Study of the Wave Energy Propagation Patterns in the Western Black Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory of SWAN Spectral Model
2.2. Computational Levels Defined
2.3. SWAN Model Validations and Implementation of Data Assimilation Techniques
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- SET Plan—Declaration of Intent on Strategic Targets in the Context of an Initiative for Global Leadership in Ocean Energy. 2016. Available online: https://setis.ec.europa.eu/system/files/integrated_set-plan/declaration_of_intent_ocean_0.pdf (accessed on 4 April 2018).
- Jensen, P.H.; Chaviaropoulos, T.; Natarajan, A. Outcomes from the INNWIND.EU Project, LCOE Reduction for the Next Generation Offshore Wind Turbines. 2017. Available online: file:///C:/Users/erusu/Downloads/Innwind-final-printing-version.pdf (accessed on 4 April 2018).
- Nuclear Power Economics and Project Structuring. April 2016. World Nuclear Association. Available online: http://www.world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power.aspx (accessed on 4 April 2018).
- Onea, F.; Rusu, E. Wind energy assessments along the Black Sea basin. Meteorol. Appl. 2014, 21, 316–329. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, E. Evaluation of the wind energy in the north-west of the Black Sea. Int. J. Green Energy 2014, 11, 465–487. [Google Scholar] [CrossRef]
- Global Wind Energy Council (GWEC). Global Wind Energy Outlook; GWEC: Brussels, Belgium, 2016. [Google Scholar]
- Onea, F.; Raileanu, A.; Rusu, E. Evaluation of the Wind Energy Potential in the Coastal Environment of two Enclosed Seas. Adv. Meteorol. 2015. [Google Scholar] [CrossRef]
- Tong, W. Fundamentals of wind energy. In Wind Power Generation and Wind Turbine Design; WIT Press: Southampton, UK, 2010; Volume 44, p. 112. [Google Scholar]
- Raileanu, A.B.; Onea, F.; Rusu, E. Evaluation of the Offshore Wind Resources in the European Seas Based on Satellite Measurements. In Proceedings of the International Multidisciplinary Scientific GeoConferences SGEM, Albena, Bulgaria, 16–25 June 2015. [Google Scholar]
- Onea, F.; Rusu, E. Efficiency assessments for some state of the art wind turbines in the coastal environments of the Black and the Caspian seas. Energy Explor. Exploit. 2016, 34, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Onea, F.; Raileanu, A.; Rusu, E. Evaluation of the wave energy potential in some locations where European offshore wind farms operate. In Maritime Technology and Engineering 3; Taylor & Francis Group: London, UK, 2016; pp. 1119–1124. [Google Scholar]
- Makris, C.; Galiatsatou, P.; Tolika, K. Climate change effects on the marine characteristics of the Aegean and Ionian Seas. Ocean Dyn. 2016, 66, 1603–1635. [Google Scholar] [CrossRef]
- Ganea, D.; Amortila, V.; Mereuta, E.; Rusu, E. A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands. Sustainability 2017, 9, 1025. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, L. A long-term assessment of the Black Sea wave climate. Sustainability 2017, 9, 1875. [Google Scholar] [CrossRef]
- Gasparotti, C.; Rusu, E. Methods for the risk assessment in maritime transportation in the Black Sea basin. J. Environ. Prot. Ecol. 2012, 13, 1751–1759. [Google Scholar]
- Rusu, E. Wave energy assessments in the Black Sea. J. Mar. Sci. Technol. 2009, 14, 359–372. [Google Scholar] [CrossRef]
- Rusu, L. Assessment of the wave energy in the Black Sea based on a 15-year hindcast with data assimilation. Energies 2015, 8, 10370–10388. [Google Scholar] [CrossRef]
- Rusu, E.; Soares, C.G. Wave Energy Assessments in the Coastal Environment of Portugal Continental. In Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 15–20 June 2008; Volume 6, pp. 761–772. [Google Scholar]
- Zanopol, A.; Onea, F.; Rusu, E. Evaluation of the coastal influence of a generic wave farm operating in the Romanian nearshore. J. Environ. Prot. Ecol. 2014, 5, 597–605. [Google Scholar]
- Zanopol, A.; Onea, F.; Rusu, E. Coastal impact assessment of a generic wave farm operating in the Romanian nearshore. Energy 2014, 72, 652–670. [Google Scholar] [CrossRef]
- Diaconu, S.; Rusu, E. The environmental impact of a Wave Dragon array operating in the Black Sea. Sci. World J. 2013. [Google Scholar] [CrossRef] [PubMed]
- Zanopol, A.T.; Onea, F.; Rusu, E. Wave farm influences on the Mangalia nearshore wave pattern. Int. Multidiscip. Sci. Geoconf. 2014, 1, 621–628. [Google Scholar]
- Omer, I.; Mateescu, R.; Vlasceanu, E. Hydrodynamic regime analysis in the shore area taking into account the new master plan implementation for the coastal protection at the Romanian shore, Water Resources, Forest, Marine and Ocean Ecosystems. SGEM 2015, 2, 651–657. [Google Scholar]
- Niculescu, D.M.; Rusu, E.V.C. Evaluation of the new coastal protection scheme at Mamaia Bay in the nearshore of the Black Sea. Ocean Syst. Eng. Int. J. 2018, 8, 1–20. [Google Scholar]
- Bergillos, R.J.; López-Ruiz, A.; Medina-López, E.; Moñino, A.; Ortega-Sánchez, M. The role of wave energy converter farms on coastal protection in eroding deltas, Guadalfeo, southern Spain. J. Clean. Prod. 2018, 171, 356–367. [Google Scholar] [CrossRef]
- Rodríguez-Delgado, C.; Bergillos, R.J.; Ortega-Sánchez, M.; Iglesias, G. Protection of gravel-dominated coasts through wave farms: Layout and shoreline evolution. Sci. Total Environ 2018, 636, 1541–1552. [Google Scholar] [CrossRef]
- Rodríguez-Delgado, C.; Bergillos, R.J.; Ortega-Sánchez, M.; Iglesias, G. Wave farm effects on the coast: The alongshore position. Sci. Total Environ. 2018, 640–641, 1176–1186. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third generation wave model for coastal regions. Part 1: Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Holthuijsen, H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007; p. 387. [Google Scholar]
- Rusu, E. Strategies in using numerical wave models in ocean/coastal applications. J. Mar. Sci. Technol. Taiwan 2011, 19, 58–75. [Google Scholar]
- SWAN Team. Scientific and Technical Documentation; SWAN Cycle III; Delft University of Technology, Department of Civil Engineering: Delft, The Netherlands, 2017. [Google Scholar]
- Rusu, L.; Bernardino, M.; Soares, C.G. Wind and wave modeling in the Black Sea. J. Oper. Oceanogr. 2014, 7, 5–20. [Google Scholar] [CrossRef]
- Rusu, L.; Ivan, A. Modelling wind waves in the Romanian coastal environment. Environ. Eng. Manag. J. 2010, 9, 547–552. [Google Scholar]
- Rusu, L.; Butunoiu, D. Evaluation of the wind influence in modeling the Black Sea wave conditions. Environ. Eng. Manag. J. 2014, 13, 305–314. [Google Scholar]
- Rusu, L.; Butunoiu, D.; Rusu, E. Analysis of the extreme storm events in the Black Sea considering the results of a ten-year wave hindcast. J. Environ. Prot. Ecol. 2014, 15, 445–454. [Google Scholar]
- Butunoiu, D.; Rusu, E. Sensitivity tests with two coastal wave models. J. Environ. Prot. Ecol. 2012, 13, 1332–1349. [Google Scholar]
- Rusu, E.; Soares, C.V.; Rusu, L. Computational strategies and visualisation techniques for the wave modeling the Portuguese nearshore. Marit. Transp. Exp. Ocean Coast. 2005, 2, 1129–1136. [Google Scholar]
- Ivan, A.; Gasparotti, C. Influence of the interactions between waves and currents on the navigation at the entrance of the Danube Delta. J. Environ. Prot. Ecol. 2012, 13, 1673–1682. [Google Scholar]
- Ivan, A.; Rusu, E. Assessment of the navigation conditions in the coastal sector at the entrance of the Danube Delta. Int. Multidiscip. Sci. Geoconf. 2012, 3, 935–942. [Google Scholar]
- Rusu, E.; Raileanu, A. A multi parameter data assimilation approach for wave predictions in coastal areas. J. Oper. Oceanogr. 2016, 9, 13–25. [Google Scholar] [CrossRef]
- Butunoiu, D.; Rusu, E. Wave Modeling with Data Assimilation to Support the Navigation in the Black Sea Close to the Romanian Ports. In Proceedings of the 2nd ICTTE Conference, Belgrade, Serbia, 27–28 November 2014; pp. 180–187. [Google Scholar]
- Butunoiu, D.; Rusu, E. A Data Assimilation Scheme to Improve the Wave Predictions in the Black Sea. In OCEANS 2015-Genova; IEEE Xplore Digital Library: Genoa, Italy, 2015. [Google Scholar]
- Rusu, L. A data assimilation scheme to improve the wave predictions in the western side of the Black Sea, Geoconference on Water Resources, Forest, Marine and Ocean Ecosystems. SGEM 2014, 2, 539–545. [Google Scholar]
- Raileanu, A.; Rusu, L.; Rusu, E. Data assimilation Methods to Improve the Wave Predictions in the Romanian Coastal Environment. In Proceedings of the 16th SGEM Conference, Albena, Bulgaria, 30 June–6 July 2016; pp. 855–862. [Google Scholar]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003; p. 341. [Google Scholar]
- Janssen, P.A.E.M. Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 2003, 33, 863–883. [Google Scholar] [CrossRef]
- Rusu, E. Numerical Modeling of the Wave Energy Propagation in the Iberian Nearshore. Energies 2018, 11, 980. [Google Scholar] [CrossRef]
- Rusu, E.; Onea, F. Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renew. Energy 2016, 85, 687–703. [Google Scholar] [CrossRef]
- Davy, R.; Gnatiuk, N.; Pettersson, L.; Bobylev, L. Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea. Renew. Sustain. Energy Rev. 2018, 81, 1652–1659. [Google Scholar] [CrossRef] [Green Version]
- Divinsky, B.V.; Kosyan, R.D. Spatiotemporal variability of the Black Sea wave climate in the last 37 years. Cont. Shelf Res. 2017, 136, 1–19. [Google Scholar] [CrossRef]
Spherical Domains | Δλ × Δφ | Δt (min) | nf | nθ | ngλ × ngφ = np |
---|---|---|---|---|---|
Sph1—Black Sea (L1) | 0.08° × 0.08° | 10 non-stat | 24 | 36 | 176 × 76 = 13,376 |
Sph2—Coastal driver (L2) | 0.02° × 0.02° | 10 non-stat | 24 | 36 | 141 × 141 = 19,881 |
Sph3—Danube mouths (L3) | 0.01° × 0.01° | 10 non-stat | 24 | 36 | 71 × 61 = 4331 |
Sph4—Southern RO1 (L3) | 0.01° × 0.01° | 10 non-stat | 24 | 36 | 221 × 221 = 48,821 |
Sph5—Southern RO2 (L3) | 0.01° × 0.01° | 10 non-stat | 24 | 36 | 161 × 141 = 22,701 |
Cartesian Domains | Δx × Δy (m) | Δt (min) | nf | nθ | ngx × ngy = np |
---|---|---|---|---|---|
Cart1—Sulina (L4) | 50 × 50 | 60 stat | 30 | 36 | 135 × 216 = 29,160 |
Cart2—Sacalin (L4) | 200 × 200 | 60 stat | 30 | 36 | 353 × 251 = 88,603 |
Cart3—Mangalia (L4) | 50 × 50 | 60 stat | 30 | 36 | 96 × 107 = 10,172 |
Input/Process | Wave | Wind | Tide | Curr | Gen | Wcap | Quad | Triad | Diffr | Bfric | Set up | Br |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Domains | ||||||||||||
Sph1 | 0 | X | 0 | 0 | X | X | X | 0 | 0 | X | 0 | X |
Sph2 | X | X | 0 | 0 | X | X | X | X | 0 | X | 0 | X |
Sph3 | X | X | 0 | X | X | X | X | X | X | X | 0 | X |
Sph4 | X | X | 0 | 0 | X | X | X | X | 0 | X | 0 | X |
Sph5 | X | X | 0 | 0 | X | X | X | X | X | X | 0 | X |
Cart1 | X | X | 0 | X | X | X | X | X | X | X | X | X |
Cart2 | X | X | 0 | X | X | X | X | X | X | X | X | X |
Cart3 | X | X | 0 | 0 | X | X | X | X | X | X | X | X |
Parameter | MeanObs (m) | MeanSim (m) | Bias (m) | MAE (m) | RMSE (m) | SI | R | S | N |
---|---|---|---|---|---|---|---|---|---|
SWAN Hs (m) | 1.04 | 0.97 | −0.07 | 0.27 | 0.35 | 0.35 | 0.88 | 0.98 | 316,920 |
SWANDA Hs (m) | 1.00 | −0.04 | 0.21 | 0.29 | 0.28 | 0.91 | 0.99 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, E. Study of the Wave Energy Propagation Patterns in the Western Black Sea. Appl. Sci. 2018, 8, 993. https://doi.org/10.3390/app8060993
Rusu E. Study of the Wave Energy Propagation Patterns in the Western Black Sea. Applied Sciences. 2018; 8(6):993. https://doi.org/10.3390/app8060993
Chicago/Turabian StyleRusu, Eugen. 2018. "Study of the Wave Energy Propagation Patterns in the Western Black Sea" Applied Sciences 8, no. 6: 993. https://doi.org/10.3390/app8060993
APA StyleRusu, E. (2018). Study of the Wave Energy Propagation Patterns in the Western Black Sea. Applied Sciences, 8(6), 993. https://doi.org/10.3390/app8060993