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Abstract:



Featured Application


This work can be conjunctly used with the support characteristic curve of circular tunnels to find the optimum time of the installation of the support system in a way to restrict the displacements to a specific value. The approach described in this manuscript facilitates the design of circular tunnels for elasto-plastic, strain-softening rock masses obeying both Mohr–Coulomb and Hoek–Brown strength criteria.




Abstract


The prediction of the support pressure (Pi) and the development of the ground reaction curve (GRC) are crucial elements of the convergence–confinement procedure used to design underground structures. In this paper, two different types of artificial neural networks (ANNs) are used to predict the Pi of circular tunnels in elasto-plastic, strain-softening rock mass. The developed ANNs consider the stress state, the radial displacement of tunnel and the material softening behavior. Among these parameters, strain softening is the parameter of the deterioration of the material’s strength in the plastic zone. The analysis also presents separate solutions for the Mohr–Coulomb and Hoek–Brown strength criteria. In this regard, multi-layer perceptron (MLP) and radial basis function (RBF) ANNs were successfully applied. MLP with the architectures of 15-5-10-1 for the Mohr–Coulomb criteria and 17-5-15-1 for the Hoek–Brown criteria appeared optimum for the prediction of the Pi. On the other hand, the RBF networks with the architectures of 15-5-1 for the Mohr–Coulomb criterion and 17-3-12-1 for the Hoek–Brown criterion were found to be the optimum for the prediction of the Pi.
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1. Introduction


Convergence–confinement is a broadly applied method to design underground structures. In this method, a ground reaction curve (GRC) is applied to evaluate the interaction between the rock mass and the support system near the tunnel’s face at the time of construction [1,2,3]. The classical problem of a circular tunnel constructed in the rock mass medium is illustrated in Figure 1b (according to [4]). This problem uses two well-known rock mass strength criteria: Mohr–Coulomb and Hoek–Brown. These criteria are usually adopted to investigate the behavior of materials. As described in references [4,5,6], the governing equilibrium equation of this problem is as presented in Figure 1d.


Figure 1. Description of: (a) different zones and corresponding strength parameters; (b) a circular tunnel in an elastic-plastic, strain-softening rock mass; (c) corresponding relationships for strength parameters; (d) governing equilibrium equation; (e) schematic view of a typical ground reaction curve (GRC) and parameters (Hoek–Brown case) affecting on the curve.
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In Figure 1, [image: ] is the radial stress, and [image: ] represents the tangential (hoop) stress, while the distance from the center of tunnel is shown using the [image: ] parameter. Thus, compatibility equations are simultaneously used to solve the stress–strain around the tunnel. In this regard, a plastic potential function and associated/non-associated flow rules are applied to find the governing relationship between the radial and tangential plastic strains [1,4,5,7,8,9,10,11,12,13]. The stress–strain around the tunnel is also calculated, considering the strength parameters in different zones (the peak, residual, and softening parameters), as presented in Figure 1a,c, according to reference [4]. As explained in reference [4], using different yield and potential functions, the non-associated flow rule is the modeled and adopted as the flow rule in all the cases. Also, starting from the peak strength parameters, the deterioration of the strength parameters of the material (referred to as the softening behavior of the rock mass around the tunnel) begins and continues. For softening parameter values higher than the critical value, the residual parameters are taken into the considerations. As shown in Figure 1a,c, [image: ] represents each of the strength parameters of the rock mass, and [image: ] and [image: ], respectively, are the softening and the critical softening parameters. In this figure, [image: ] is the far-field in situ rock stress. In addition, Mohr–Coulomb and Hoek–Brown strength criteria are commonly used as two appropriate criteria to correctly evaluate the post-elastic behavior of rock mass. These criteria are, also, broadly applied in the literature for the development of the GRC. Hence, in this paper, available solutions with regard to the described problem are gathered, and rigorous datasets for both Mohr–Coulomb and Hoek–Brown strength criteria are obtained. As presented in the following sections, the collected datasets are fed into the different types of artificial neural networks (ANNs). The main reason of ANN modeling of the tunnels’ support pressure (Pi) is to save time and still obtain high accuracy in the predicted results. Previously, the evolutionary polynomial regression technique (EPR) was used by the authors to predict the Pi and to develop the GRC [4]. Nevertheless, there still exist some considerable prediction errors specially in the case of the Hoek–Brown strength criterion. Thus, we suppose that, in this case, ANNs may be more accurate. In this regard, available datasets should be sorted in the way shown in Figure 1e (a typical dataset for the case of the Hoek–Brown strength criterion). As depicted, each data pair stands for a point in the [image: ] space. [image: ] is the tunnel’s radial convergence and [image: ] represents the corresponding required internal Pi. Each of the described data is a function of some input parameters (the number of input parameters is determined on the basis of the type of the used strength criterion) and presents the Pi based on the all affecting parameters. For instance, in Figure 1e, [image: ] is a function of 17 independent input parameters.



The challenge is to predict the Pi of the internal support system [7,8,9,14]. The commonly known ways of Pi prediction employ different rock mass quality systems (e.g., rock mass rating, RMR; geological strength index, GSI, etc.) [15]. Some of these methods are also based on numerical codes, theoretical calculations, or coupled semi-analytical solutions [1,4,5,7,10,11,12,16,17,18,19,20]. Most of the commercial numerical packages, usually, use different finite element/difference codes [21]. These packages first define the element types, the material properties, and the geometry, together with the boundary and loading conditions. Discrete element packages are, also, used to model a rock medium containing specific joint sets with pre-defined orientations. All the described approaches are used to derive the governing differential equations and to present the solutions of the developed system [5,7,12]. Hence, they first need to be well validated against rigorous, available solutions and case studies. In addition, some of the existing methods have drawbacks (e.g., some of the available numerical solutions do not consider the deterioration of the strength parameters or do not correctly take the plastic straining into consideration [1]). Also, they require an adequate knowledge and background about the fundamentals and the theory of the convergence–confinement method and numerical and mathematical techniques. In addition to requiring an expert for the analysis, it is usually a time-consuming process to obtain the GRC. There are also other complex characteristics in the original problem which can be taken into the account, for instance, the material softening.



Considering the above, there is still a need to develop new methods for the reliable prediction of Pi in the elasto-plastic, strain-softening rock mass. In this regard, in this paper, the applicability of another new intelligent method of ANN modeling to predict the Pi of circular tunnels constructed in rock masses with different qualities is investigated.



The remainder of the paper is organized as follows. Section 2 presents the description of the research problems with background information, data acquisition, and the principles of different types of ANNs. Section 3 is the performance evaluation and compares the performance of ANNs with that of the previously proposed EPR models. Section 4, summarizes the results of the analyses.




2. Methodology


ANNs are broadly applied in engineering [22,23,24,25,26,27,28,29]. Also, over the last decades, ANNs have appeared as efficient meta-modelling methods applicable to a wide range of sciences, including material science and structural engineering [30,31,32]. An important characteristic of ANNs is that they can be used to build soft sensors, i.e., models with the ability to estimate critical quantities without having to measure them [30]. In particular, such alternative models are built after a training process with only a few available data, selected in a previous phase, to forecast the parameters. This considerably reduces the time and money needed for the experiments. One of the applicable fields of ANNs described in the literature is the prediction of the mechanical properties of concrete materials [33,34]. One of the main benefit of ANNs is that there is no need of any prior knowledge about the nature of the problem [35]. This makes ANNs applicable for a fast and reliable calculation of the Pi by practitioners who are not expert in numerical modeling and programming. In this paper, two different types of ANNs, namely, the multi-layer perceptron (MLP) and the radial basis function (RBF), are applied to predict the Pi.



Data Acquisition


A dataset was compiled from input parameters for the Mohr–Coulomb and the Hoek–Brown criteria.



The datasets for the Mohr–Coulomb criteria were from reference [8]. A total of 168 independent input and output parameters and their range of variation are presented in Table 1. Although the datasets are those adopted from reference [8], the presented ANN models have the following superiority: When a new dataset is available, ANN helps to have a prediction based on the relationships they have found between previously used input and output parameters.


Table 1. Input and output parameters and their range of variation used in the prediction of the Pi (Mohr–Coulomb case).





	Parameter
	Range of Variation
	Standard Deviation
	Coefficient of Variation (%)





	[image: ]
	21.4–64.9
	17.48
	34.45



	[image: ]
	15.1–33
	6.91
	26.20



	[image: ]
	23–162
	60.09
	60.49



	[image: ]
	26–26.7
	0.33
	1.27



	[image: ]
	1.1–24
	10.57
	92.47



	[image: ]
	0.25–0.3
	0.02
	8.27



	[image: ]
	0.34–3.7
	1.55
	83.51



	[image: ]
	24.81–57.8
	14.26
	33.24



	[image: ]
	0.27–0.96
	0.31
	51.67



	[image: ]
	15.69–51
	15.42
	42.51



	[image: ]
	10–20
	4.47
	27.61



	[image: ]
	0–14
	6.14
	90.30



	[image: ]
	10.4–26
	7.27
	41.89



	[image: ]
	0.0465–0.1394
	0.037
	43.43



	[image: ]
	8.86–1263.69
	307.86
	147.24



	[image: ]
	0–2
	0.55
	71.55







[image: ]: peak geological strength index, [image: ]: residual geological strength index, [image: ]: uni-axial compressive strength, [image: ]: unit weight, [image: ]: Young’s modulus, [image: ]: Poisson’s ratio, [image: ] peak cohesion, [image: ] peak friction angle, [image: ] residual cohesion, [image: ] residual friction angle, [image: ]: mi constant, [image: ] dilation angle, [image: ] in-situ rock stress, [image: ] critical softening parameter, [image: ] radial displacement, [image: ] support pressure.








It should be noted that, in this table, the unit of [image: ] is mm, and the remaining parameters follow the units presented in the nomenclature.



Similar to the Mohr–Coulomb criteria, the dataset for the Hoek–Brown criteria was collected from the cases studied in references [5,6,9,36] and [14,37]. In total, 547 datasets were applied. Table 2 shows all the studied input and output parameters together with their range of variation. Differently from Table 1, in Table 2, the unit of [image: ] is m.


Table 2. Input and output parameters and their range of variation used in the prediction of the Pi (Hoek–Brown case).





	Parameter
	Range of Variation
	Standard Deviation
	Coefficient of Variation (%)





	[image: ]
	3–5.35
	0.95
	26.78



	[image: ]
	25–100
	29.52
	41.34



	[image: ]
	10–100
	35.89
	67.07



	[image: ]
	27.6–75
	22.83
	42.59



	[image: ]
	1.38–36.51
	9.03
	112.80



	[image: ]
	0.25
	0
	0



	[image: ]
	0.5–4.09
	0.94
	57.06



	[image: ]
	0.0002–0.0622
	0.016
	203.39



	[image: ]
	0.5
	0
	0



	[image: ]
	0.1–1.173
	0.29
	41.75



	[image: ]
	0–0.002
	0.00077
	107.25



	[image: ]
	0.5–0.6
	0.03
	5.99



	[image: ]
	0–30
	9.38
	84.71



	[image: ]
	0–20
	5.50
	94.45



	[image: ]
	3.31–30
	6.54
	43.53



	[image: ]
	0.004742–100
	34.66
	216.12



	[image: ]
	0–0.282765
	0.045
	150.29



	[image: ]
	0–29.4
	5.63
	107.80







[image: ] radius of tunnel, [image: ]: peak geological strength index, [image: ]: residual geological strength index, [image: ]: uni-axial compressive strength, [image: ]: unit weight, [image: ]: Young’s modulus, [image: ]: Poisson’s ratio, [image: ] peak m constant, [image: ] peak s constant, [image: ] peak a constant, [image: ] residual m constant, [image: ] residual s constant, [image: ] residual a constant, [image: ] peak dilation angle, [image: ] residual dilation angle, [image: ] in-situ rock stress, [image: ] critical softening parameter, [image: ] radial displacement, [image: ] support pressure.








The multi-layer perceptron (MLP) ANN is still used by researchers in engineering [38]. The transfer function applied in this study is the TANSIG transfer function, according to the following formula:


[image: ]



(1)




where [image: ] is the weighted sum of the inputs for a neuron [39].



The radial basis function (RBF) ANNs are also popular in engineering. In RBF-ANN, by increasing the Euclidean distance between the input vector and its center, the output attained using the activation function will tend to zero. The width of RBF controls the decreasing rate of the output. Equation (2) shows the Gaussian basis function:


[image: ]



(2)









3. Performance Evaluation


This section reports the evaluation of the performance of ANNs. It was conducted on the basis of the commonly known coefficient of determination ([image: ]), root-mean-square error ([image: ]), and mean absolute error ([image: ]) [22,24,27,28,40,41,42,43,44,45,46,47].



3.1. The Mohr–Coulomb Criterion


To evaluate the ANNs’ performances, ANNs with different architectures and neurons were built. To do this, 70% of the total data fed into an ANN was used as the training dataset. The other remaining 30% was divided into two datasets, with 15% of the data used for cross-validation and 15% for testing. Then, the ANNs showing the best predictions (in terms of maximum [image: ] and minimum [image: ] and [image: ] values) were selected. As shown in Table 3, the 15-5-10-1 and 15-15-1 networks were, respectively, the best MLP-ANN and RBF-ANN in the prediction of Pi for the Mohr–Coulomb strength criterion. In this case, the overall performance of MLP-ANN was better than that of the RBF-ANN.


Table 3. Performance of different multi-layer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs) in the prediction of the Pi for the testing data series (Mohr–Coulomb case).





	
Architecture

	
ANN Type




	
MLP-ANN

	
RBF-ANN




	
R2 (%)

	
RMSE (MPa)

	
MAE (MPa)

	
R2 (%)

	
RMSE (MPa)

	
MAE (MPa)






	
15-3-12-1

	
94.47

	
0.126617

	
0.09375

	
79.42

	
0.22383

	
0.1494




	
15-3-15-1

	
93.61

	
0.136705

	
0.100808

	
96.51

	
0.09361

	
0.06803




	
15-5-1

	
92.17

	
0.163929

	
0.102924

	
65.12

	
0.346439

	
0.256144




	
15-5-10-1

	
99.48

	
0.03883

	
0.02825

	
77.20

	
0.3193

	
0.2607




	
15-5-15-1

	
91.98

	
0.185252

	
0.128403

	
69.26

	
0.320201

	
0.180665




	
15-10-1

	
92.31

	
0.153122

	
0.110948

	
88.89

	
0.177232

	
0.142425




	
15-10-5-1

	
98.63

	
0.066325

	
0.042416

	
93.37

	
0.17276

	
0.124671




	
15-12-3-1

	
95.99

	
0.118647

	
0.06867

	
63.24

	
0.427169

	
0.340091




	
15-15-1

	
98.22

	
0.075068

	
0.058276

	
99.21

	
0.050576

	
0.040918




	
15-15-3-1

	
93.72

	
0.164167

	
0.107004

	
87.43

	
0.182931

	
0.140225




	
15-15-5-1

	
99.41

	
0.0459213

	
0.028215

	
81.90

	
0.255812

	
0.190918








RMSE: root mean squared error, MAE: mean absolute error.








Figure 2 (as a sample representative of the RBF-ANN) depicts the topology of the best RBF-ANN developed for the Mohr–Coulomb case (15-15-1 architecture with [image: ], [image: ], and [image: ]). Figure 3a,b show the predicted Pi versus the calculated Pi.


Figure 2. The topology of the optimum RBF-ANN (15-15-1) developed for the prediction of the Pi (Mohr–Coulomb criterion).



[image: Applsci 08 00841 g002]





Figure 3. (a) ANN-based predicted Pi versus calculated Pi; (b) differences between ANN-based predicted Pi and calculated Pi for the best MLP-ANN (15-5-10-1) applied to the testing data series for the Mohr–Coulomb criterion.



[image: Applsci 08 00841 g003]






Similar to Figure 3a,b, Figure 4a shows a high correlation between the calculated and the ANN-based prediction for the RBF-ANN in the case of Mohr–Coulomb strength criterion. Figure 4b, which better describes the occurred errors in the predictions for each sample, is another demonstration of the high capability of the proposed ANNs.


Figure 4. (a) ANN-based predicted Pi versus calculated Pi; (b) differences between ANN-based predicted Pi and calculated Pi for the best RBF-ANN (15-15-1) for the Mohr–Coulomb criterion.



[image: Applsci 08 00841 g004]







3.2. The Hoek–Brown Criterion


Similar to the Mohr–Coulomb case, the evaluation of the performance of ANNs was carried out on the 15% of the whole data series. By investigating different one- and two-layered neural ANNs, the 15-5-15-1 and 17-3-12-1 architectures were found to be the most efficient ANNs in the prediction of the Pi of tunnels in the Hoek–­Brown case. As indicated in Table 4, the 17-5-15-1 MLP-ANN had a coefficient of determination of 99.91%, an RMSE of 0.179285 MPa, and a MAE of 0.12516 MPa. On the other hand, the most accurate RBF-ANN had an [image: ], an [image: ], and a [image: ]. Although the developed ANNs for the Mohr–Coulomb case are more accurate compared to the Hoek–Brown case in terms of occurred errors, the ANNs suggested for the Hoek–Brown modeling were still useful and efficient. Also, it was shown that that MLP-ANN are more rigorous in the prediction of the Pi of circular tunnels excavated in the elasto-plastic, strain-softening, Hoek–Brown rock mass.


Table 4. Performance of different MLP and RBF ANNs in the prediction of the Pi for the testing data series (Hoek–Brown case).





	
Architecture

	
ANN Type




	
MLP-ANN

	
RBF-ANN




	
R2 (%)

	
RMSE (MPa)

	
MAE (MPa)

	
R2 (%)

	
RMSE (MPa)

	
MAE (MPa)






	
17-3-12-1

	
99.72

	
0.268343

	
0.204655

	
93.18

	
1.558064

	
1.078099




	
17-3-15-1

	
93.37

	
1.36379

	
0.965679

	
84.51

	
2.515467

	
1.703367




	
17-5-1

	
99.63

	
0.317273

	
0.233694

	
78.35

	
2.570293

	
1.65224




	
17-5-10-1

	
90.37

	
1.565927

	
1.24049

	
89.05

	
2.165716

	
1.561432




	
17-5-15-1

	
99.91

	
0.179285

	
0.12516

	
87.72

	
1.810275

	
1.213031




	
17-10-1

	
99.67

	
0.300537

	
0.225826

	
77.64

	
2.497819

	
1.639146




	
17-10-5-1

	
99.87

	
0.252432

	
0.164251

	
80.62

	
2.627902

	
1.729953




	
17-12-3-1

	
99.80

	
0.239714

	
0.167833

	
88.72

	
2.06676

	
1.310764




	
17-15-1

	
99.65

	
0.322873

	
0.233356

	
90.51

	
1.877567

	
1.26464




	
17-15-3-1

	
99.85

	
0.20853

	
0.125573

	
77.22

	
3.019557

	
2.056784




	
17-15-5-1

	
99.72

	
0.307093

	
0.162638

	
72.15

	
3.060725

	
2.036629










The architecture and the topology of the most efficient MLP-ANN proposed for the modeling of the Pi in the Hoek–Brown case 17-5-15-1 is shown in Figure 5.


Figure 5. The topology of the optimum MLP-ANN (17-5-15-1) developed for the prediction of the Pi (Hoek–Brown criterion).



[image: Applsci 08 00841 g005]






For the best constructed MLP-ANN, the predicted and calculated Pi, along with the relative differences of predictions and calculations for each independent exemplars are, respectively, shown in Figure 6. As clearly illustrated, the predictions are similar to the exact values of the calculations. This result, which was generally observed also for the RBF networks (Figure 7), confirms that both MLP and RBF ANNs are highly applicable to the determination of the Pi.


Figure 6. (a) Neural predicted Pi versus calculated Pi; (b) differences between neural predicted Pi and calculated Pi for the best MLP-ANN (17-5-15-1) applied to the testing data series for the Hoek–Brown criterion.



[image: Applsci 08 00841 g006]





Figure 7. (a) Neural predicted Pi versus calculated Pi; (b) differences between neural predicted Pi and calculated Pi for the best RBF-ANN (17-3-12-1) applied to the testing data series for the Hoek–Brown criterion.



[image: Applsci 08 00841 g007a][image: Applsci 08 00841 g007b]







3.3. Comparison with Previously Obtained Models


In this section, the performance of the developed ANNs is compared to that of a previous artificial intelligence (AI) technique developed by other authors [4], i.e., the evolutionary polynomial regression (EPR), for the prediction of Pi. In this regard, the testing data series used in each of the ANNs was fed into the predictive EPR models, and the Pi were approximated. The results of the comparison between the EPR and the ANN predictions are presented. On the basis of the results, all the proposed MLP and RBF ANNs predicted the pressures more accurately than the corresponding EPR models. As an example, Figure 8 compares the results obtained from an EPR model to those predicted by the 15-5-10-1 MLP-ANN for the case of Mohr–Coulomb criterion and by the 17-5-15-1 MLP-ANN for the case of Hoek–Brown strength criterion. As shown, all the performance’s evaluation criteria presented higher accuracy in the ANN-based predictions than in the EPR model.


Figure 8. Comparison between the performance of (a) 15-5-10-1 MLP-ANN and evolutionary polynomial regression technique (EPR) model (Mohr–Coulomb case); (b) 17-5-15-1 MLP-ANN and EPR model (Hoek–Brown case) in the prediction of the Pi.



[image: Applsci 08 00841 g008]








4. Conclusions and Perspectives


The available classical methods require a broad understanding of the governing mechanisms of the convergence–confinement method and programming skills to derive the GRC for the elasto-plastic, strain-softening rock mass. Considering the proven ability of AI techniques in the prediction of the Pi of circular tunnels [4], the applicability of another intelligent method is investigated in this study to obtain even more accurate predictions. To do this, the performance of two different ANN types, namely, MLP and RBF, were evaluated and compared. The described methods were applied to the GRC development in both the Mohr–Coulomb and the Hoek–Brown rock mass cases.



In this regard, available solutions with regard to the problem were collected, and a total of 168 and 547 datasets were compiled for the Mohr–Coulomb and the Hoek–Brown cases, respectively. Elastic rock mass properties, peak and residual strength parameters, softening and geometrical parameters, in situ stress, and the convergence of tunnel were employed as the input parameters to predict the internal Pi.



After building various one- and two-layer neural networks with the TANSIG transfer function and assessing the values of the coefficient of determination, root-mean-square error, and mean absolute error, the following conclusions were obtained:

	
The ANN-based method appeared to be a highly performant method, applicable to the the development of GRC and the estimation of the Pi of circular tunnels;



	
The 15-5-10-1 ([image: ], [image: ], and [image: ]) and 15-15-1 ([image: ], [image: ], and [image: ] MPa) networks were reported as the best MLP and RBF networks for the Mohr–Coulomb case, respectively;



	
For the Hoek–Brown case, the 17-5-15-1 MLP ([image: ], [image: ], and [image: ]) and the 17-3-12-1 RBF ([image: ], [image: ], and [image: ]) architectures were the most accurate proposed neural networks;



	
It was shown that the overall performance of MLP networks was better than that of the RBF networks for both Mohr–Coulomb and Hoek–Brown cases;



	
The results obtained from the comparison between neural network and EPR models proved the superiority of ANN to the EPR in the prediction of Pi;



	
The proposed networks can be effectively applied by design engineers and practitioners to accurately, time-effectively, and economically obtain the GRC using a new set of data is available;



	
The proposed networks can be successfully applied in conjunction with the support characteristic curve to calculate the proper time of the installation of the tunnels’ supports;



	
Regarding the successful application of ANNs to the problem and as suggestion for future works, the applicability of other soft computing techniques (e.g., genetic programming, ant or bee colony, etc.) can be investigated;



	
As another perspective of the current research, stress–strain and time-dependent behavior of rock masses can be studied on the basis of the implementation of viscose constitutive models;



	
The formation of damaged zones around the tunnel’s surface (which is the subject of new work by the authors) and new EPR and ANN methods for the prediction of pressures are other interesting perspectives suggested by the present paper.
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Nomenclature












	Symbol
	Description
	Unit
	Symbol
	Description
	Unit



	[image: ]
	Residual a constant
	[-]
	[image: ]
	Weight between neurons
	[-]



	[image: ]
	Peak a constant
	[-]
	[image: ]
	Input
	[-]



	[image: ]
	Calculated value
	[-]
	[image: ]
	Gaussian basis function
	[-]



	[image: ]
	Peak cohesion
	MPa
	[image: ]
	Unit weight
	kN/m3



	[image: ]
	Residual cohesion
	MPa
	[image: ]
	Softening parameter
	[-]



	[image: ]
	Weighted sum of the inputs
	[-]
	[image: ]
	Critical softening parameter
	[-]



	[image: ]
	Young’s modulus
	GPa
	[image: ]
	Poisson’s ratio
	[-]



	[image: ]
	Peak geological strength index
	[-]
	[image: ]
	Center of the Gaussian basis function
	[-]



	[image: ]
	Residual geological strength index
	[-]
	[image: ]
	In-situ stress
	MPa



	[image: ]
	Mean absolute error
	[-]
	[image: ]
	Uni-axial compressive strength
	MPa



	[image: ]
	mi constant
	[-]
	[image: ]
	Spread of the Gaussian basis function
	[-]



	[image: ]
	Peak m constant
	[-]
	[image: ]
	Radial stress
	MPa



	[image: ]
	Residual m constant
	[-]
	[image: ]
	Tangential stress
	MPa



	[image: ]
	Number of datasets
	[-]
	[image: ]
	Peak friction angle
	°



	[image: ]
	Predicted value
	[-]
	[image: ]
	Residual friction angle
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