s
reaction time. For the above reasons, exploiting the available modalities and compromising between
reliability of the outcomes and fast recognition are the main characteristics of the recognition system,
making it appropriate for person recognition tasks in social settings. The results show that the system
achieves high performance in real-time fashion, despite the fact that not all biometric modalities are
available at the same time. Table 1 shows the results of other studies that use multimodalities for
person recognition tasks. Most of the reported methods use biometric modalities that are essentially
invasive and require close cooperation from the attended person. Only two methods, [18] and [8], may
be classified as non-invasive multimodal biometric identification systems. One shortcoming of one of
these two works [8] is that the overall recognition rate is limited by the detection rates of the modalities
participating in encoding the attended person. In addition, most of the works that are reported in
Table 1 use one main modality as the basis to extract other auxiliary features. These are normally
referred to as soft biometric features, such as gender, ethnicity, and height, which in turn are fused
together in order to improve the recognition rate. Another shortcoming of all of the works reported
in Table 1, including the two non-invasive approaches, is that these systems assume all modalities
are available at the same times. This requirement is not normally met in real-world HRI scenarios
in social settings. Thus, the main shortcoming of these approaches is that the absence of the main
modality leads to failure of the overall system.

Table 1. Comparison with related works.

Approach Biometric Modalities Category Accuracy No.
of Subjects

[62] fingerprint (main) + gender, ethnicity, and
height (auxiliary) invasive 90.2% 160

[11] face and fingerprint(main) +
gender, ethnicity, and height (auxiliary) invasive 95.5% 263

[63] fingerprint and body weight invasive 96.1% 62

[64] fingerprint and iris invasive 97.0% 21

[18] face (main) + age and gender (auxiliary) non-invasive 97.67% 79

[18] fingerprint (main) + age and gender (auxiliary) invasive 96.76% 79

[8]
skin color, hair color, eye color, weight, torso clothes
color, legs clothes color, beard presence, moustache

presence, glasses presence
non-invasive not available 646

our approach face, body, speech, and skeleton non-invasive 100%
(Figure 11c) 79

6. Conclusions

We applied, an elegant and a powerful multimodal perceptual system to address the problem of
person recognition for social robots. The system can be used in a wide range of applications where
a decision is expected based on the inputs from several sensors/modalities. The key distinction
of this system from others is that it is non-invasive and does not require that all input stimuli are
simultaneously available. The decision making process is facilitated by any modality that is rich in
information and first becomes available. The system is also expected to make its decision within the
same timeframe as humans (similar to duration for human response time).

In addition, the proposed system has the ability to adapt to real-world scenarios of social
human-robot interactions by adjusting the threshold value which compromises between the reliability



Appl. Sci. 2018, 8, 387 26 of 30

of the perception outcome and the time required to finalize the perception process. Going through the
literature of person recognition systems, we note that there are almost no multimodal systems that are
completely noninvasive, whereas the proposed system is noninvasive. We also note that a system that is
based on “fusion” is conceptually and operationally different from the proposed architecture. The idea
of fusion is to integrate the effect of several sensors with a view that each sensor by its own is not
able to contribute to a correct decision; as such, the signals are fused together to enhance the decision
making. The proposed system is designed based on the idea of convergence zone (as the term is used
in neuroscience). This is further elaborated in Figure 1a,b. The modules “Conversion of IOs to spiking
networks” and “Temporal binding” (Figure 1a) are analogous to “Multimodal Association Cortex”.
The process is essentially different from “fusion”.

We have conducted extensive simulations and comparative studies to evaluate the performance
of the proposed method. In order to generate a multimodal dataset, we combined the FERET,
TIDIGITS, and RGB-D datasets to generate a new dataset that is applicable to multimodal systems.
Simulation studies are promising and suggest notable advantages over related methods for
person recognition.

Appendix A

L1Norm, L2 Norm, Mahalanobis distance, Cosine Similarity can be computed as (1) to
(4) respectively.

L1(x, y) =
N

∑
i=1
|xi − yi| (A1)

L2(x, y) =

√√√√ N

∑
i=1

(xi − yi)
2 (A2)

Maha =

√
(
→
x −→y )

T
S−1(

→
x −→y ) (A3)

CosSim(x, y) =
〈x, y〉
||x|| ||y|| (A4)

where x is a feature vector represents a subject in probe set, y is a feature vector represents a subject in
gallery set, S is a covariance matrix.

Table A1. Facial feature ratios.

Ratio1 =
Area o f ∆ACD

Area o f ∆ACMcen

Ratio2 =
Area o f ∆DHI
Area o f ∆DJN

Ratio3 =
Area o f ∆JNMcen
Area o f ∆KMMcen

Ratio4 =
Distance between point E and point G
Distance between point B and point F = nose width

nose height

Ratio5 =
Distance between point A and point C
Distance between point B and point F

=
distance between the inner_corner o f the eyes

nose height

Ratio6 =
Distance between point A and point C
Distance between point E and point G

=
distance between the inner_corner o f the eyes

nose width

Ratio7 =
Distance between point A and point C

Distance between point B and point Mcen

=
distance between the inner_corner o f the eyes

distance between the mouth center and the line joining the eyes

Ratio8 =
Distance between point B and point F

Distance between point B and point Mcen

=
distance between the nose tip and the line joining the eyes

distance between the mouth center and the line joining the eyes

A, B, C, D, E, F, G, H, I, J, K, L, Mc and N are the selected fiducial points on a face image, as shown in Figure 4a.
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Appendix B

Table A2. Euclidean distance of selected skeleton segments.

(Skeleton-Based Feature)

• Euclidean distance between floor and head.
• Euclidean distance between floor and neck.
• Euclidean distance between floor and left hip.
• Euclidean distance between floor and right hip.
•Mean of Euclidean distances of floor to right hip and floor to left hip.
• Euclidean distance between neck and left shoulder.
• Euclidean distance between neck and right shoulder.
•Mean of Euclidean distances of neck to left shoulder and neck to right shoulder.
• Ratio between torso and legs.
• Euclidean distance between torso and left shoulder.
• Euclidean distance between torso and right shoulder.
• Euclidean distance between torso and mid hip.
• Euclidean distance between torso and neck.
• Euclidean distance between left hip and left knee.
• Euclidean distance between right hip and right knee.
• Euclidean distance between left knee and left foot.
• Euclidean distance between right knee and right foot.
• Left leg length.
• Right leg length.
• Euclidean distance between left shoulder and left elbow.
• Euclidean distance between right shoulder and right elbow.
• Euclidean distance between left elbow and left hand.
• Euclidean distance between right elbow and right hand.Left arm length.
• Right arm length.
• Torso length.
• Height estimate.
• Euclidean distance between hip center and right shoulder.
• Euclidean distance between hip center and left shoulder.

Table A3. geodesic distances among the projection of selected skeleton joints.

(Surface-Based Feature Vector)

• Geodesic distance between left hip and left knee.
• Geodesic distance between right hip and right knee.
• Geodesic distance between torso center and left shoulder.
• Geodesic distance between torso center and right shoulder.
• Geodesic distance between torso center and left hip.
• Geodesic distance between torso center and right hip.
• Geodesic distance between right shoulder and left shoulder.
• Geodesic distance between left hip and left knee.
• Geodesic distance between right hip and right knee.
• Geodesic distance between torso center and left shoulder.
• Geodesic distance between torso center and right shoulder.
• Geodesic distance between torso center and left hip.
• Geodesic distance between torso center and right hip.
• Geodesic distance between right shoulder and left shoulder.
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