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Abstract: In this paper, the problem of coordinated control of multiple hovercrafts is addressed.
For a single hovercraft, by using the backstepping technique, a nonlinear controller is proposed,
where Radial Basis Function Neural Networks (RBFNNs) are adopted to approximate unmodeled
terms. Despite the application of RBFNNs, integral terms are introduced, improving the robustness
of controller. As a result, global uniformly ultimate boundedness is achieved. Regarding the
communication topology, two different directed graphs are chosen under the assumption that there
are no delays when they communicate with each other. In order to testify the performance of the
proposed strategy, simulation results are presented, showing that vehicles can move forward in
a specific formation pattern and RBFNNs are able to approximate unmodeled terms.
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1. Introduction

In recent years, Wireless Sensor Networks (WSNs) have attracted growing interests from
researchers, because they have merits, compared with traditional networking solutions, such as
reliability, flexibility, and an ease of deployment, that enable their use in a wide range of varied
application scenarios [1]. They can be applied to track moving objects, to monitor special areas so as to
trigger alarm systems when some dangerous signals are detected, etc. As the eyes and ears of the IoT,
WSNs can work as bridges to build connections between the real-world and the digital-world. In light
of this promising application scenario, this paper mainly focuses on a case study of mobile WSNs,
where a group of hovercrafts equipped with specific sensors are chosen as test platforms. The objective
is to enable them to move around and interact with the physical environment [2] and thus execute
a mission of mapping, searching, and monitoring in a specific area.

Coordinated control of a fleet of hovercrafts is challenging, especially when we take into account
their complex dynamic models. Until now, for a single surface vehicle, many research results have
been reported. For example, a linear fuzzy-PID controller was proposed in [3]. Compared with
the ordinary PID controller, the proposed controller therein performs better in term of improving
settling time and reducing overshoot of the control signal. However, their works just consider the
kinematic models of the vehicle without considering the dynamic models, which is not realistic in real
operation scenarios. Another weakness of the linear controller is that it usually achieves local stability,
e.g., [4], where velocity and position controllers were developed based on a linearized system, which is
controllable only when the angular velocity is nonzero. Considering the limitations of linear controllers,
in [5,6], nonlinear controllers for underactuated ships were designed, and global asymptotic stability
is achieved. In [7], a nonlinear Lyapunov-based tracking controller was presented, and it was able to
exponentially stabilize the position tracking error to a neighborhood of the origin that can be made
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arbitrarily small. A method of incorporating multiobjective controller selection into a closed-loop
control system was presented in [8], where the authors designed three controllers so as to capture
three “behaviors” representative of typical maneuvers that would be performed in a port environment.
However, none of the works mentioned above consider disturbances and unmodeled terms of the
vehicle. In order to ensure that the vehicle is robust to external disturbances, in [9], two controllers
with application to a surface vehicle (named Qboat) and a hovercraft were proposed, and the authors
designed disturbance estimators to estimate external constant disturbances. The disadvantage of this
control strategy is that they did not consider unmodeled terms involved in the dynamic model of
the vehicle. Considering this constraint, an estimator was developed in [10], where a fuzzy system
was used to approximate unknown kinetics. A fault tolerant tracking controller was designed in [11]
for a surface vessel. In addition, a self-constructing adaptive robust fuzzy neural control scheme for
tracking surface vessels was proposed in [12], where simulation results were shown to testify the
efficiency of the proposed method therein.

With respect to coordinated control strategy for multiple vehicles, many authors have presented
their own approaches. In [13], a cooperative path following methodology was proposed under the
assumption that the communication among a group of fully-actuated surface vehicles is undirected and
continuous. A coordinated path following with a switching communication topology was designed
in [14], while a null-space-based behavioral control technique was proposed in [15,16]. In [17–19],
a leader–follower control strategy was presented. In [20], an adaptive coordinate tracking control
problem for a fleet of nonholonomic chained systems was discussed under the assumption that the
desired trajectory is available only to part of the neighbors. The reader is also referred to [21] for more
results about multi-vehicle control approaches.

Inspired and motived by those works mentioned above, in this paper, we first develop a controller
that is able to drive a single hovercraft to the neighborhood of a desired smooth path, where a Radial
Basis Function Neural Network (RBFNN) is applied to approximate unmodeled dynamic terms of
the vehicle while integral error terms are introduced, thus improving the robust performance of the
controller. It is relevant to point out that all elements of the estimation weight matrix are always
bounded through the use of a smooth projection function. We also derive a consensus strategy to
make sure the desire paths progress in a specific formation. In order to validate the effectiveness of the
proposed strategy, simulation results are presented.

The rest of the paper is organized as follows: Section 2 presents robot modeling, graph theory,
RBFNNs, and coordinated control problem. A single controller is proposed in Section 3, while Section 4
devises a consensus strategy. Simulation results are given in Section 5 to validate the performance of
the proposed approach herein. At last, Section 6 summarizes our work and describes the future work.

2. Problem Formulation

2.1. Vehicle Modeling

We first define a global coordinate frame {U} and a body frame {B} as shown in Figure 1.
The kinematic equations of the vehicle are written as

ṗ = Rv (1)

ψ̇ = ω (2)

where ṗ = [x, y]T denotes the coordinates of its center of mass, v = [u, v]T represents linear velocity, ψ

is the orientation of the vehicle, and its angular velocity is represented by ω. Moreover, the rotation
matrix R(ψ) is given by

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
. (3)
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Its dynamic equations are

v̇ = −S(ω)v + m−1Tn1 + ∆v (4)

ω̇ = −J−1ω + J−1τ + ∆ω (5)

where S(ω) is a skew symmetric matrix, given by

S(ω) =

[
0 −ω

ω 0

]
. (6)

n1 = [1, 0]T , m and J denote the car’s mass and rotational inertial, respectively. The force used
to make the car move forward is denoted by T, and τ represents the torque that can steer the vehicle.
Unmodeled dynamic terms are represented by ∆v and ∆ω. For more details about modeling surface
vehicles, the reader is referred to [22].
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Figure 1. Simple Model of The Vehicle.

2.2. Graph Theory

In this paper, G = G(V , E) denotes a directed graph that can be used to model the interaction
communication topology among mobile robots. The graph G consists of a finite set V = {1, 2, ..., n} of n
vehicles and a finite set E of m pairs of vertices Vij = {i,j} ∈ E . If Vij belongs to E , then i and j are said
to be adjacent. A graph from i to j is a sequence of distinct vertices starting with i and ending with j
such that consecutive vertices are adjacent. In this case, Vij also represents a directional communication
link from agent i to agent j. The adjacency matrix of the graph G is denoted by A = [aij] ∈ Rn×n,
which is a square matrix where aij equals to one if {j, i} ∈ E and zero otherwise. Moreover, the
Laplacian matrix L is defined as L = D −A, where the degree matrix D = [dij] ∈ Rn×n of the graph
G is a diagonal matrix and dij equals the number of adjacent vertices of vertex i.

2.3. Radial Basis Function Neural Networks

Radial Basis Function Neural Networks (RBFNNs) can be used to approximate the unmodeled
nonlinear dynamic terms due to their universal approximation capability [23]. For any unknown
smooth function f (x) : Rn → Rm can be approximated by RBFNNs in the following form, given by

f̂ (x) = WTσ(x) (7)
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where x ∈ Ω ⊂ Rn, Ω is a compact set. The adjustable weight matrix with n neurons is denoted by
W ∈ Rn×m under the assumption that it is a bounded matrix, that is

W ≤Wmax. (8)

It is important to point out that here when we say matrix x ∈ Rm×n is smaller than or equal to
xmax ∈ Rm×n, we mean all elements of x are smaller than or equal to their corresponding elements
of xmax ∈ Rm×n. Moreover, σ(x) is the basis function vector and σi(xi) = exp(−(xi − µi)

T(xi −
µi)/c2

i ), i = 1, 2, . . . , n denotes its component, µi is the center of the receptive field, and ci represents
the width of the Gaussian function. Moreover, it is relevant to point out that, in order to achieve better
approximate results, we should make the neuron number n large enough and choose the parameters
properly. Going back to the smooth function f (x) mentioned above, there is an ideal weight Wd
such that

f (x) = WT
d σ(x) + ε(x) (9)

where ε(x) denotes the approximation error and satisfies ||ε(x)|| ≤ εmax, where εmax is a positive
number. It is noted that Wd is an “artificial” quantity for the purpose of mathematic analysis, in the
process of controller design, we need to estimate it [24]. A simple RBFNNs is given by Figure 2.

x1
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w11

w12

w21

w22

w31

w32
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Figure 2. Simple example of RBFNNs.

2.4. Problem Statement

Now we can state our problem: Through designing a controller for each robot and proposing
consensus strategies for their corresponding desired paths, we want a group of mobile robots to move
forward in a specific formation pattern; that is,

(1) for an individual vehicle, ||p− pd|| → δ, where δ is an arbitrarily small constant value;
(2) for a group of n desired paths, γi − γj → 0 and γ̇i − γ̇d → 0, where agent j is the neighbor of

agent i, γ̇d represents the desired value of γ̇i, which is a known value.

3. Controller Design

Following the works of [7] and [9], we define the position error in the body frame as

e1 = RT(p− pd) (10)



Appl. Sci. 2018, 8, 862 5 of 16

where R = R(ψ) denotes the rotation matrix. The time derivative of e1 yields

ė1 = −S(ω)e1 + v−RTṗd. (11)

Define our first Lyapunov function as

V1 =
1
2

eT
1 e1 (12)

and compute its time derivative, we have

V̇1 = −α1 + eT
1 (v−RTṗd + k1e1) (13)

where α1 = k1eT
1 e1 is positive definite, and k1 denotes gain, which is a positive value.

In order to continue to use the backstepping technique, a second error term is defined as

e2 = v−RTṗd + k1e1 − η, (14)

and its integral term

e2n =
∫ t

0
e2dt (15)

where η = [η1, η2]
T , η1 6= 0 is a constant vector. Define our second Lyapunov function as

V2 = V1 +
1
2

eT
2 e2 +

1
2

eT
2ne2n, (16)

and its time derivative yields

V̇2 = −α2 + eT
1 η+ eT

2

(
− S(ω)η+ m−1Tn1 −RTp̈d + k1(e2 − k1e1 + η)

+ k2e2 + ∆v + e2n

) (17)

where α2 = k1eT
1 e1 + k2eTe2, which is positive definite, and k2 is a positive number. It is relevant to

point out that e2n is introduced to eliminate the external slow-varying disturbances that act on the
dynamic of the linear velocity v. Moreover, notice that we do not know ∆v, thereby we use RBFNNs
mentioned before to approximate it, given by

∆v = WT
d1σ(x1) + ε1(x1) (18)

where x1 = [1, vT ]T ∈ R3. Moreover, notice that

−S(ω)η+ m−1Tn1 = NI (19)

where

N =

[
m−1 η2

0 −η1

]
. I = [T, ω]T .

Rewrite Equation (17), and we have

V̇2 = −α2 + eT
1 η+ eT

2

(
NI + β + WT

d1σ(x1)
)
+ eT

2 ε1(x1) (20)

where β = −RTp̈d + k1(e2 − k1e1 + η) + k2e2 + e2n.
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Now, we can define our third Lyapunov function as

V3 = V2 +
1
2

tr
(

W̃
T
d1Γ−1

1 W̃d1

)
(21)

where W̃d1 = Wd − Ŵd1 denotes the estimation error, Γ1 = diag(λ11, andλ12) is a matrix, where λ11

and λ12 are positive values. Compute the time derivative of V3, and one obtains

V̇3 = −α2 + eT
1 η+ eT

2 ε1(x1) + eT
2

(
NI + β + Ŵ

T
d1σ(x1)

)
+ eT

2 W̃
T
d1σ(x1)− tr

(
W̃

T
d1Γ−1

1
˙̂Wd1

)
.

(22)

Therefore, we choose our desired input Id as

Id = −N−1
(

β + Ŵ
T
d1σ(x1)

)
, (23)

and thereby our first controller T is chosen as

T = nT
1 Id. (24)

Correspondingly, the desired angular velocity is

ωd = nT
2 Id (25)

where n2 = [0, 1]T .
Notice that, if the updated law for ˙̂Wd1 is set as

˙̂Wd1 = Γ1σ(x1)eT
2 , (26)

we cannot ensure that it is bounded by Wmax. To solve this problem, a projection operator, which is
Lipschitz continuous [25], is applied in our case, which is given by

proj(ρ, ˆ̀) =


ρ if Θ( ˆ̀) ≤ 0
ρ if Θ( ˆ̀) ≥ 0 and Θ ˆ̀( ˆ̀)ρ ≤ 0
(1−Θ( ˆ̀))ρ if Θ( ˆ̀) > 0 and Θ ˆ̀( ˆ̀)ρ > 0

(27)

where

Θ( ˆ̀) =
ˆ̀2 − `2

max
ε2 + 2ε`2

max
, Θ ˆ̀( ˆ̀) =

∂Θ( ˆ̀)
∂ ˆ̀ , (28)

with the following condition: if ˙̀̂ = proj(ρ, ˆ̀) and ˆ̀(t0) ≤ `max, then

(1) ˆ̀ ≤ `max + ε, ∀ 0 ≤ t < ∞;
(2) proj(ρ, ˆ̀) is Lipschitz continuous;
(3) |proj(ρ, ˆ̀)| ≤ |ρ|;
(4) ˜̀proj(ρ, ˆ̀) ≥ ˜̀ρ, where ˜̀ = `− ˆ̀ .

Therefore, to make sure all elements of Ŵd1 are upper-bounded, the update law for ˙̂Wd1 is finally
set as

˙̂Wd1 = Γ1proj
(

σ(x1)e2, Ŵd1

)
. (29)
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To keep using the backstepping technique, we define a new error term

e3 = ω−ωd, (30)

and its corresponding integral term

e3n =
∫ t

0
e3dt. (31)

Then, we define a new Lyapunov function as

V4 = V3 +
1
2

eT
3 e3 +

1
2

eT
3ne3n. (32)

Compute its time derivatives, substitute Equation (29) into Equation (24), and combine the 4th
property of projector ( ˜̀proj(ρ, ˆ̀) ≥ ˜̀ρ), and one obtains

V̇4 ≤ −α3 + eT
1 η+ eT

2 ε1(x1) + eT
3

(
nT

2 NTe2 −
1
J

τ + nT
2 N−1(β̇ + ˙̂Wd1σ(x1)

+ Ŵd1σ̇(x1)) + k3e3 + e3n + ∆ω

) (33)

where α3 = α2 + k3eT
3 e3 ≥ 0, k3 > 0. However, it is noted that both β̇ and σ̇(x1) contain unmodeled

term ∆v, so we need to separate ∆v out from β̇ and σ̇(x1). After that, we can use RBFNNs to estimate
it. Similar to ∆ω, we also need to approximate it. This is given by,

∆v = WT
d2σ(x2) + ε2(x2) (34)

∆ω = WT
d3σ(x3) + ε3(x3) (35)

where x2 = [1, vT ]T ∈ R3 and x3 = [1, vT , ω]T ∈ R4.
Now we define our last Lyapunov function as

V5 = V4 +
1
2

tr
(

W̃
T
d2Γ−1

2 W̃d2

)
+

1
2

tr
(

W̃
T
d3Γ−1

3 W̃d3

)
(36)

where W̃d2 = Wd − Ŵd2, W̃d3 = Wd − Ŵd3, Γ2 = diag(λ21,λ22), and Γ3 = diag(λ31, λ32) are positive
definite gain matrices. Then, we compute the time derivative of V5 as

V̇5 ≤ −α3 + eT
1 η+ eT

2 ε1(x1) + eT
3 (n

T
2 M)ε2(x2) + eT

3 ε3(x3) + eT
3

(
nT

2 NTe2 + k3e3

− τ

J
− nT

2
ˆ̇Id − nT

2 MŴ
T
2dσ(x2) + Ŵ

T
3dσ(x3) + e3n

)
+ eT

3 nT
2 MW̃

T
2dσ(x2)

+ eT
3 W̃

T
3 σ(x3)− tr

(
W̃

T
d2Γ−1

2
˙̂Wd2

)
− tr

(
W̃

T
d3Γ−1

3
˙̂Wd3

) (37)

where

ˆ̇Id = ˆ̇β + ˙̂Wd1σ(x1) + Ŵd1 ˆ̇σ(x1) (38)

and

M = N−1Ŵ
T
d1G + (k1 + k2)N−1 (39)

with G = [0T
2×1, n1σ′(nT

1 v), andn1σ′(nT
2 v)]T . Then, we define our second control law, torque, as

τ = J(−nT
2

ˆ̇Id + nT
2 NTe2 + k3e3 + nT

2 MŴ
T
d2σ(x2) + Ŵ

T
d3σ(x3) + e3n), (40)
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and estimate laws for ˙̂Wd2 and ˙̂Wd3

˙̂Wd2 = Γ2proj
(

σ(x2)(nT
2 M)eT

3 Ŵd2

)
, (41)

˙̂Wd3 = Γ3proj
(

σ(x3)eT
3 , Ŵd3

)
. (42)

Substitute Equation (40)–(42) into Equation (37), one obtains

V̇5 ≤− α3 + eT
1 η+ eT

2 ε1(x1) + eT
3 (n

T
2 M)ε2(x2) + eT

3 ε3(x3). (43)

where α3 = k1eT
1 e1 + k2eT

2 e2 + k3eT
3 e3.

3.1. Stability Analysis

Theorem 1. For a single mobile robot, by applying control laws, Equations (24) and (40), and updated laws,
Equation (29), Equation (41), and Equation (42), for any large initial position, the robot will converge to the
neighborhood of its corresponding desired path pd(γ), whose partial derivatives with respect to γ are all bounded.
As a consequence, global uniformly ultimately boundedness is achieved.

Proof. Let’s go back to Equation (43). Rewrite it, and we obtain

V̇5 ≤ −XTKX + XTρ

≤ |X|T
(
− kmin|X|+ |ρ|

)
(44)

where X = [eT
1 , eT

2 , eT
3 ], kmin is the smallest eigenvalue of K = diag(k1, k2, k3), and ρ =

[ηT , ε1(x1)
T , (nT

2 M)ε2(x2), ε3(x3)]
T , which is bounded due to the fact that ||εi(x)|| ≤ εmax, and the

upper bound of ρ is

ρmax = [ηT , ε1 max(x1)
T , (nT

2 M)ε2 max(x2), ε3 max(x3)]
T . (45)

Thereby, we can obtain that V̇5 is negative for ||X|| ≥ ||ρmax/kmin||, which can be made as small
as possible by tuning the value of kmin. As a result, the system is uniformly ultimate bounded, global
uniformly ultimate boundedness is achieved.

4. Consensus Strategy

Building upon the work of [14], the proposed solution is given by

γ̇i = vd1− a1 ∑
j∈Ni

(γi − γj) + zi (46)

żi = −a2zi + a3 ∑
j∈Ni

(γi − γj) (47)

where a1, a2, anda3 are positive numbers, and vd denotes the desired value of γ̇i. It is relevant to point
out that zi can be viewed as an auxiliary state that helps n paths to reach consensus.

4.1. Stability Analysis

Theorem 2. For a group of n desired paths pd(γi) (i = 1, 2, . . . , n), by applying Equations (46) and (47),
γi − γj and γ̇i − γ̇d converge to zero.

Proof. We first choose Laplacian matrix L, and define the coordinate error as

Γe = LΛ (48)
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where Λ = [γi]n×1. Rewrite Equations (46) and (47), and one obtains

Γ̇e = −A1LΓe + LZ, (49)

Ż = −A2Z + A3Γe, (50)

where Ai = diag(ai), (i = 1, 2,3) is a positive definite matrix. Define x = [Γe, Z]T , and rewrite
Equations (49) and (50), and we have

ẋ = Ax (51)

where

A =

[
−A1L L

A3 −A2

]
. (52)

In order to ensure that Equation (51) is stable, we need to guarantee that all the eigenvalues of A
have negative or zero real parts and all the Jordan blocks corresponding to eigenvalues with zero real
parts are 1× 1. We consider n agents, where

L =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −1 1

∣∣∣∣∣∣∣∣∣∣∣∣
n×n

. (53)

For the sake of saving space, here we just present the eigenvalues of A directly, they are λ1, λ2, λ3,
and λ4, and their corresponding multiplicities are 1, 1, n− 1, and n− 1, with

λ1 = 0 (54)

λ2 = −a2 (55)

λ3 = −(a1 + a2)/2 +
√

a2
1 + a2

2 − 2a1a2 + 4a3/2 (56)

λ4 = −(a1 + a2)/2−
√

a2
1 + a2

2 − 2a1a2 + 4a3/2. (57)

Choosing a1, a2, anda3 properly, we can guarantee that λ2, λ3, and λ4 are negative-definite.
Moreover, we also have that the Jordan block corresponding to λ1 is 1 × 1. As a consequence,
Equation (51) is stable [26].

To summarize, a fleet of n desired paths can progress in a specific formation, while each individual
mobile robot converges to the neighborhood of its corresponding desired path. As a result, all those
robots can move forward in a specific formation.

5. Simulation Results

In this section, we present simulation results with two different communication graphs including
a cascade-directed communication graph (CDCG) and a parallel-directed communication graph
(PDCG). Figures 3 and 4 show the sketches of the control blocks in Simulink/Matlab.



Appl. Sci. 2018, 8, 862 10 of 16

1st Vehicle

Consensus 
Strategy

�i

�̇i

�̈i

�
(3)
i

�1

�̇1

�̈1

�
(3)
1

ith Vehicle

1st, 2nd, … , ith

Figure 3. Coordinated control block in Simulink/Matlab.

T

Model

Controller

Desired	Path

p
R
V

p
R

V

!

!

�i

�̇i

�̈i

�
(3)
i

⌧

pdi
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Figure 4. Control block in Simulink/Matlab for the i-th vehicle.

5.1. The Cascade-Directed Communication Graph

The CDCG used in this study is shown in Figure 5, where agent 1 can be viewed as the leader.
Its corresponding Laplacian matrix L1 is

L1 =


0 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 . (58)

The desired paths are defined as

pdi(γi) = Ri

[
cos(γi)

sin(γi)

]
(m) (59)

where Ri = 6− i, (i = 1, 2, . . . ,5) denotes the radius of the circle, and unmodeled terms ∆V and
∆ω are denoted by [0.1u2 + 0.01uv, 0.01uv + 0.1v2]T and 0.01uv + 0.05uω + 0.01vω, respectively.
The parameters used herein are as follows: m = 0.6, J = 0.1, ci = 2, a1 = 1, a2 = 2, a3 = 1, k1 = 6,
k2 = 3, k3 = 2, Γ1 = diag(0.6, 0.6), Γ2 = diag(0.01, 0.01), Γ3 = diag(0.022, 0.022), and η = [0.2, 0]T .
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2

3

4

1 5

Figure 5. A cascade-directed communication graph (CDCG).

Figure 6a shows the actual trajectory of the mobile robots, and we can see that they move forward
in a line formation. Moreover, Figures 7a,b display the convergence of ||e1i|| and ||e2i||, respectively,
showing that all of them converge to the neighborhood of zero. The consensus performances are shown
in Figures 8a,b, showing that γij = γi − γj converges to zero, where agent j is the neighbor of agent
i. Moreover, we can also see that γ̇i converges to the desired value γ̇d = 0.5. It is important to point
out that, in this work, we chosen agent 1 as our leader, and this satisfies γ̇1 = γ̇d. The approximate
performance of RBFNNs can be found in Figure 6b, where the blue lines denote the real values of ∆v

and ∆ω , while the red lines represent their estimates ∆̂v and ∆̂ω . Thus, both estimates converge to their
corresponding real values.
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Figure 6. Norm of the position errors and the performance of unmodeled term approximation (CDCG).
(a) Norm of the position errors. (b) Performance of unmodeled term approximation.
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Figure 7. Norm of the position and linear velocity errors (CDCG). (a) Norm of the position errors. (b)
Norm of the linear velocity errors.
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Figure 8. Performance of γi − γj and γ̇i − γ̇d, where γj is the neighbor of γi (CDCG). (a) Performance
of γi − γj. (b) Performance of γ̇i − γ̇d.

5.2. Parallel Communication Graph

The parallel communication graph is depicted in Figure 9.

2

1

3

4 5

Figure 9. A parallel-directed communication graph (PDCG).

In this case, the Laplacian matrix L2 is

L2 =


−1 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 0 0

 . (60)

Moreover, it is noted that the graph presented in Figure 9 can be viewed as the combination of
two cascade-directed graphs, where 1→ 2→ 4 and 1→ 3→ 5 and where agent 1 is the leader whose
state is known. The desired paths are as follows:

(1) 1st vehicle:

pd1(γ1) = R1

[
cos(γ1)

sin(γ1)

]
(m) (61)

(2) 2nd vehicle:

pd2(γ2) = R2

[
cos(γ2 − π/24)
sin(γ2)− π/24

]
(m) (62)
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(3) 3rd vehicle:

pd3(γ3) = R3

[
cos(γ3 − π/12)
sin(γ3 − π/12)

]
(m) (63)

(4) 4th vehicle:

pd4(γ4) = R4

[
cos(γ4 − π/24)
sin(γ4 − π/24)

]
(m) (64)

(5) 5th vehicle:

pd5(γ5) = R5

[
cos(γ5 − π/12)
sin(γ5 − π/12)

]
(m) (65)

where R1 = 3, R2 = 4, R3 = 2, R4 = 5, and R5 = 1. Figure 10a displays the actual paths of the robots.
From Figure 11a,b, we can obtain that the norm of position errors and linear velocity errors converge
to a ball centered at the origin. Moreover, Figure 12a,b show the performance of the consensus strategy
introduced herein.
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Figure 10. Norm of the position errors and performance of unmodeled term approximation (PDCG).
(a) Norm of the position errors. (b) Performance of unmodeled term approximation.
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Figure 11. Norm of the position and linear velocity errors (PDCG). (a) Norm of the position errors. (b)
Norm of the linear velocity errors.
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Figure 12. Performance of γi − γj and γ̇i − γ̇d, where γj is the neighbor of γi (PDCG). (a) Performance
of γi − γj. (b) Performance of γ̇i − γ̇d.

It is interesting to remark that, by using the proposed consensus strategy—Equations (46) and (47)—a
consensus is researched if and only if the directed graph has a directed spanning tree [21]. However, in our
case, the root must be the leader whose states are known beforehand.

6. Conclusions

In this paper, we mainly focus on designing coordinated control algorithms for multiple agents,
where a group of underactuated hovercrafts were chosen as test platforms. In order to testify the
efficiency of the devised control strategy, we implemented it by using Simulink/Matlab. Moreover, it is
necessary to point out that agents can also be mobile robots, unmanned air vehicles, etc. For a single
vehicle, we used RBFNNs to approximate unmodeled terms and introduce integral terms, which can
improve the robustness of the controller. For multiple vehicles, we consider directed topology under
the assumption that the communication among vehicles are continuous.

With respect to our future works, we plan to (i) use deep neural networks to estimate unmodeled
terms so as to enhance the performance of approximation, (ii) build a mathematical model for external
disturbance, such as winds, waves, or currents, (iii) take into account time-delays when we develop
communication strategy for vehicles, and (iv) propose collision–avoidance algorithms so that we can
ensure the operation is safe.
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