Orthogonal Simplex Chebyshev-Laguerre Cubature Kalman Filter Applied in Nonlinear Estimation Systems
Abstract
:1. Introduction
2. System Model and Bayesian Filter
2.1. System Model
2.2. Bayesian Gaussian Recursive Filter
3. Orthogonal Simplex Chebyshev-Laguerre Cubature Kalman Filter
3.1. Orthogonal Spherical Simplex Rule
3.2. High Order Chebyshev-Laguerre Quadrature Rule
3.3. Orthogonal Spherical Simplex Chebyshev-Laguerre Quadrature Rule
4. Simulations
4.1. The Highly Dimensional Nonlinear Estimation Problem
4.2. Bearings-Only Tracking Problem
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
x | vector of the state |
xk|k−1 | x of the prediction |
xk|k | x of the update at time index k |
z | vector of the measurement |
zk|k−1 | z of the prediction |
zk | the measurement at time index k |
vk−1 | vector of the process noise |
ek | vector of the measurement noise |
Qk−1 | covariance of the process noise |
Rk | covariance of the measurement noise |
P | covariance of the state |
Pk|k−1 | P of the prediction |
xk | P of the update at time index k |
Pzz,k|k−1 | innovation covariance |
xxz,k|k−1 | cross-covariance |
Dk−1 | history of input-measurement pairs up to k − 1 |
Kk | Kalman gain |
y | direction vector |
r | radius |
αj | j-th sample point of the regular simplex |
γ | a set of the orthogonal transformation points |
γi | i-th orthogonal transformation point |
B | orthogonal matrix |
Bi | orthogonal sample point |
weight associated with k-th quadrature point | |
weight associated with αj | |
nx | dimension of state space |
nz | dimension of measurement space |
nc | order of the Chebyshev-Laguerre polynomials |
References
- Sobhani, B.; Paolini, E.; Giorgetti, A.; Mazzotti, M.; Chiani, M. Target tracking for uwb multistatic radar sensor networks. IEEE J. Sel. Top. Signal Process. 2017, 8, 125–136. [Google Scholar] [CrossRef]
- Toledo-Moreo, R.; Colodro-Conde, C.; Toledo-Moreo, J. A multiple-model particle filter fusion algorithm for GNSS/DR slide error detection and compensation. Appl. Sci. 2018, 8, 445. [Google Scholar] [CrossRef]
- Buzzi, S.; Poor, H.V. A multipass approach to joint data and channel estimation in long-code cdma systems. IEEE Trans. Wirel. Commun. 2004, 3, 612–626. [Google Scholar] [CrossRef]
- Meshkati, F.; Guo, D.; Poor, H.V.; Schwartz, S.C. A unified approach to power control in large energy-constrained cdms systems. IEEE Trans. Wirel. Commun. 2008, 7, 1208–1216. [Google Scholar] [CrossRef]
- Tsiropoulou, E.E.; Katsinis, G.K.; Papavassiliou, S. Utility-based power control via convex pricing for the uplink in CDMA wireless networks. In Proceedings of the 2010 European Wireless Conference, Lucca, Italy, 12–15 April 2010; pp. 200–206. [Google Scholar]
- Tsiropoulou, E.E.; Kapoukakis, A.; Papavassiliou, S. Energy-efficient subcarrier allocation in SC-FDMA wireless networks based on multilateral model of bargaining. In Proceedings of the IFIP Networking Conference, Brooklyn, NY, USA, 22–24 May 2013; pp. 1–9. [Google Scholar]
- Ito, K.; Xiong, K. Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 2000, 45, 910–927. [Google Scholar] [CrossRef]
- Havangi, R. Robust evolutionary particle filter. ISA Trans. 2015, 57, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Petetin, Y.; Morelande, M.; Desbouvries, F. Marginalized particle PHD filters for multiple object Bayesian filtering. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1182–1196. [Google Scholar] [CrossRef]
- Martino, L.; Read, J.; Elvira, V.; Louzada, F. Cooperative parallel particle filters for online model selection and applications to urban mobility. Digit. Signal Process. 2017, 60, 172–185. [Google Scholar] [CrossRef]
- Dan, C.; Miguez, J. Nested particle filters for online parameter estimation in discrete-time state-space markov models. arXiv, 2013; arXiv:1308.1883. [Google Scholar]
- Emzir, M.F.; Woolley, M.J.; Petersen, I.R. A quantum extended kalman filter. J. Phys. A-Math. Theor. 2017, 50, 225301. [Google Scholar] [CrossRef]
- Lin, S.-G. Assisted adaptive extended kalman filter for low-cost single-frequency GPS/SBAS kinematic positioning. GPS Solut. 2015, 19, 215–223. [Google Scholar] [CrossRef]
- N∅rgaard, M.; Poulsen, N.K.; Ravn, O. New developments in state estimation for nonlinear systems. Automatica 2000, 36, 1627–1638. [Google Scholar] [CrossRef]
- Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 93, 401–422. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R. The unscented kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar]
- Julier, S.J.; Uhlmann, J.K. New extension of the kalman filter to nonlinear systems. In Proceedings of the International Symposium on Aerospace/Defence Sensing, Simulation and Controls, Orlando, FL, USA, 20–25 April 1997; pp. 182–193. [Google Scholar]
- Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Quine, B.M. A derivative-free implementation of the extended kalman filter. Automatica 2006, 42, 1927–1934. [Google Scholar] [CrossRef]
- Jia, B.; Xin, M.; Cheng, Y. High-degree cubature kalman filter. Automatica 2013, 49, 510–518. [Google Scholar] [CrossRef]
- Wang, S.; Feng, J.; Tse, C.K. Spherical simplex-radial cubature kalman filter. IEEE Signal Process Lett. 2014, 21, 43–46. [Google Scholar] [CrossRef]
- Duník, J.; Straka, O.; Šimandl, M. Stochastic integration filter. IEEE Trans. Autom. Control 2013, 58, 1561–1566. [Google Scholar] [CrossRef]
- Bhaumik, S. Cubature quadrature kalman filter. IET Signal Proc. 2013, 7, 533–541. [Google Scholar] [CrossRef]
- Mysovskikh, I. The approximation of multiple integrals by using interpolatory cubature formulae. Quant. Approx. 1980, 217–243. [Google Scholar] [CrossRef]
- Lu, J.; Darmofal, D.L. Higher-dimensional integration with gaussian weight for applications in probabilistic design. SIAM J. Sci. Comput. 2004, 26, 613–624. [Google Scholar] [CrossRef]
- Genz, A.; Monahan, J. Stochastic integration rules for infinite regions. SIAM J. Sci. Comput. 1998, 19, 426–439. [Google Scholar] [CrossRef]
- Dunik, J.; Straka, O.; Simandl, M. On sigma-point set rotation in derivative-free filters. In Proceedings of the 2014 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–8. [Google Scholar]
- Xiu, D. Numerical integration formulas of degree two. Appl. Numer. Math. 2008, 58, 1515–1520. [Google Scholar] [CrossRef]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Courier Corporation: Chelmsford, UK, 2011. [Google Scholar]
- Krylov, V.I. Approximate Calculation of Integrals; Courier Corporation: Chelmsford, UK, 2006. [Google Scholar]
- Wu, H.; Chen, S.X.; Yang, B.F.; Chen, K. Robust derivative-free cubature kalman filter for bearings-only tracking. J. Guid. Control Dyn. 2016, 39, 1865–1870. [Google Scholar] [CrossRef]
Parameters | r | s | c | σr | σe | σc |
---|---|---|---|---|---|---|
Value | 5 km | 4 knots | −2.44 rad | 2 km | 17.5 mrad |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Chen, S.; Wu, H.; Liang, F. Orthogonal Simplex Chebyshev-Laguerre Cubature Kalman Filter Applied in Nonlinear Estimation Systems. Appl. Sci. 2018, 8, 863. https://doi.org/10.3390/app8060863
Liu Z, Chen S, Wu H, Liang F. Orthogonal Simplex Chebyshev-Laguerre Cubature Kalman Filter Applied in Nonlinear Estimation Systems. Applied Sciences. 2018; 8(6):863. https://doi.org/10.3390/app8060863
Chicago/Turabian StyleLiu, Zhuowei, Shuxin Chen, Hao Wu, and Fang Liang. 2018. "Orthogonal Simplex Chebyshev-Laguerre Cubature Kalman Filter Applied in Nonlinear Estimation Systems" Applied Sciences 8, no. 6: 863. https://doi.org/10.3390/app8060863
APA StyleLiu, Z., Chen, S., Wu, H., & Liang, F. (2018). Orthogonal Simplex Chebyshev-Laguerre Cubature Kalman Filter Applied in Nonlinear Estimation Systems. Applied Sciences, 8(6), 863. https://doi.org/10.3390/app8060863