Fusion of Spectra and Texture Data of Hyperspectral Imaging for the Prediction of the Water-Holding Capacity of Fresh Chicken Breast Filets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Imaging System
2.2.1. Configuration and Main Components of the System
2.2.2. Hyperspectral Image Acquisition and Calibration
2.3. Measurement of Water-Holding Capacity (WHC)
2.3.1. Drip Loss
2.3.2. Expressible Fluid
2.3.3. Salt-Induced Water Gain
2.4. Data Analysis
2.4.1. Spectral Data Extraction
2.4.2. Prediction Model
2.4.3. Selection of Key Wavelengths
2.4.4. Extraction of Texture Data
2.4.5. Fusion of Spectra and Texture Data
3. Results and Discussion
3.1. Statistics of Measured WHC Traits
3.2. Prediction of WHC Traits Using Full Spectra
3.3. The Selection and Fusion of Data
3.3.1. Selection of Key Wavelengths
3.3.2. Extraction of Texture Data
3.3.3. Fusion of Spectra and Texture Data
3.4. Prediction of WHC Traits Using Key Wavelengths, Texture, and Their Fusion Data
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alexandrakis, D.; Doweny, G.; Scannell, A.G.M. Rapid Non-destructive Detection of Spoilage of Intact Chicken Breast Muscle Using Near-infrared and Fourier Transform Mid-infrared Spectroscopy and Multivariate Statistics. Food Bioprocess Technol. 2012, 5, 338–347. [Google Scholar] [CrossRef]
- Bowker, B.; Hawkins, S.; Zhuang, H. Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy. Poult. Sci. 2014, 93, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Savage, E.M. Comparisons of sensory descriptive flavor and texture profiles of cooked broiler breast fillets categorized by raw meat color lightness values. Poult. Sci. 2010, 89, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.H.; Sun, D.W.; Han, Z.; Zeng, X.A. Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 52–61. [Google Scholar] [CrossRef]
- He, H.J.; Wu, D.; Sun, D.W. Rapid and non-destructive determination of drip loss and pH distribution in farmed Atlantic salmon (Salmosalar) fillets using visible and near-infrared (Vis/NIR) hyperspectral imaging. Food Chem. 2014, 156, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Barbut, S. Effects of regular and modified starches on cooked pale, soft, and exudative; normal; and dry, firm, and dark breast meat batters. Poult. Sci. 2005, 84, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Roeche, R.; Lavin, P.; Batten, G.; Andres, S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sun, D.W. Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh. Talanta 2013, 116, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Andrés, S.; Giráldez, F.J.; Mantecón, A.R.; Lavín, P. Ability of near infrared reflectance spectroscopy (nirs) to estimate physical parameters of adult steers (oxen) and young cattle meat samples. Meat Sci. 2008, 79, 692–699. [Google Scholar] [CrossRef] [PubMed]
- EIMasry, G.F.; Sun, D.W.; Allen, P. Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Res. Int. 2011, 44, 2624–2633. [Google Scholar] [CrossRef]
- Savenije, B.; Geesink, G.H.; van der Palen, J.G.P.; Hemke, G. Prediction of pork quality using visible/near-infrared reflectance spectroscopy. Meat Sci. 2006, 73, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Savage, E.M. Postmortem aging and freezing and thawing storage enhance ability of early deboned chicken pectoralis major muscle to hold added salt water. Poult. Sci. 2012, 91, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Barbin, D.F.; Kaminishikawahara, C.M.; Soares, A.L.; Mizubuti, I.Y.; Grespan, M.; Shimokomaki, M.; Hirooka, E.Y. Prediction of chicken quality attributes by near infrared spectroscopy. Food Chem. 2015, 168, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Barlocco, N.; Vadell, A.; Ballesteros, A.; Gallieta, G. The use of visible and near infrared reflectance spectroscopy to predict colour on both intact and homogenised pork muscle. LWT Food Sci. Technol. 2003, 36, 195–202. [Google Scholar] [CrossRef]
- Liu, Y.; Lyon, B.G.; Windham, W.R.; Lyon, C.E.; Savage, E.M. Prediction of physical, color and sensory characteristics of broiler breasts by visible/near infrared reflectance spectroscopy. Poult. Sci. 2004, 83, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Monroy, M.; Prasher, S.; Ngadi, M.O.; Wang, N.; Karimi, Y. Pork meat quality classification using Visible/Near-Infrared spectroscopic data. Biosyst. Eng. 2010, 107, 271–276. [Google Scholar] [CrossRef]
- Kapper, C.; Klont, R.E.; Verdonk, J.M.A.J.; Williams, P.C.; Urlings, H.A.P. Prediction of pork quality with near infrared spectroscopy (NIRS) 2. Feasibility and robustness of NIRS measurements under production plant conditions. Meat Sci. 2012, 91, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Geesink, G.H.; Schreutelkamp, F.H.; Frankhuizen, R.; Vedder, H.W.; Faber, N.M.; Kranen, R.W.; Gerritzen, M.A. Prediction of pork quality attributes from near infrared reflectance spectra. Meat Sci. 2003, 65, 661–668. [Google Scholar] [CrossRef]
- Yang, Y.; Zhuang, H.; Yoon, S.C.; Wang, W.; Jiang, H.Z.; Jia, B.B. Rapid Classification of Intact Chicken Breast Fillets by Predicting Principal Component Score of Quality Traits with Visible/Near-Infrared Spectroscopy. Food Chem. 2018, 244, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sun, D.W.; He, Y. Application of long-wave near infrared hyperspectrral imaging for measurement of color distribution in salmon fillet. Innov. Food Sci. Emerg. Technol. 2012, 16, 361–372. [Google Scholar] [CrossRef]
- Jackman, P.; Sun, D.W.; Allen, P. Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends Food Sci. Technol. 2015, 22, 185–197. [Google Scholar] [CrossRef]
- Yang, C.C.; Chao, K.; Kim, M.S. Machine vision system for online inspection of freshly slaughtered chickens. Sens. Instrum. Food Qual. Saf. 2009, 3, 70–80. [Google Scholar] [CrossRef]
- Elmasry, G.; Sun, D.W.; Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. J. Food Eng. 2012, 110, 127–140. [Google Scholar] [CrossRef]
- Barbin, D.F.; Elmasry, G.; Sun, D.W.; Allen, P. Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci. 2012, 90, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Sun, D.W.; Allen, P. Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by nirhyperspectral imaging system. J. Food Eng. 2013, 117, 42–51. [Google Scholar] [CrossRef]
- Barbin, D.F.; Elmasry, G.; Sun, D.W.; Allen, P. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem. 2013, 138, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- He, H.J.; Wu, D.; Sun, D.W. Non-destructive and rapid analysis of moisture distribution in farmed Atlantic salmon (Salmosalar) fillets using visible and near-infrared hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2013, 18, 237–245. [Google Scholar] [CrossRef]
- Xiong, Z.; Sun, D.W.; Pu, H.; Zhu, Z.; Luo, M. Combination of spectra and texture data of hyperspectral imaging for differentiating between free-range and broiler chicken meats. LWT Food Sci. Technol. 2015, 60, 649–655. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, D.W.; Pu, H.; Liu, Y. Integration of spectral and textural data for enhancing hyperspectral prediction of k value in pork meat. LWT Food Sci. Technol. 2015, 72, 322–329. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Hyperspectral imaging for real-time monitoring of water holding capacity in red meat. LWT Food Sci. Technol. 2016, 66, 685–691. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristic of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Yang, Y.; Zhuang, H.; Yoon, S.C.; Wang, W.; Jiang, H.Z.; Jia, B.B.; Li, C.Y. Quality assessment of intact chicken breast fillets using factor analysis with vis/nir spectroscopy. Food Anal. Methods 2017, 1–11. [Google Scholar] [CrossRef]
- Wardlaw, F.B.; McCaskill, L.H.; Acton, J.C. Effect of postmorterm muscle changes on poultry meat loaf properties. J. Food Sci. 1973, 38, 421–423. [Google Scholar] [CrossRef]
- Keskin, M.; Dodd, R.B.; Han, Y.J.; Khalilian, A. Assessing nitrogen content of golf course turfgass clippings using spectral reflectance. Appl. Eng. Agric. 2004, 20, 245–253. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, S.; Zhang, J. Ripeness classification of Shajin apricot using hyperspectral imaging technique. Trans. Chin. Soc. Agric. Eng. 2015, 31, 300–307. [Google Scholar] [CrossRef]
- Zhao, J.; Peng, Y.K. Distribution of beef tenderness grading based on texture features by hyperspectral image analysis. Trans. Chin. Soc. Agric. Eng. 2015, 31, 279–286. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, S.; Yang, Y.; Man, Z.; Zhang, X.; Wu, Y. Application of Hyperspectral Imaging for Detection of Defective Features in Nectarine Fruit. Trans. Chin. Soc. Agric. Eng. 2015, 46, 252–259. [Google Scholar] [CrossRef]
- Liu, D.; Pu, H.; Sun, D.W.; Wang, L.; Zeng, X.A. Combination of spectra and texture data of hyperspectral imaging for prediction of pH in salted meat. Food Chem. 2014, 160, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Khulal, U.; Zhao, J.; Hu, W.; Chen, Q. Intelligent evaluation of total volatile basic nitrogen (TVC-N) content in chicken meat by an improved multiple level data fusion model. Sens. Actuators B. 2017, 238, 337–345. [Google Scholar] [CrossRef]
- Pohl, C.; Van Genderen, J. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 2015, 19, 823–854. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, J.W.; Chen, Q.S.; Zhang, Y.H. Rapid detection of total viable count (TVC) in pork meat by hyperspectral imaging. Food Res. Int. 2013, 54, 821–828. [Google Scholar] [CrossRef]
- Cozzolino, D.; De Mattos, D.; Vaz Martins, D. Visible/near infrared reflectance spectroscopy for predicting composition and tracing system of production of beef muscle. Anim. Sci. 2002, 74, 477–484. [Google Scholar] [CrossRef]
- De Marchi, M.; Penasa, M.; Cecchinato, A.; Bittante, G. The relevance of different near infrared technologies and sample treatments for predicting meat quality traits in commercial beef cuts. Meat Sci. 2013, 93, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Bronselaer, A.; Szymczak, M.; Zadrożny, S.; Tré, G.D. Dynamical order construction in data fusion. Inf. Fusion 2015, 27, 1–18. [Google Scholar] [CrossRef]
WHC Traits | Calibration Set | Prediction Set | ||||
---|---|---|---|---|---|---|
Min | Max | Mean ± SD | Min | Max | Mean ± SD | |
Drip loss | 0.27 | 5.90 | 1.74 ± 1.36 | 0.31 | 8.01 | 1.52 ± 1.59 |
Expressible fluid | 66.65 | 77.74 | 73.29 ± 2.51 | 68.11 | 78.15 | 72.98 ± 2.58 |
Salt-induced water gain | 27.91 | 154.00 | 84.19 ± 24.63 | 34.11 | 146.33 | 84.78 ± 27.82 |
Model | No. | LV | Rc | RMSEc | Rcv | RMSEcv | Rp | RMSEp | |
---|---|---|---|---|---|---|---|---|---|
Drip loss | Full spectra | 198 | 10 | 0.81 | 0.80 | 0.75 | 0.90 | 0.73 | 0.93 |
Key wavelength | 5 | 4 | 0.79 | 0.82 | 0.75 | 0.89 | 0.73 | 0.91 | |
texture | 30 | 5 | 0.65 | 1.03 | 0.53 | 1.16 | 0.50 | 1.18 | |
Fusion | 35 | 8 | 0.89 | 0.61 | 0.82 | 0.76 | 0.80 | 0.80 | |
Expressible fluid | Full spectra | 198 | 10 | 0.60 | 2.02 | 0.49 | 2.21 | 0.52 | 2.19 |
Key wavelength | 5 | 3 | 0.53 | 2.11 | 0.49 | 2.21 | 0.47 | 2.25 | |
texture | 30 | 4 | 0.24 | 2.46 | 0.20 | 2.48 | 0.15 | 2.50 | |
Fusion | 35 | 6 | 0.62 | 2.01 | 0.53 | 2.16 | 0.56 | 2.10 | |
Salt-induced water gain | Full spectra | 198 | 9 | 0.72 | 17.06 | 0.69 | 18.21 | 0.70 | 17.64 |
Key wavelength | 4 | 3 | 0.71 | 17.20 | 0.69 | 18.14 | 0.69 | 18.04 | |
texture | 24 | 4 | 0.07 | 24.36 | 0.00 | 24.99 | 0.07 | 24.30 | |
Fusion | 28 | 6 | 0.69 | 18.20 | 0.67 | 18.36 | 0.68 | 18.16 |
WHC Traits | No. | Key Wavelength | ||||
---|---|---|---|---|---|---|
Drip loss | 5 | 1079 | 1272 | 1414 | 1896 | 2180 |
Expressible fluid | 5 | 1138 | 1272 | 1414 | 1896 | 2110 |
Salt-induce water gain | 4 | 1079 | 1272 | 1414 | 1896 |
Key Wavelength | Texture (Mean ± SD) | |||||
---|---|---|---|---|---|---|
Mean | Homogeneity | Contrast | Entropy | Energy | Correlation | |
1079 | 2.12 | 0.81 | 0.35 | 0.66 | 0.58 | 0.54 |
1138 | 1.55 | 0.81 | 0.37 | 0.63 | 0.59 | 0.57 |
1272 | 1.04 | 0.81 | 0.43 | 0.61 | 0.61 | 0.60 |
1414 | 0.31 | 0.84 | 0.39 | 0.36 | 0.74 | 0.75 |
1896 | 0.28 | 0.84 | 0.34 | 0.36 | 0.74 | 0.74 |
2110 | 0.43 | 0.82 | 0.38 | 0.46 | 0.69 | 0.66 |
2180 | 0.54 | 0.83 | 0.33 | 0.46 | 0.69 | 0.67 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, W.; Zhuang, H.; Yoon, S.-C.; Jiang, H. Fusion of Spectra and Texture Data of Hyperspectral Imaging for the Prediction of the Water-Holding Capacity of Fresh Chicken Breast Filets. Appl. Sci. 2018, 8, 640. https://doi.org/10.3390/app8040640
Yang Y, Wang W, Zhuang H, Yoon S-C, Jiang H. Fusion of Spectra and Texture Data of Hyperspectral Imaging for the Prediction of the Water-Holding Capacity of Fresh Chicken Breast Filets. Applied Sciences. 2018; 8(4):640. https://doi.org/10.3390/app8040640
Chicago/Turabian StyleYang, Yi, Wei Wang, Hong Zhuang, Seung-Chul Yoon, and Hongzhe Jiang. 2018. "Fusion of Spectra and Texture Data of Hyperspectral Imaging for the Prediction of the Water-Holding Capacity of Fresh Chicken Breast Filets" Applied Sciences 8, no. 4: 640. https://doi.org/10.3390/app8040640
APA StyleYang, Y., Wang, W., Zhuang, H., Yoon, S. -C., & Jiang, H. (2018). Fusion of Spectra and Texture Data of Hyperspectral Imaging for the Prediction of the Water-Holding Capacity of Fresh Chicken Breast Filets. Applied Sciences, 8(4), 640. https://doi.org/10.3390/app8040640