Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental
2.1. Red and White Kaolin Purification
2.2. Synthesis of Metakaolins
2.3. Synthesis of Zeolite A
2.4. Characterization Techniques
2.5. Adsorption Experiments
3. Results and Discussion
3.1. Preparation and Characterization of the Materials
3.2. Adsorption Studies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fatima, M.; Farooq, R.; Lindström, R.W.; Saeed, M. A review on biocatalytic decomposition of azo dyes and electrons recovery. J. Mol. Liq. 2017, 246, 275–281. [Google Scholar] [CrossRef]
- Kumar, S.S.; Shantkriti, S.; Muruganandham, T.; Murugesh, E.; Rane, N.; Govindwar, S.P. Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Ecol. Inform. 2016, 31, 112–121. [Google Scholar]
- Jawale, R.H.; Tandale, A.; Gogate, P.R. Novel approaches based on ultrasound for treatment of wastewater containing potassium ferrocyanide. Ultrason. Sonochem. 2017, 38, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Yac’cob, N.A.N.; Ngadi, N.; Hassan, O.; Inuwa, I.M. From Pollutant to Solution of Wastewater Pollution: Synthesis of Activated Carbon from Textile Sludge for Dyes Adsorption. Chin. J. Chem. Eng. 2017, in press. [Google Scholar] [CrossRef]
- Shen, T.; Wang, Q.; Tong, S. Solid Base MgO/Ceramic Honeycomb Catalytic Ozonation of Acetic Acid in Water. Ind. Eng. Chem. Res. 2017, 56, 10965–10971. [Google Scholar] [CrossRef]
- Liang, C.Z.; Sun, S.P.; Li, F.Y.; Ong, Y.K.; Chung, T.S. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J. Membr. Sci. 2014, 469, 306–315. [Google Scholar] [CrossRef]
- Edebali, S.; Pehlivan, E. Evaluation of chelate and cation exchange resins to remove copper ions. Powder Technol. 2016, 301, 520–525. [Google Scholar] [CrossRef]
- Tan, L.; Shuang, C.; Wang, Y.; Wang, J.; Su, Y.; Li, A. Effect of pore structure on the removal of clofibric acid by magnetic anion exchange resin. Chemosphere 2018, 191, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Chitpong, N.; Husson, S.M. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep. Purif. Technol. 2017, 179, 94–103. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y.; Chen, W.; Shi, J.; Zhang, N.; Wang, X.; Li, Z.; Gao, L.; Zhang, Y. Modified bentonite adsorption of organic pollutants of dye wastewater. Mater. Chem. Phys. 2017, 202, 266–276. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Yu, K.; Krishna, K.; Song, L.; Wang, X.; Wang, Z.; Coppens, M.O.; Feng, S. Synthesis of silica nanotubes from kaolin clay. Chem. Commun. 2003, 1302–1303. [Google Scholar] [CrossRef]
- Belver, C.; Vicente, M.A. Easy Synthesis of K–F Zeolite from Kaolin, and Characterization of This Zeolite. J. Chem. Educ. 2006, 83, 1541–1542. [Google Scholar] [CrossRef]
- Belver, C.; Bañares Muñoz, M.A.; Vicente, M.A. Chemical activation of a kaolinite under acid and alkaline conditions. Chem. Mater. 2002, 14, 2033–2043. [Google Scholar] [CrossRef]
- Selim, M.M.; El-Mekkawi, D.M.; Aboelenin, R.M.M.; Sayed Ahmed, S.A.; Mohamed, G.M. Preparation and characterization of Na-A zeolite from aluminum scrub and commercial sodium silicate for the removal of Cd2+ from water. J. Assoc. Arab Univ. Basic Appl. Sci. 2017, 24, 19–25. [Google Scholar] [CrossRef]
- Basaldella, E.I.; Sánchez, R.M.T.; Tara, J.C. Iron influence in the aluminosilicate zeolites synthesis. Clays Clay Miner. 1998, 46, 481–486. [Google Scholar] [CrossRef]
- Xu, H.Y.; Wu, L.C.; Shi, T.N.; Liu, W.C.; Qi, S.Y. Adsorption of acid fuchsin onto LTA-type zeolite derived from fly ash. Sci. China Technol. Sci. 2014, 57, 1127–1134. [Google Scholar] [CrossRef]
- Tümsek, F.; Avcı, Ö. Investigation of Kinetics and Isotherm Models for the Acid Orange 95 Adsorption from Aqueous Solution onto Natural Minerals. J. Chem. Eng. Data 2013, 58, 551–559. [Google Scholar] [CrossRef]
- Hernández-Montoya, V.; Pérez-Cruz, M.A.; Mendoza-Castillo, D.I.; Moreno-Virgen, M.R.; Bonilla-Petriciolet, A. Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manag. 2013, 116, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Loannou, Z.; Karasawidis, C.; Dimirkou, A.; Antoniadis, V. Adsorption of methylene blue and methyl red dyes from aqueous solutions onto modified zeolites. Water Sci. Technol. 2013, 67, 1129–1136. [Google Scholar]
- Nassar, M.Y.; Abdelrahman, E.A. Hydrothermal tuning of the morphology and crystallite size of zeolite nanostructures for simultaneous adsorption and photocatalytic degradation of methylene blue dye. J. Mol. Liq. 2017, 242, 364–374. [Google Scholar] [CrossRef]
- El-Mekkawi, D.M.; Ibrahim, F.A.; Selim, M.M. Removal of methylene blue from water using zeolites prepared from Egyptian kaolins collected from different sources. J. Environ. Chem. Eng. 2016, 4, 1417–1422. [Google Scholar] [CrossRef]
- Maček, M.; Mauko, A.; Mladenovič, A.; Majes, B.; Petkovšek, A. A comparison of methods used to characterize the soil specific surface area of clays. Appl. Clay Sci. 2013, 83–84, 144–152. [Google Scholar] [CrossRef]
- Musyoka, N.M.; Petrik, L.F.; Hums, E.; Kuhnt, A.; Schwieger, W. Thermal stability studies of zeolites A and X synthesized from South African coal fly ash. Res. Chem. Intermed. 2015, 41, 575–582. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Zide, D.; Fatoki, O.; Oputu, O.; Opeolu, B.; Nelana, S.; Olatunji, O. Zeolite “adsorption” capacities in aqueous acidic media; The role of acid choice and quantification method on ciprofloxacin removal. Microporous Microporous Mater. 2018, 255, 226–241. [Google Scholar] [CrossRef]
- Moreira, M.A.; Ciuffi, K.J.; Rives, V.; Vicente, M.A.; Trujillano, R.; Gil, A.; Korili, S.A.; de Faria, E.H. Effect of chemical modification of palygorskite and sepiolite by 3-aminopropyltriethoxisilane on adsorption of cationic and anionic dyes. Appl. Clay Sci. 2017, 135, 394–404. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A General Treatment and Classification of the Solute Adsorption Isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 766–778. [Google Scholar] [CrossRef]
- Awala, H.; Leite, E.; Saint-Marcel, L.; Clet, G.; Retoux, R.; Naydenova, I.; Mintova, S. Properties of methylene blue in the presence of zeolite nanoparticles. New J. Chem. 2016, 40, 4277–4284. [Google Scholar] [CrossRef]
- Alpat, S.K.; Özbayrak, Ö.; Alpat, S.; Akçay, H. The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite. J. Hazard. Mater. 2008, 151, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Karadag, D.; Turan, M.; Akgul, E.; Tok, S.; Faki, A. Adsorption equilibrium and kinetics of reactive black 5 and reactive red 239 in aqueous solution onto surfactant-modified zeolite. J. Chem. Eng. Data 2007, 52, 1615–1620. [Google Scholar] [CrossRef]
- Wang, S.; Ariyanto, E. Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Colloid Interface Sci. 2007, 314, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, Z.H. Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. J. Hazard. Mater. 2006, 136, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Yener, J.; Kopac, T.; Dogu, G.; Dogu, T. Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite. J. Colloid Interface Sci. 2006, 294, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Jiang, M.Q.; Shan, X.Q.; Pei, Z.G.; Chen, Z. Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. J. Colloid Interface Sci. 2008, 328, 243–247. [Google Scholar] [CrossRef] [PubMed]
Zeolite Type | Adsorbate | Adsorbed Amount (mg/g) | Reference |
---|---|---|---|
LTA (synthetic from fly ash) | Acid fuchsin | 40.64 | [16] |
Zeolite (clinoptilolite-rich mineral) | Acid orange 95 | 3.4 | [17] |
Zeolite (clinoptilolite-rich mineral) | Acid blue 25 Basic blue 9 Basic violet 3 | 0.1 82 98 | [18] |
Zeolite (clinoptilolite mineral) | Methylene blue Methyl red | 82 12 | [19] |
Modified zeolite | Methylene blue Methyl red | 83 10 |
Molecule | MB | SA | MG |
Molecular dimension (Å) | 4.22 × 13.19 × 5.27 | 5.11 × 11.84 × 10.99 | 14.41 × 4.23 × 12.07 |
Molecular surface (Å2) | 70 | 130 | 174 |
C.I. name | Basic blue 9 | Basic red 2 | Basic green 4 |
C.I. | 52,015 | 50,240 | 42,000 |
Class | Thiazin | Safranin | Triarylmethane |
λmax (nm) | 661 | 530 | 614, 425 |
Sample | SiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|
Ka | 54.24 | 42.61 | 1.51 | 0.005 | 0.15 | 0.04 | 0.02 | 0.41 | 1.01 |
Ka-R | 54.06 | 42.60 | 1.59 | 0.010 | 0.18 | 0.13 | 0.02 | 0.41 | 1.00 |
Zeo | 43.52 | 34.39 | 0.67 | 0.005 | 0.11 | 0.03 | 20.59 | 0.14 | 0.55 |
Zeo-R | 44.35 | 33.82 | 0.96 | 0.006 | 0.11 | 0.02 | 19.82 | 0.26 | 0.66 |
Sample | MB Saturation Volume (mL) | CEC (mEq·100 g−1) | CEC SSA 1 (m2·g−1) | BET SSA 2 (m2·g−1) | Pore Size (Å) |
---|---|---|---|---|---|
Ka | 0.40 | 8.0 | 62 | 15 | 179 |
M-Ka | 0.15 | 3.0 | 23 | 69 | 110 |
Zeo | 0.40 | 8.0 | 62 | 2 | 355 |
Ka-R | 0.30 | 6.0 | 47 | 16 | 184 |
M-Ka-R | 0.10 | 2.0 | 16 | 79 | 113 |
Zeo-R | 0.25 | 5.0 | 39 | 1 | 1130 |
Dye-Adsorbent | MB-Zeo | MB-Zeo-R | SA-Zeo | SA-Zeo-R | MG-Zeo | MG-Zeo-R |
---|---|---|---|---|---|---|
Langmuir a | ||||||
qL (mg/g) | 4.1 | 2.1 | 9.4 | 5.5 | 2094 | 75 |
kL (L/mg) | 1.4 | 2.4 | 0.0086 | 0.11 | 0.00057 | 0.087 |
χ2 | 0.83 | 1.94 | 1.4 | 1.2 | 462 | 14 |
R | 0.98 | 0.85 | 0.991 | 0.98 | 0.93 | 0.997 |
Freundlich b | ||||||
kF (L/g) | 1.4 | 0.86 | 0.49 | 0.85 | 0.16 | 7.4 |
mF | 5.2 | 7.1 | 2.2 | 3.3 | 0.63 | 1.6 |
χ2 | 4.8 | 3.7 | 1.5 | 3.4 | 327 | 14 |
R | 0.92 | 0.68 | 0.990 | 0.95 | 0.95 | 0.998 |
Sips c | ||||||
qs (mg/g) | 4.1 | 2.1 | 12 | 5.6 | -- | -- |
kS (L/mg) | 4.7 | 752 | 0.015 | 0.12 | -- | -- |
mS | 2.2 | 9.4 | 0.76 | 0.95 | -- | -- |
χ2 | 0.34 | 0.91 | 1.2 | 1.2 | -- | -- |
R | 0.995 | 0.93 | 0.992 | 0.98 | -- | -- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, P.M.; Ferreira, B.F.; Oliveira, N.P.; Nassar, E.J.; Ciuffi, K.J.; Vicente, M.A.; Trujillano, R.; Rives, V.; Gil, A.; Korili, S.; et al. Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Appl. Sci. 2018, 8, 608. https://doi.org/10.3390/app8040608
Pereira PM, Ferreira BF, Oliveira NP, Nassar EJ, Ciuffi KJ, Vicente MA, Trujillano R, Rives V, Gil A, Korili S, et al. Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Applied Sciences. 2018; 8(4):608. https://doi.org/10.3390/app8040608
Chicago/Turabian StylePereira, Priscila Martins, Breno Freitas Ferreira, Nathalia Paula Oliveira, Eduardo José Nassar, Katia Jorge Ciuffi, Miguel Angel Vicente, Raquel Trujillano, Vicente Rives, Antonio Gil, Sophia Korili, and et al. 2018. "Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes" Applied Sciences 8, no. 4: 608. https://doi.org/10.3390/app8040608
APA StylePereira, P. M., Ferreira, B. F., Oliveira, N. P., Nassar, E. J., Ciuffi, K. J., Vicente, M. A., Trujillano, R., Rives, V., Gil, A., Korili, S., & De Faria, E. H. (2018). Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Applied Sciences, 8(4), 608. https://doi.org/10.3390/app8040608