A Mercury Intrusion Porosimetry Method for Methane Diffusivity and Permeability Evaluation in Coals: A Comparative Analysis
Abstract
:1. Introduction
2. Coal Samples and Experiments
2.1. Samples Selection and Basic Coal Analyses
2.2. MIP Experiment
2.3. CH4 Diffusivity Measurement
2.4. Permeability Measurement
3. The Derivation of CH4 Diffusivity and Permeability by MIP
3.1. CH4 Diffusivity
3.2. Permeability
4. Results and Discussion
4.1. Repeatability of MIP Tests
4.2. Coal Basic Information and MIP Results
4.3. CH4 Diffusivity and Permeability by Measurements and MIP Data
4.4. Insights into the Relationships among Coal Porosity, Gas Diffusivity and Permeability
5. Conclusions
- (1)
- The calculated effective diffusion coefficient (De) is slightly higher than measured results due to the existence of CH4 adsorption in pore surface. The theoretically deduced permeability (k) is similar to the experimental result. This supports the validity of the derivation method of determining effective diffusion coefficient and permeability by mercury porosimetry.
- (2)
- The coal composition and the maximum vitrinitere flectance (Ro,m) exhibits no significant correlation with effective diffusion coefficient (De) and gas diffusivity (D′) due to the limited coal samples. However, diffusivity, permeability and porosity present an obviously positive correlation.
- (3)
- A distinct power function relationship exists between gas diffusivity and porosity for coals and other rocks. The deduced cementation factors (m values) for coals show relatively high m values (from 2.03 to 2.46), which tends to exhibit a larger m value for coals compared with other rocks due to the unconsolidated nature of coals.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pillalamarry, M.; Harpalani, S.; Liu, S. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs. Int. J. Coal Geol. 2011, 86, 342–348. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Hu, Q.; Liang, H. Gas diffusivity in porous media: Determination by mercury intrusion porosimetry and correlation to porosity and permeability. J. Porous Media 2013, 16, 607–617. [Google Scholar] [CrossRef]
- Gillham, R.W.; Robin, M.L.J.; Dytynyshyn, D.J.; Johnson, H.M. Diffusion of nonreactive and reactive solutes through fine-grained barrier materials. Can. Geotech. J. 1984, 21, 541. [Google Scholar] [CrossRef]
- Firouzi, M.; Rupp, E.C.; Liu, C.W.; Wilcox, J. Molecular simulation and experimental characterization of the nanoporous structures of coal and gas shale. Int. J. Coal Geol. 2014, 121, 123–128. [Google Scholar] [CrossRef]
- Naveen, P.; Asif, M.; Ojha, K.; Panigrahi, D.C.; Vuthaluru, H. Sorption kinetics of CH4 and CO2 diffusion in coal: Theoretical and experimental study. Energy Fuels 2017, 31, 6825–6837. [Google Scholar] [CrossRef]
- Rahimi, M.; Singh, J.K.; Müllerplathe, F. CO2 adsorption on charged carbon nanotube arrays: A possible functional material for electric swing adsorption. J. Phys. Chem. C 2015, 119, 15232–15239. [Google Scholar] [CrossRef]
- Laxminarayana, C.; Crosdale, P.J. Controls on methane sorption capacity of Indian coals. AAPG Bull. 2002, 86, 201–212. [Google Scholar]
- Prinz, D.; Pyckhout-Hintzen, W.; Littke, R. Development of the meso- and macroporous structure of coals with rank as analysed with small angle neutron scattering and adsorption experiments. Fuel 2004, 83, 547–556. [Google Scholar] [CrossRef]
- Staib, G.; Sakurovs, R.; Gray, E.M.A. A pressure and concentration dependence of CO2 diffusion in two Australian bituminous coals. Int. J. Coal Geol. 2013, 116, 106–116. [Google Scholar] [CrossRef]
- Pone, J.D.N.; Halleck, P.M.; Mathews, J.P. Sorption capacity and sorption kinetic measurements of CO2 and CH4 in confined and unconfined bituminous coal. Energy Fuels 2009, 23, 4688–4695. [Google Scholar] [CrossRef]
- Mastalerz, M.; Goodman, A.; Chirdon, D. Coal lithotypes before, during, and after exposure to CO2: Insights from direct Fourier transform infrared investigation. Energy Fuels 2012, 26, 3586–3591. [Google Scholar] [CrossRef]
- Crosdale, P.J.; Beamish, B.B. Methane sorption studies at South Bulli(NSW) and Central(QLD) collieries using a high pressure microbalance. In Proceeding 28th Newcastle Symposium on Advances in the Study of the Sydney Basin Department Geology; The University of Newcastle: Newcastle, Australia, 1994; pp. 118–125. [Google Scholar]
- Crosdale, P.J.; Beamish, B.B. Methane diffusivity at South Bulli(NSW) and Central(QLD) Collieries in relation to coal maceral composition. In International Symposium-Cum-Workshop on Management and Control of High Gas Emission and Outbursts in Underground Coal Mines; Lama, R.D., Ed.; National Organising Committee of the Symposium: Wollongong, Australia, 1995; pp. 363–367. [Google Scholar]
- Pan, Z.J.; Connell, L.D.; Camilleri, M.; Connelly, L. Effects of matrix moisture on gas diffusion and flow in coal. Fuel 2010, 89, 3207–3217. [Google Scholar] [CrossRef]
- Li, Y.B.; Xue, S.; Wang, J.F.; Wang, Y.C.; Xie, J. Gas diffusion in a cylindrical coal sample – a general solution, approximation and error analyses. Int. J. Min. Sci. Technol. 2014, 24, 69–73. [Google Scholar] [CrossRef]
- Smith, D.M.; Williams, F.L. Diffusion models for gas production from coals: Application to methane content determination. Fuel 1984, 63, 251–255. [Google Scholar] [CrossRef]
- Mu, D.Q.; Liu, Z.S.; Huang, C. Determination of the effective diffusion coefficient in porous media including Knudsen effects. Microfluid. Nanofluid. 2008, 4, 257–260. [Google Scholar] [CrossRef]
- Cai, Y.D.; Liu, D.M.; Pan, Z.J.; Yao, Y.B.; Li, J.Q.; Qiu, Y.K. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 2013, 103, 258–268. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.F.; Song, X.X. Influence of fluid exposure on surface chemistry and pore-fracture morphology of various rank coals: Implications for methane recovery and CO2 storage. Energy Fuels 2017, 31, 12552–12569. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, D.; Yao, Y.; Cai, Y.; Chen, L. Dynamic permeability change during coalbed methane production and its controlling factors. J. Nat. Gas Sci. Eng. 2015, 25, 335–346. [Google Scholar] [CrossRef]
- Zhang, L.H.; Liang, B.; Liu, Q.G.; Xiong, Y. A new deliverability equation considering slippage effect for gas reservoirs with low permeability and low pressure. Nat. Gas Ind. 2009, 29, 76–78. [Google Scholar]
- Anez, L.; Calas-Etienne, S.; Primera, J.; Woignier, T. Gas and liquid permeability in nano composites gels: Comparison of knudsen and klinkenberg correction factors. Microporous Mesoporous Mater. 2014, 200, 79–85. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Quantitative Prediction of Permeability in Porous rock. Phys. Rev. B 1986, 34, 8179–8181. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Prediction of rock electrical conductivity from mercury injection measurements. J. Geophys. Res. 1987, 92, 599–607. [Google Scholar] [CrossRef]
- Ataka, Y.; Kato, S.; Zhu, Q. Evaluation of effective diffusion coefficient in various building material and absorbents by mercury intrusion porosimetry. J. Environ. Eng. 2005, 7, 15–21. [Google Scholar] [CrossRef]
- Labani, M.M.; Rezaee, R.; Saeedi, A.; Al Hinai, A. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, Western Australia. J. Pet. Sci. Eng. 2013, 112, 7–16. [Google Scholar] [CrossRef]
- Liu, P.; Yuan, Z.; Li, K. An improved capillary pressure model using fractal geometry for coal rock. J. Pet. Sci. Eng. 2016, 145, 473–481. [Google Scholar] [CrossRef]
- Lan, Y.; Davudov, D.; Moghanloo, R.G. Interplay between permeability and compressibility in shale samples. J. Pet. Sci. Eng. 2017, 159, 644–653. [Google Scholar] [CrossRef]
- Yu, S.; Bo, J.; Pei, S.; Wu, J.H. Matrix compression and multifractal characterization for tectonically deformed coals by Hg porosimetry. Fuel 2018, 211, 661–675. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. USA 1921, 7, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Ellison, A.H.; Klemm, R.B.; Schwartz, A.M.; Grub, L.S.; Petrash, D.A. Contact angles of mercury on various surfaces and the effect of temperature. J. Chem. Eng. Data 1967, 12, 607–609. [Google Scholar] [CrossRef]
- Cai, Y.D.; Pan, Z.J.; Liu, D.M.; Zheng, G.Q.; Tang, S.H.; Connell, L.D.; Yao, Y.B.; Zhou, Y.F. Effects of pressure and temperature on gas diffusion and flow for primary and enhanced coalbed methane recovery. Energy Explor. Exploit. 2014, 32, 601–619. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: London, UK, 1975. [Google Scholar]
- Cai, Y.D.; Liu, D.M.; Yao, Y.B.; Li, J.Q.; Qiu, Y.K. Geological controls on prediction of coalbed methane of no. 3 coal seam in southern qinshui basin, north china. Int. J. Coal Geol. 2011, 88, 101–112. [Google Scholar] [CrossRef]
- Boving, T.B.; Grathwohl, P. Tracer diffusion coefficients in sedimentary rocks: Correlation to porosity and hydraulic conductivity. J. Contam. Hydrol. 2001, 53, 85–100. [Google Scholar] [CrossRef]
- Grathwohl, P. Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics; Kluwer Academic Publishing: Boston, MA, USA, 1998. [Google Scholar]
- Moore, C.A.; Alzayadi, A. Theoretical Considerations of Movements of Gases around Sanitary Landfills; Report to U.S.; EPA: Washington, DC, USA, 1975.
- Carniglia, S.C. Construction of the tortuosity factor from porosimetry. J. Catal. 1986, 102, 401–418. [Google Scholar] [CrossRef]
- Evans, R.B.; Watson, G.M.; Mason, E.A. Gaseous diffusion in porous media at uniform pressure. J. Chem. Phys. 1961, 35, 2076–2083. [Google Scholar] [CrossRef]
- Pollard, W.G.; Present, R.D. On gaseous self-diffusion in long capillary tubes. Phys. Rev. 1948, 73, 752–774. [Google Scholar] [CrossRef]
- Fuller, E.N.; Schettler, P.D.; Giddings, J.C. New method for prediction of binary gas-phase diffusion coefficients. J. Ind. Eng. Chem. 1966, 58, 18–27. [Google Scholar] [CrossRef]
- Cunningham, R.E.; Williams, R.J.J. Diffusion in Gases and Porous Media; Plenum: Boston, MA, USA, 1980. [Google Scholar]
- Kast, W.; Hohenthanner, C.R. Mass transfer within the gasphase of porous media. Int. J. Heat Mass Transf. 2000, 43, 807–823. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Li, W.; Zhang, D.F.; Wang, H.H.; Jiang, W.P.; Zhu, L.; Tao, J.; Huo, P.L.; Zhang, J. Influence of high-pressure CO2, exposure on adsorption kinetics of methane and CO2, on coals. J. Nat. Gas Sci. Eng. 2016, 34, 811–822. [Google Scholar] [CrossRef]
- Cai, Y.D.; Liu, D.M.; Pan, Z.J.; Che, Y.; Liu, Z.H. Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis. Transp. Porous Media 2016, 111, 479–497. [Google Scholar] [CrossRef]
- Chilingar, G.V.; Main, R.; Sinnokrot, A. Relationship between porosity, permeability, and surface areas of sediments. J. Sediment. Petrol. 1963, 33, 759–765. [Google Scholar]
- Ma, S.; Morrow, N.R. Relationships between porosity and permeability for porous rocks. Int. Symp. SCA 1996, 2, 8–10. [Google Scholar]
- Tiab, D.; Donaldson, E.C. Petrophysics—Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
Sample No. | Ro,m (%) | Coal Rank | Porosity (%) | da (nm) | Proximate Analysis (%) | Petrographic Analysis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | V | I | E | M | |||||
HDG 6# | 0.68 | high volatile bituminous | 14.7 | 13.80 | 6.38 | 11.30 | 3.50 | 67.30 | 72.30 | 11.00 | 16.20 | 0.50 |
BLG 6# | 0.68 | high volatile bituminous | 6.4 | 8.70 | 8.63 | 5.38 | 4.10 | 68.06 | 69.90 | 18.30 | 11.60 | 0.20 |
HYC 4# | 0.65 | high volatile bituminous | 12.3 | 10.60 | 5.78 | 15.82 | 3.94 | 62.20 | 78.00 | 12.20 | 7.00 | 2.80 |
LHJ 4# | 0.46 | Liginites | 6.15 | 7.10 | 6.46 | 6.09 | 39.11 | 48.34 | 78.80 | 5.40 | 12.10 | 3.80 |
LL-HJG 5# | 1.34 | Medium volatile bituminous | 8.55 | 10.62 | 0.74 | 10.27 | 27.94 | 61.05 | 60.68 | 25.02 | 0 | 14.3 |
LL-DP 10# | 1.68 | low-volatile bituminous | 8.87 | 10.25 | 0.63 | 11.10 | 21.30 | 66.97 | 59.69 | 34.61 | 0 | 5.70 |
LL-SL 5# | 1.19 | Medium volatile bituminous | 10.83 | 26.12 | 0.71 | 12.04 | 26.77 | 60.48 | 57.81 | 32.19 | 2.50 | 7.50 |
LL-XM 5# | 1.44 | Medium volatile bituminous | 12.16 | 10.53 | 0.57 | 9.90 | 26.80 | 62.73 | 40.03 | 56.67 | 0 | 3.30 |
TY-DY 6# | 2.56 | semi-anthracite coal | 8.55 | 11.32 | 0.62 | 38.08 | 35.94 | 25.36 | 49.51 | 7.99 | 0 | 42.50 |
GJ-DQ 4# | 2.05 | semi-anthracite coal | 13.59 | 12.53 | 0.71 | 11.57 | 48.97 | 38.75 | 76.97 | 16.33 | 0 | 6.70 |
YQ-WK 15# | 2.54 | semi-anthracite coal | 11.36 | 15.22 | 1.43 | 11.06 | 12.46 | 75.05 | 77.98 | 15.52 | 0 | 6.50 |
YQ-YK 15# | 2.79 | anthracite coal | 18.12 | 24.60 | 1.20 | 13.30 | 12.49 | 73.01 | 83.55 | 12.15 | 0 | 4.30 |
Sample No. | Ro,m (%) | Porosity (%) | da (nm) | Permeability (mD) | De (m2/s) | D′ | m |
---|---|---|---|---|---|---|---|
HDG 6# | 0.68 | 14.7 | 13.80 | 3.24220 | 1.94 × 10−7 | 0.009 | 2.46 |
BLG 6# | 0.68 | 6.4 | 8.70 | 0.34166 | 5.34 × 10−8 | 0.002 | 2.18 |
HYC 4# | 0.65 | 12.3 | 10.60 | 2.07678 | 1.27 × 10−7 | 0.006 | 2.45 |
LHJ 4# | 0.46 | 6.15 | 7.10 | 0.08250 | 4.25 × 10−8 | 0.002 | 2.23 |
LL-HJG 5# | 1.34 | 8.55 | 10.62 | 0.23323 | 8.64 × 10−8 | 0.004 | 2.25 |
LL-DP 10# | 1.68 | 8.87 | 10.25 | 0.15094 | 8.70 × 10−8 | 0.004 | 2.28 |
LL-SL 5# | 1.19 | 10.83 | 26.12 | 0.23348 | 2.38 × 10−7 | 0.011 | 2.03 |
LL-XM 5# | 1.44 | 12.16 | 10.53 | 0.95305 | 1.24 × 10−7 | 0.006 | 2.45 |
TY-DY 6# | 2.56 | 8.55 | 11.32 | 0.05775 | 9.15 × 10−8 | 0.004 | 2.22 |
GJ-DQ 4# | 2.05 | 13.59 | 12.53 | 0.01065 | 1.64 × 10−7 | 0.008 | 2.45 |
YQ-WK 15# | 2.54 | 11.36 | 15.22 | 0.24810 | 1.60 × 10−7 | 0.007 | 2.25 |
YQ-YK 15# | 2.79 | 18.12 | 24.60 | 3.28539 | 3.95 × 10−7 | 0.018 | 2.34 |
Sample No. | MIP Test | Porosity (%) | da (nm) | ||
---|---|---|---|---|---|
Measured Value | Avg ± Standard Deviation | Measured Value | Avg ± Standard Deviation | ||
HDG 6# | 1 | 15.62 | 14.7 ± 0.92 | 14.57 | 13.8 ± 0.77 |
2 | 13.88 | 13.12 | |||
3 | 14.6 | 13.71 | |||
LL-DP 10# | 1 | 8.56 | 8.87 ± 0.31 | 10.12 | 10.25 ± 0.15 |
2 | 9.06 | 10.4 | |||
3 | 8.99 | 10.23 | |||
YQ-WK 15# | 1 | 11.59 | 11.36 ± 0.32 | 15.41 | 15.22 ± 0.27 |
2 | 11.45 | 15.3 | |||
3 | 11.04 | 14.95 |
Sample No. | Ro,m (%) | Porosity (%) | k(m) (mD) | P (MPa) | De(m) (m2/s) | R2 | D′(m) |
---|---|---|---|---|---|---|---|
HDG 6# | 0.68 | 14.7 | 3.68000 | 0.5204 | 1.23 × 10−7 | 0.79 | 0.006 |
BLG 6# | 0.68 | 6.4 | 0.89200 | 0.5873 | 3.67 × 10−8 | 0.93 | 0.002 |
HYC 4# | 0.65 | 12.3 | 1.58000 | 0.6419 | 1.09 × 10−7 | 0.91 | 0.005 |
LHJ 4# | 0.46 | 6.15 | 0.26000 | 0.7234 | 3.91 × 10−8 | 0.87 | 0.002 |
LL-HJG 5# | 1.34 | 8.55 | 0.17079 | 0.3609 | 7.12 × 10−8 | 0.93 | 0.003 |
LL-DP 10# | 1.68 | 8.87 | 0.38560 | 0.5523 | 7.08 × 10−8 | 0.98 | 0.003 |
LL-SL 5# | 1.19 | 10.83 | 0.19354 | 0.4673 | 2.59 × 10−7 | 0.82 | 0.012 |
LL-XM 5# | 1.44 | 12.16 | 0.73922 | 0.5587 | 1.02 × 10−7 | 0.93 | 0.005 |
TY-DY 6# | 2.56 | 8.55 | 0.11247 | 0.6073 | 4.77 × 10−8 | 0.89 | 0.002 |
GJ-DQ 4# | 2.05 | 13.59 | 0.01210 | 0.4529 | 1.31 × 10−7 | 0.95 | 0.006 |
YQ-WK 15# | 2.54 | 11.36 | 0.18686 | 0.5017 | 1.23 × 10−7 | 0.86 | 0.006 |
YQ-YK 15# | 2.79 | 18.12 | 4.02222 | 0.5643 | 3.10 × 10−7 | 0.91 | 0.014 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Cai, Y.; Liu, D.; Zhou, Y. A Mercury Intrusion Porosimetry Method for Methane Diffusivity and Permeability Evaluation in Coals: A Comparative Analysis. Appl. Sci. 2018, 8, 860. https://doi.org/10.3390/app8060860
Fang X, Cai Y, Liu D, Zhou Y. A Mercury Intrusion Porosimetry Method for Methane Diffusivity and Permeability Evaluation in Coals: A Comparative Analysis. Applied Sciences. 2018; 8(6):860. https://doi.org/10.3390/app8060860
Chicago/Turabian StyleFang, Xianglong, Yidong Cai, Dameng Liu, and Yingfang Zhou. 2018. "A Mercury Intrusion Porosimetry Method for Methane Diffusivity and Permeability Evaluation in Coals: A Comparative Analysis" Applied Sciences 8, no. 6: 860. https://doi.org/10.3390/app8060860
APA StyleFang, X., Cai, Y., Liu, D., & Zhou, Y. (2018). A Mercury Intrusion Porosimetry Method for Methane Diffusivity and Permeability Evaluation in Coals: A Comparative Analysis. Applied Sciences, 8(6), 860. https://doi.org/10.3390/app8060860