Novel Zeolitic Imidazolate Frameworks Based on Magnetic Multiwalled Carbon Nanotubes for Magnetic Solid-Phase Extraction of Organochlorine Pesticides from Agricultural Irrigation Water Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Fe3O4–MWCNTs–ZIF-67
2.2.1. Synthesis of Fe3O4–MWCNTs
2.2.2. Synthesis of ZIF-67 and M-M-ZIF-67
2.3. MSPE Procedure
2.4. Sample Preparation
2.5. Apparatus and Gas Chromatography–Tandem Triple Quadrupole Mass Spectrometry Conditions
2.6. Quality Control and Quality Assurance
3. Results
3.1. Characterization of M-M-ZIF-67
3.2. Optimization of the MSPE Parameters
3.2.1. Optimization of the Extraction Process
3.2.2. Optimization of the Desorption Process
3.3. Method Characterization
3.4. Comparison
3.5. Real Sample Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Modern trends in solid phase extraction: New sorbent media. Trends Anal. Chem. 2016, 77, 23–43. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Basheer, C.; Alnedhary, A.A.; Rao, B.S.M.; Valliyaveettil, S.; Lee, H.K. Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal. Chem. 2006, 78, 2853–2858. [Google Scholar] [CrossRef] [PubMed]
- Sandra, P.; Tienpont, B.; David, F. Multi-residue screening of pesticides in vegetables, fruits and baby food by stir bar sorptive extraction-thermal desorption-capillary gas chromatography-mass spectrometry. J. Chromatogr. A 2003, 1000, 299–309. [Google Scholar] [CrossRef]
- Maya, F.; Palomino Cabello, C.; Frizzarin, R.M.; Estela, J.M.; Turnes Palomino, G.; Cerdà, V. Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. Trend. Anal. Chem. 2017, 90, 142–152. [Google Scholar] [CrossRef]
- Li, N.; Jiang, H.-L.; Wang, X.; Wang, X.; Xu, G.; Zhang, B.; Wang, L.; Zhao, R.-S.; Lin, J.-M. Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. Trend. Anal. Chem. 2018, 102, 60–74. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical eco-scale for assessing the greenness of analytical procedures. Trend. Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.; Otárola-Jiménez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal. Chim. Acta 2015, 892, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xue, L.; Yao, S.; Cai, X.; Qian, J. Rhein functionalized magnetic chitosan as a selective solid phase extraction for determination isoflavones in soymilk. Carbohydr. Polym. 2017, 165, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wu, H.; Wang, C.; Guo, X.; Du, J.; Du, L. Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC-FLD. Food Chem. 2016, 199, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.; Alosmanov, R.M.; Soylak, M. Magnetic solid phase extraction of lead(ii) and cadmium(ii) on a magnetic phosphorus-containing polymer (M-PhCP) for their microsampling flame atomic absorption spectrometric determinations. RSC Adv. 2015, 5, 33801–33808. [Google Scholar] [CrossRef]
- Ma, S.; He, M.; Chen, B.; Deng, W.; Zheng, Q.; Hu, B. Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples. Talanta 2016, 146, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Habila, M.A.; Alothman, Z.A.; El-Toni, A.M.; Labis, J.P.; Soylak, M. Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis. Talanta 2016, 154, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Li, X.; Li, J.; Liu, M.; Lei, F.; Tan, X.; Li, P.; Luo, W. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food Chem. 2015, 171, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.C.; Vidal, L.; Canals, A. Graphene oxide/Fe3O4 as sorbent for magnetic solid-phase extraction coupled with liquid chromatography to determine 2, 4, 6-trinitrotoluene in water samples. Anal. Bioanal. Chem. 2017, 409, 2665–2674. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, S.; Ni, T.; Chen, D.; Wang, X.; Pan, Y.; Wang, Y.; Huang, L.; Cheng, G.; Qu, W.; et al. Magnetic solid-phase extraction based on carbon nanotubes for the determination of polyether antibiotic and s-triazine drug residues in animal food with LC-MS/MS. J. Sep. Sci. 2017, 40, 2416–2430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-T.; Zheng, X.; Li, H.-F.; Lin, J.-M. Application of carbon-based nanomaterials in sample preparation: A review. Anal. Chim. Acta 2013, 784, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ding, J.; Chen, H.; Zhao, Q.; Hou, J.; Yan, J.; Wang, H.; Ding, L.; Ren, N. Fast determination of sulfonamides from egg samples using magnetic multiwalled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry. Food Chem. 2013, 140, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Gao, Q.; Li, X.-S.; Huang, W.; Shi, Z.-G.; Feng, Y.-Q. Magnetic solid-phase extraction based on magnetic carbon nanotube for the determination of estrogens in milk. J. Sep. Sci. 2011, 34, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Moreno, V.; Zougagh, M.; Ríos, Á. Hybrid nanoparticles based on magnetic multiwalled carbon nanotube-nanoC18SiO2 composites for solid phase extraction of mycotoxins prior to their determination by LC-MS. Microchim. Acta 2016, 183, 871–880. [Google Scholar] [CrossRef]
- Khan, M.; Yilmaz, E.; Soylak, M. Vortex assisted magnetic solid phase extraction of lead (ii) and cobalt (ii) on silica coated magnetic multiwalled carbon nanotubes impregnated with 1-(2-pyridylazo)-2-naphthol. J. Mol. Liq. 2016, 224, 639–647. [Google Scholar] [CrossRef]
- Zhao, Q.; Wei, F.; Luo, Y.-B.; Ding, J.; Xiao, N.; Feng, Y.-Q. Rapid magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in edible oils. J. Agric. Food Chem. 2011, 59, 12794–12800. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Guo, Q.; Chen, X.; Xue, T.; Wang, H.; Yao, P. Rapid and effective sample clean-up based on magnetic multiwalled carbon nanotubes for the determination of pesticide residues in tea by gas chromatography–mass spectrometry. Food Chem. 2014, 145, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Jiang, L.; Wu, G.; Xia, Y.; Lu, W.; Li, J.; Chen, L. Determination of six sulfonylurea herbicides in environmental water samples by magnetic solid-phase extraction using multi-walled carbon nanotubes as adsorbents coupled with high-performance liquid chromatography. J. Chromatogr. A 2016, 1466, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocío-Bautista, P.; González-Hernández, P.; Pino, V.; Pasán, J.; Afonso, A.M. Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. Trend. Anal. Chem. 2017, 90, 114–134. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Pacheco-Fernández, I.; Pasán, J.; Pino, V. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?—A review. Anal. Chim. Acta 2016, 939, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, B.; Zohrabi, P.; Raza, N.; Kim, K.-H. Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. Trend. Anal. Chem. 2017, 97, 65–82. [Google Scholar] [CrossRef]
- Zhao, M.; Xie, Y.; Chen, H.; Deng, C. Efficient extraction of low-abundance peptides from digested proteins and simultaneous exclusion of large-sized proteins with novel hydrophilic magnetic zeolitic imidazolate frameworks. Talanta 2017, 167, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Jiao, C.; Li, M.; Ma, R.; Wang, C.; Wu, Q.; Wang, Z. Preparation of a Co-doped hierarchically porous carbon from Co/Zn-ZIF: An efficient adsorbent for the extraction of trizine herbicides from environment water and white gourd samples. Talanta 2016, 152, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yao, W.; Ying, J.; Zhao, H. Polydopamine-reinforced magnetization of zeolitic imidazolate framework ZIF-7 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from the air-water environment. J. Chromatogr. A 2016, 1452, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Y.; Yang, C.X.; Yan, X.P. Fabrication of ZIF-8@SiO2 core-shell microspheres as the stationary phase for high-performance liquid chromatography. Chem-Eur. J. 2013, 19, 13484–13491. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Roy, P.K.; Ramanan, A. Hydrolytically stable ZIF-8@PDMS core–shell microspheres for gas-solid chromatographic separation. RSC Adv. 2016, 6, 13426–13432. [Google Scholar] [CrossRef]
- Fang, J.; Yang, Y.; Xiao, W.; Zheng, B.; Lv, Y.-B.; Liu, X.-L.; Ding, J. Extremely low frequency alternating magnetic field–triggered and MRI–traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles. Nanoscale 2016, 8, 3259–3263. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhu, L.; Xia, X.; Tang, H. The water-resistant zeolite imidazolate framework 67 is a viable solid phase sorbent for fluoroquinolones while efficiently excluding macromolecules. Microchim. Acta 2016, 183, 1839–1846. [Google Scholar] [CrossRef]
- Kang, X.-Z.; Song, Z.-W.; Shi, Q.; Dong, J.-X. Utilization of zeolite imidazolate framework as an adsorbent for the removal of dye from aqueous solution. Asian J. Chem. 2013, 25, 8324–8328. [Google Scholar]
- Li, W.-K.; Chen, J.; Zhang, H.-X.; Shi, Y.-P. Selective determination of aromatic acids by new magnetic hydroxylated MWCNTs and MOFs based composite. Talanta 2017, 168, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Shanker, U.; Jassal, V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. J. Environ. Manag. 2017, 190, 208–222. [Google Scholar]
- Shao, Y.; Han, S.; Ouyang, J.; Yang, G.; Liu, W.; Ma, L.; Luo, M.; Xu, D. Organochlorine pesticides and polychlorinated biphenyls in surface water around Beijing. Environ. Sci. Pollut. Res. 2016, 23, 24824–24833. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, L.; Xu, D.; Huang, X.; Xu, X.; Zheng, S.; Zhang, Y.; Lin, H. Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr. Polym. 2017, 175, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, C.; Wu, Q.; Wang, Z. Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides. Anal. Chim. Acta 2015, 870, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green analytical procedure index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, Z.; Wu, R.; Wang, Z.; Chen, X.; Chan, T.W.D. Magnetic porous carbon derived from a bimetallic metal-organic framework for magnetic solid-phase extraction of organochlorine pesticides from drinking and environmental water samples. J. Chromatogr. A 2017, 1479, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Basheer, C.; Mansha, M. Membrane protected micro-solid-phase extraction of organochlorine pesticides in milk samples using zinc oxide incorporated carbon foam as sorbent. J. Chromatogr. A 2016, 1475, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lv, T.; Yan, H.; Wu, G.; Li, H. Glyoxal-urea-formaldehyde molecularly imprinted resin as pipette tip solid-phase extraction adsorbent for selective screening of organochlorine pesticides in spinach. J. Agric. Food Chem. 2015, 63, 9650–9656. [Google Scholar] [CrossRef] [PubMed]
- Mehdinia, A.; Rouhani, S.; Mozaffari, S. Microwave-assisted synthesis of reduced graphene oxide decorated with magnetite and gold nanoparticles, and its application to solid-phase extraction of organochlorine pesticides. Microchim. Acta 2016, 183, 1177–1185. [Google Scholar] [CrossRef]
- Mehdinia, A.; Einollahi, S.; Jabbari, A. Magnetite nanoparticles surface-modified with a zinc (ii)-carboxylate schiff base ligand as a sorbent for solid-phase extraction of organochlorine pesticides from seawater. Microchim. Acta 2016, 183, 2615–2622. [Google Scholar] [CrossRef]
- Darvishnejad, M.; Ebrahimzadeh, H. Halloysite nanotubes functionalized with a nanocomposite prepared from reduced graphene oxide and polythiophene as a viable sorbent for the preconcentration of six organochlorine pesticides prior to their quantitation by GC/MS. Microchim. Acta 2017, 184, 3603–3612. [Google Scholar] [CrossRef]
- Huang, Z.; Lee, H.K. Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework mil-101 as sorbent. J. Chromatogr. A 2015, 1401, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Mahpishanian, S.; Sereshti, H. One-step green synthesis of β-cyclodextrin/iron oxide-reduced graphene oxide nanocomposite with high supramolecular recognition capability: Application for vortex-assisted magnetic solid phase extraction of organochlorine pesticides residue from honey samples. J. Chromatogr. A 2017, 1485, 32–43. [Google Scholar] [PubMed]
Pesticides | Retention Time (min) | MRM1 a (m/z) | CE1 b (eV) | MRM2 (m/z) | CE2 (eV) |
---|---|---|---|---|---|
α-HCH c | 15.32 | 218.90 > 182.90 | 8 | 218.90 > 144.90 | 20 |
β-HCH | 15.87 | 218.90 > 182.90 | 8 | 218.90 > 144.90 | 20 |
γ-HCH | 16.01 | 218.90 > 182.90 | 8 | 218.90 > 144.90 | 20 |
δ-HCH | 16.59 | 218.90 > 182.90 | 10 | 218.90 >144.90 | 20 |
o,p′-DDE d | 19.47 | 246.00 > 176.00 | 30 | 246.00 > 211.00 | 22 |
p,p′-DDE | 20.09 | 246.00 > 176.00 | 30 | 246.00 > 211.00 | 22 |
p,p′-DDD e | 20.90 | 235.00 > 165.00 | 24 | 235.00 > 199.00 | 14 |
o,p′-DDT f | 20.95 | 235.00 > 165.00 | 24 | 235.00 > 199.00 | 16 |
p,p′-DDT | 21.61 | 235.00 > 165.00 | 24 | 235.00 > 199.00 | 16 |
OCPs | Linear Range (µg L−1) | Determination Coefficients | LOD a (µg L−1) | RSD b (%) (n = 6) |
---|---|---|---|---|
α-HCH | 2–200 | 0.9953 | 0.12 | 8.5 |
β-HCH | 1–200 | 0.9946 | 0.13 | 1.0 |
γ-HCH | 1–200 | 0.9919 | 0.15 | 6.2 |
δ-HCH | 1–200 | 0.9947 | 0.07 | 4.0 |
o,p′-DDE | 1–200 | 0.9951 | 0.17 | 1.5 |
p,p′-DDE | 1–200 | 0.9989 | 0.45 | 1.3 |
p,p′-DDD | 2–200 | 0.9934 | 0.41 | 3.1 |
o,p′-DDT | 2–200 | 0.9932 | 0.74 | 3.9 |
p,p′-DDT | 2–200 | 0.9916 | 1.03 | 3.1 |
Method | Sorbent | Sample Amount (mL) | Number of OCPs | Volume of Elution Solvent | Sorbent Amount (mg) | Extraction Time (min) | LOD | RSD (%) | Spiked Level | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
MSPE-GC-MS/MS a | BMZIF-derived carbon b | 10 | 8 | Dichloromethane, 2.00 mL | 6 | 10 | 0.39–0.70 ng L−1 | 5.5–9.1 | 5–500 ng L−1 | [42] |
µ-SPE-GC-MS c | ZnO-CF d | 10 | 15 | Toluene, 0.30 mL | 15 | 30 | 0.19–1.64 µg L−1 | 2.3–10.2 | 1–50 µg L−1 | [43] |
PT-SPE-GC-ECDe | GUF-MIR f | 1 | 3 | Cyclohexane-ethyl acetate (9:1, v/v), 0.60 mL | 5 | - | 0.24–0.66 ng g−1 | 3.5–6.7 | 2.2–220 ng g−1 | [44] |
MSPE-GC-ECD | RGO/Fe3O4@Au g | 10 | 6 | Acetonitrile, 0.25 mL | 20 | 10 | 0.4–4.1 µg L−1 | 1.7–7.3 | 100 µg L−1 | [45] |
MSPE-GC-µECD | Fe3O4@MAA@IBL h | 20 | 5 | Acetonitrile, 0.20 mL | 20 | 10 | 1.0–1.9 ng L−1 | 6.2–8.3 | 100 µg L−1 | [46] |
d-μSPE i-GC-MS | rGO-amino-HNT@PT j | 10 | 6 | Acetonitrile, 0.50 mL | 5 | 5 | 2–13 ng L−1 | 6.1–9.7 | 5–70 µg L−1 | [47] |
µ-SPE-GC-MS | MIL-101 k | 10 | 5 | Ethyl acetate, 0.20 mL | 4 | 40 | 2.5–16 ng L−1 | 4.2–11.0 | 10 µg L−1 | [48] |
MSPE-GC/ECD | β-CD/MRGO l | 50 | 16 | acetonitrile-dichloromethane (4:1, v/v), 1.00 mL | 15 | 3 | 0.5–3.2 ng Kg−1 | 3.3–7.8 | 50 ng kg−1 | [49] |
MSPE-GC-MS/MS | M-M-ZIF-67 m | 5 | 9 | Acetonitrile, 4.00 mL | 6 | 20 | 0.07–1.03 µg L−1 | 1.0–8.5 | 10 µg L−1 | This work |
Matrix | Analyte | Spiked Concentration (µg L−1, n = 3) | ||||
---|---|---|---|---|---|---|
0 | 10 | 100 | ||||
Found | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | ||
Tap water | α-HCH | <LOD | 83.4 | 7.4 | 84.7 | 0.7 |
β-HCH | <LOD | 92.5 | 9.6 | 103.7 | 0.6 | |
γ-HCH | <LOD | 93.3 | 5.5 | 91.9 | 0.4 | |
δ-HCH | <LOD | 94.6 | 6.6 | 111.1 | 1.0 | |
o,p′-DDE | <LOD | 85.4 | 3.4 | 99.6 | 5.3 | |
p,p′-DDE | <LOD | 78.1 | 1.5 | 107.5 | 3.1 | |
p,p′-DDD | <LOD | 76.0 | 2.5 | 97.0 | 2.5 | |
o,p′-DDT | <LOD | 83.1 | 5.4 | 89.2 | 2.1 | |
p,p′-DDT | <LOD | 93.7 | 2.1 | 105.7 | 1.6 | |
River water | α-HCH | <LOD | 76.8 | 5.7 | 80.5 | 2.4 |
β-HCH | <LOD | 91.3 | 3.1 | 102.5 | 0.8 | |
γ-HCH | <LOD | 84.1 | 8.5 | 91.2 | 3.5 | |
δ-HCH | <LOD | 74.9 | 5.9 | 112.7 | 2.6 | |
o,p′-DDE | <LOD | 110.8 | 4.7 | 94.3 | 0.1 | |
p,p′-DDE | <LOD | 102.5 | 4.8 | 100.9 | 1.2 | |
p,p′-DDD | <LOD | 101.9 | 3.4 | 92.2 | 0.7 | |
o,p′-DDT | <LOD | 108.6 | 4.3 | 86.9 | 1.2 | |
p,p′-DDT | <LOD | 110.8 | 3.5 | 100.9 | 0.8 | |
Underground water | α-HCH | <LOD | 81.0 | 8.7 | 80.3 | 3.3 |
β-HCH | <LOD | 83.9 | 7.8 | 97.2 | 2.1 | |
γ-HCH | <LOD | 90.1 | 7.5 | 80.4 | 5.2 | |
δ-HCH | <LOD | 79.5 | 15.3 | 112.7 | 2.0 | |
o,p′-DDE | <LOD | 101.5 | 8.4 | 82.9 | 1.9 | |
p,p′-DDE | <LOD | 95.3 | 7.6 | 81.0 | 1.4 | |
p,p′-DDD | <LOD | 92.8 | 8.9 | 75.1 | 2.2 | |
o,p′-DDT | <LOD | 111.1 | 6.4 | 110.3 | 3.2 | |
p,p′-DDT | <LOD | 116.3 | 3.7 | 90.5 | 2.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Liu, G.; Xu, D.; Xu, X.; Li, L.; Zheng, S.; Lin, H.; Gao, H. Novel Zeolitic Imidazolate Frameworks Based on Magnetic Multiwalled Carbon Nanotubes for Magnetic Solid-Phase Extraction of Organochlorine Pesticides from Agricultural Irrigation Water Samples. Appl. Sci. 2018, 8, 959. https://doi.org/10.3390/app8060959
Huang X, Liu G, Xu D, Xu X, Li L, Zheng S, Lin H, Gao H. Novel Zeolitic Imidazolate Frameworks Based on Magnetic Multiwalled Carbon Nanotubes for Magnetic Solid-Phase Extraction of Organochlorine Pesticides from Agricultural Irrigation Water Samples. Applied Sciences. 2018; 8(6):959. https://doi.org/10.3390/app8060959
Chicago/Turabian StyleHuang, Xiaodong, Guangyang Liu, Donghui Xu, Xiaomin Xu, Lingyun Li, Shuning Zheng, Huan Lin, and Haixiang Gao. 2018. "Novel Zeolitic Imidazolate Frameworks Based on Magnetic Multiwalled Carbon Nanotubes for Magnetic Solid-Phase Extraction of Organochlorine Pesticides from Agricultural Irrigation Water Samples" Applied Sciences 8, no. 6: 959. https://doi.org/10.3390/app8060959
APA StyleHuang, X., Liu, G., Xu, D., Xu, X., Li, L., Zheng, S., Lin, H., & Gao, H. (2018). Novel Zeolitic Imidazolate Frameworks Based on Magnetic Multiwalled Carbon Nanotubes for Magnetic Solid-Phase Extraction of Organochlorine Pesticides from Agricultural Irrigation Water Samples. Applied Sciences, 8(6), 959. https://doi.org/10.3390/app8060959