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Abstract: In recent years, biopolymers are highly desired for their application in optic electronic
devices, because of their unique structure and fantastic characteristics. In this work, a non-volatile
memory (NVM) device based on the bio thin-film transistor (TFT) was fabricated through applying
a new RNA–CTMA (cetyltrimethylammonium) complex as a gate dielectric. The physicochemical
performance, including UV, CD spectral, thermal stability, surface roughness, and microstructure,
has been investigated systematically. The RNA–CTMA complex film exhibits strong absorption
with a well-defined absorption peak around 260 nm, the RMS roughness is ~2.1 nm, and displayed
excellent thermal stability, up to 240 ◦C. In addition, the RNA–CTMA complex-based memory device
shows good electric performance, with a large memory window up to 52 V. This demonstrates that
the RNA–CTMA complex is a promising candidate for low cost, low-temperature processes, and as
an environmentally friendly electronic device.
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1. Introduction

In recent years, biopolymers as environmental friendly materials have attracted much attention,
due to their potential applications as novel optical and electronic components. For example, organic
thin-film transistors (OTFTs) have been prepared with biopolymers because these devices can be
fabricated with large-scale manufacturing techniques, such as screen printing, spin-coating, gravure
printing, and others. Also, as biopolymers are contained in abundant resources, the fabricated devices
are generally of low-cost [1–5]. These fascinating characteristics of OTFTs make them potential
candidates for moveable memory devices [6], active matrix displays [7], radio frequency identification
tags [8], and biochemical sensors [9].

The selection of biopolymer is essential to fabricate a BioTFT memory device with good
performance, as various biopolymer dielectrics have significant effects on the electric properties
of OTFT memory devices [10]. Okahata et al. have first reported the preparation of
DNA–cetyltrimethylammonium (CTMA) complexes, which were soluble in organic solvents,
and proven to effectively reduce counter sodium ions [11]. After that, many researchers
utilized various cationic surfactants to prepare electronic devices, including OTFTs, organic
light emitting diodes (OLEDs), and even solar cells [12–18]. In our previous work [19–21],
we have improved the performance of BioTFT memory devices through applying biopolymer
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DNA–octadecyltrimethylammonium (OTMA), and DNA–lauroylcholine (Lau) complex as the gate
dielectric. The ON/OFF current ratio of DNA–OTMA-based BiOTFT devices has been improved
significantly. The device exhibited a large memory window during recording of the transfer
characteristic, and also, a stable memory performance based on switching response.

Ribonucleic acid (RNA), one of the famous biopolymers, is a ribonucleic acid containing genetic
instruction on the sequence of the hydroxyl groups, which could be applied as a good alternative
to DNA. Purified RNA could be soluble in polar solvents such as water, and the resulting films are
also water-sensitive, and have insufficient mechanical strength for applications in the photonics and
optoelectronics fields [22,23]. So, there are still many works need to be done on the modification of
RNA-based complex to improve the electric performance.

In this work, we utilized RNA–CTMA complex to fabricate the BioTFT memory device.
The RNA–CTMA complex film was obtained via an ion exchange reaction, and the structure evolution
of the film has been studied by the optical analysis, including UV spectra and circular dichroism (CD)
spectra. Furthermore, the thermal stability, surface roughness, and microstructure of the RNA complex
have been investigated. Finally, the OTFT devices were fabricated and characterized, which exhibit
a large memory window and stable device performance.

2. Experimental

Materials and film preparations. The sodium salts of RNA were purchased from Sigma-Aldrich,
St. Louis, USA. Pentacene (98% purity) was supplied by Naad Co., Ltd, Tokyo, Japan. Butanol, CTMA
(98% purity), and common chemicals were purchased from Tokyo Chemical Industry Co., Ltd., Tokyo,
Japan. The RNA–CTMA complex film was prepared by spin-coating it onto an indium tin oxide (ITO)
glass substrate, and the film thickness of the RNA–CTMA surfactant complex films were about 1 µm.

Device fabrications. BioTFT memory devices were fabricated according to the former study [19].
The BioTFT structure using a top contact and gate bottom geometry is schematically depicted in
Figure 1.
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Figure 1. Schematic representations of the BioTFT memory using RNA–CTMA (cetyltrimethylammonium)
as the gate dielectric layer.

Film and device characterizations. UV–vis absorption spectral of the samples were measured
using a spectrophotometer (JASCO, V-570). Circular dichroism (CD) spectral of the RNA–CTMA
film was measured using a CD spectrometer (JASCO, J-820). Film morphology was performed
using AFM scanning probe microscope (Seiko, SPA-400) and X-ray diffraction (D/MAX2000/PC,
Rigaku Corporation, Japan). Thermal properties of RNA–CTMA were analyzed by the DSC
analyzer, (Bruker, DE, 3200 SA). All electric measurements were carried out using a Keithley 4200
semiconductor parameter analyzer under dark conditions in vacuo under the non-clean room,
ambient-air environment. The surface roughness of the RNA–CTMA complex and pentacene film was
recorded with a Dektak surface profilometer.
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3. Results and Discussion

The optical absorption properties of RNA–CTMA complex thin-film are shown in Figure 2a.
A broad absorption peak was obtained at 260 nm, which could be assigned to the signature of π–π*
transition of the nuclei bases. The same peak has also been observed in the DNA–OTMA complex as
previously reported [19]. Above 300 nm, there is no observable absorption in the RNA–CTMA film,
which exhibits excellent optical transparency in the visible range, and indicates RNA–CTMA was also
the potential candidate in the application of transparent electronic devices.
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In order to further study the configuration of the RNA–CTMA complex, the CD spectrum of the
RNA–CTMA complex was measured, which is an important toll to investigate the characteristics of
the secondary structure of biopolymer [24]. As shown in the Figure 2b, two negative Cotton effects
at about 251 nm and 232 nm, and a positive Cotton effect at about 286 nm, were observed, which
are different from the natural DNA and DNA–CTMA complex, as shown in previous studies [19].
Compared with DNA–CTMA complex, the Cotton effect in the RNA–CTMA complex is weaker,
indicating that the RNA–CTMA complex shows weaker structure regularity than that in DNA–CTMA
complex. The reason could be attributed to the single helix structure of the RNA complex.

The IR spectra of the RNA and RNA–CTMA film were measured and compared, as shown in
Figure 3. The different wave numbers of each different film are summarized in Table 1. As shown in the
table, compared with the RNA film, the vibration wave number of antisymmetric and symmetric of PO2

group in RNA–CTMA film showed a red shift, which was attributed to the interaction between RNA
and the CTMA surfactant, indicating that the CTMA group was successful aligned to RNA molecules.
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Table 1. Wavenumber of RNA, RNA–CTMA, and DNA–CTMA film.

RNA RNA–CTMA DNA–CTMA Assignments

1226 1237 1240 PO2 antisymmetric
1127 1134 1089 PO2 symmetric
1066 1069 1062 C–O sugar
1000 996 1010 Sugar ring

Furthermore, thermostability of RNA–CTMA was also measured as one of the important
parameters of physical and chemical performance. The upper limit of the temperature where they
can retain the key properties defines their processing temperature and device working temperatures.
Hence, the thermogravimetry analysis (TGA) in nitrogen atmosphere has been used to investigate
the polymers. Figure 4a shows the thermal degradation curves for CTMA alone, and RNA–CTMA
surfactant complex, respectively. Both the samples exhibit good thermal stability and, especially,
it is very surprising to find that the CTMA cationic surfactant can be stable until 250 ◦C. In addition,
the RNA–CTMA surfactant complex also shows excellent heat resistance, and is thermally stable up
to 240 ◦C. As a consequence, the RNA complex can tolerate normal printing and processing, and the
devices could work in traditional circuits. Especially, the RNA complex may also be a potential
candidate for a temperature sensor that operates under high temperature environments.
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Figure 4b shows the DSC curve of the RNA and RNA–CTMA complex film at a temperature
range from 0 to 120 ◦C, with a heating rate of 10 ◦C/min. A baseline shift at around 55 ◦C and 42 ◦C of
RNA and RNA–CTMA complex were obtained, respectively, which could be attributed to the phase
transition. These results indicate that as the temperature increases and exceeds the phase transition,
the volume of the RNA and RNA–CTMA complex would be expected, and the singe helix main chain
could be moved, so the dipoles aligning to the main chain also could be oriented along the direction of
the applied voltage.

Besides the optical, structural, and thermal properties of the complex, the morphology of the
complex film was also characterized. For electronic devices, the surface roughness of the biopolymer
film plays an important role, especially when it acts as the interface for charge accumulation and
transport [25]. For example, in the BioTFT memory device, the holes transport at the interface
between RNA–CTMA film and organic semiconductor film, and thus, defects or surface fluctuations
could deteriorate the transport properties. In order to study the film morphology and microscopic
structure of the RNA–CTMA film, atomic force micrographs (AFM) and X-ray diffraction patterns
were investigated, respectively. Figure 5a exhibits the atomic force microscopy (AFM) image of the
RNA–CTMA film depositing on the ITO substrates. The root mean square (rms) surface roughness
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of RNA–CTMA film (thickness of 1 µm) is ~2.1 nm, which is quite smooth for such a thick film,
and allows it to be a functional interface for charge transport in TFTs. Figure 5b shows the result of
the X-ray diffraction patterns of RNA–CTMA complex. A sharp diffraction peak was observed in
the small-angle region, corresponding to a spacing of about 39 Å in the RNA–CTMA complex film.
This sharp peak corresponds to the diameter of the packed RNA complex structure, indicating an
ordered structure of the film, and may help reduce gate leakage during device operations.
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The BioTFT memory device was fabricated using the RNA–CTMA as the gate dielectric, and the
measured transfer characteristics (IDS–VG) are shown in Figure 6. The dielectric DNA–CTMA polymer
applied as control experiments, herein, have also been carried out. Typical memory windows were
observed, and indicated that the RNA–CTMA complex film could work as the gate dielectric layer to
prepare the memory device. The OFF currents were 3.5 × 10−10 A and 9.7 × 10−11 A for the devices
with RNA–CTMA and DNA–CTMA complexes, respectively, indicating that the resistivity of both the
biopolymer films could satisfy the operating requirement. The field effect mobility was calculated by
fitting the plot of the square root of IDS versus VG, using the following equation:

IDS =
W
2L

Cµsat(VG − Vth)
2. (1)

Here, IDS is the saturation drain current, VG is the gate voltage, Vth is the threshold voltage, C is
the capacitance of gate dielectric per unit area, and W and L are the width and length of the channel
of the device, respectively. The field-effect mobility of the RNA–CTMA-based device was calculated
to be 0.108 cm2/V·s. In addition, from the transfer characteristic, the device based on RNA–CTMA
has a threshold voltage Vth of −34.5 V. The memory window is 52 V, which could be caused by the
dipoles in the RNA–CTMA complex film [20]. The values are comparable with the values reported in
recent years, indicating that the RNA–CTMA may be a potential candidate for the dielectric material
for non-volatile memory device.

Note that the ON current of the DNA–CTMA-based device was higher than that of the
RNA–CTMA-based device. This result may be related to the morphological difference of the pentacene
layer deposited on these different films. The AFM of the semiconducting pentacene film (thickness of
50 nm) was investigated as shown in Figure 7, comparing the films deposited on top of the RNA–CTMA
and DNA–CTMA complex film, respectively. The pentacene film deposited on either complex film
shows a highly crystalline structure. The average crystal grain size depositing on DNA–CTMA is
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calculated to be about 167 nm, whereas the value for the crystals grown on RNA–CTMA complex
film is about 125 nm. In addition, the crystal depositing on RNA–CTMA film exhibits a few voids,
which could be due to the slightly lower surface free energy on the RNA–CTMA film that could easily
induces clusters during crystal deposition. Thus, the smaller average grain size together with some
voids on the RNA–CTMA film are probably suppressing the carrier transport along the electric field,
and thus, a slightly lower current level in the OTFTs.
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4. Conclusions

In summary, a non-volatile transistor memory device was fabricated based on RNA–CTMA as
the gate dielectric, which has been demonstrated for the first time. The memory device exhibited good
electronic performance with a large memory window, which could be caused by the dipoles that existed
in the RNA complex. From the results of DSC, AFM, and XRD, we found that the RNA–CTMA complex
film exhibited a baseline at around 42 ◦C, small roughness of 2.1 nm, and ordered crystal structure.
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Therefore, the RNA–CTMA complex that comes from torula can be a promising candidate for the
preparation of low-cost, low-temperature processing, and environmentally friendly electronic devices.
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