In-Life Range Modularity for Electric Vehicles: The Environmental Impact of a Range-Extender Trailer System
Abstract
:1. Introduction
2. Methodology
2.1. Life Cycle Assessment
2.1.1. Goal and Scope
2.1.2. Lifecycle Inventory
3. Life Cycle Inventory
3.1. Impact Assessment
3.2. Assumptions
4. Results and Discussion
4.1. Climate Change
4.2. Photochemical Oxidant Formation
4.3. Particulate Matter Formation
4.4. The Impact on Human Toxicity
4.5. Sensitivity Analysis
4.5.1. The Electricity Production Mix
4.5.2. The Use Pattern for the ReX Trailer
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Midpoint Indicator | WTT | TTW | Vehicle Cycle | Powertrain Cycle | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WTT | Public Charging Station | Tire Abrasion | Road Abrasion | Brake Abrasion | TTW | Body Shell | Lead Battery | Maintenance | Li Battery | Electric Motor | AC/DC Converter | DC/DC Converter | Onboard Charger | Catalytic Converter | Starter and Generator | Engine Control Unit | |
CC [kgCO2/km] | 4.14 × 10−2 | 2.95 × 10−4 | 0.00 | 0.00 | 0.00 | 0.00 | 1.30 × 10−2 | 6.29 × 10−5 | 1.52 × 10−3 | 1.24 × 10−2 | 1.19 × 10−3 | 1.35 × 10−3 | 5.08 × 10−4 | 4.14 × 10−4 | 0.00 | 0.00 | 0.00 |
POF [kgNMVOC/km] | 2.68 × 10−5 | 7.42 × 10−7 | 0.00 | 0.00 | 0.00 | 0.00 | 4.08 × 10−5 | 2.56 × 10−7 | 4.94 × 10−6 | 4.54 × 10−5 | 4.68 × 10−6 | 5.66 × 10−6 | 1.99 × 10−6 | 1.98 × 10−6 | 0.00 | 0.00 | 0.00 |
PMF [kgPM10/km] | 5.83 × 10−6 | 4.51 × 10−7 | 7.05 × 10−6 | 1.00 × 10−5 | 2.46 × 10−6 | 0.00 | 3.12 × 10−5 | 1.91 × 10−7 | 2.46 × 10−6 | 3.16 × 10−5 | 4.77 × 10−6 | 3.21 × 10−6 | 1.19 × 10−6 | 1.07 × 10−6 | 0.00 | 0.00 | 0.00 |
HT [kg1,4-DB/km] | 2.03 × 10−4 | 4.43 × 10−4 | 6.37 × 10−4 | 4.01 × 10−6 | 7.35 × 10−4 | 0.00 | 1.34 × 10−2 | 3.03 × 10−4 | 5.86 × 10−4 | 8.22 × 10−3 | 5.72 × 10−3 | 6.12 × 10−3 | 2.31 × 10−3 | 1.97 × 10−3 | 0.00 | 0.00 | 0.00 |
References
- European Environment Agency (EEA). Air Quality in Europe—2017 Report; European Environment Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- European Environment Agency (EEA). National Emission Ceilings Directive Emissions Data Viewer—European Environment Agency. 2017. Available online: https://www.eea.europa.eu/data-and-maps/dashboards/necd-directive-data-viewer#tab-related-briefings (accessed on 31 October 2017).
- Dieselnet. EU: Cars and Light Truck. 2016. Available online: https://www.dieselnet.com/standards/eu/ld.php (accessed on 6 May 2017).
- Fontaras, G.; Franco, V.; Dilara, P.; Martini, G.; Manfredi, U. Development and review of Euro 5 passenger car emission factors based on experimental results over various driving cycles. Sci. Total Environ. 2014, 468–469, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Franco, V.; Mock, P.; Kolke, R.; Zhang, S.; Wu, Y.; German, J. Experimental Assessment of NOx Emissions from 73 Euro 6 Diesel Passenger Cars. Environ. Sci. Technol. 2015, 49, 14409–14415. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Bonnel, P.; Hummel, R.; Manfredi, U.; Colombo, R.; Lanappe, G.; Le Lijour, P.; Sculati, M. Analyzing on-road emissions of light-duty vehicles with Portable Emission Measurement Systems (PEMS). Environ. Sci. Technol. 2011, 45, 8575–8581. [Google Scholar] [CrossRef] [PubMed]
- Demuynck, J. Real-driving emission results from GDI vehicles with and without a GPF Association for Emissions Control by Catalyst (AECC). In Proceedings of the IQPC 4th International Conference Advanced Emission Control Concepts for Gasoline Engines, Bonn, Germany, 10–12 May 2016; pp. 1–26. [Google Scholar]
- Rhys-Tyler, G.; Legassick, W.; Bell, M. The significance of vehicle emissions standards for levels of exhaust pollution from light vehicles in an urban area. Atmos. Environ. 2011, 45, 3286–3293. [Google Scholar] [CrossRef]
- Chen, Y.; Borken-Kleefeld, J. Real-driving emissions from cars and light commercial vehicles – Results from 13 years remote sensing at Zurich/CH. Atmos. Environ. 2014, 88, 157–164. [Google Scholar] [CrossRef]
- Muncrief, R. NOx Emissions from Heavy-Duty and Light-Duty Diesel Vehicles in the EU: Comparison of Real-World Performance and Current Type-Approval Requirements; International Council on Clean Transportation: Washington, DC, USA, 2016. [Google Scholar]
- Clima, D.G. Revision of Regulation (EU) No 443/2009 and Regulation (EU) No 510/2011 Regulating CO2 Emissions from Light Duty Vehicles; Brussels, Belgium, 2016. Available online: https://ec.europa.eu/clima/sites/clima/files/transport/vehicles/docs/evaluation_ldv_co2_regs_en.pdf (accessed on 21 June 2018).
- Díaz, S.; Tietge, U.; Mock, P. CO2 Emissions from New Passenger Cars in the EU: Car Manufacturers’ Performance in 2015; International Council on Clean Transportation: Berlin, Germany, 2015. [Google Scholar]
- Massiani, J. Cost-Benefit Analysis of policies for the development of electric vehicles in Germany: Methods and results. Transp. Policy 2015, 38, 19–26. [Google Scholar] [CrossRef]
- Report of the Conference of the Parties on its twenty-first session, held in Paris from 30 November to 13 December 2015 Addendum Part two: Action taken by the Conference of the Parties at its twenty-first session. In Proceedings of the 2015 United Nations Climate Change Conference, Paris, France, 30 November–12 December 2015.
- Rockström, J.; Schellnhuber, H.J.; Hoskins, B.; Ramanathan, V.; Schlosser, P.; Brasseur, G.P.; Gaffney, O.; Nobre, C.; Meinshausen, M.; Rogelj, J.; et al. The world’s biggest gamble. Earth’s Future 2016, 4, 465–470. [Google Scholar] [CrossRef]
- European Commission. Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Messagie, M. Life Cycle Analysis of the Climate Impact of Electric Vehicles; Brussels, Belgium, 2017. Available online: https://evobservatory.iit.comillas.edu/publicaciones/life-cycle-analysis-of-the-climate-impact-of-electric-vehicles (accessed on 21 June 2018).
- Sanfélix, J.; de la Rúa, C.; Schmidt, J.; Messagie, M.; van Mierlo, J. Environmental and economic performance of an Li-Ion battery pack: A multiregional input-output approach. Energies 2016, 9, 584. [Google Scholar] [CrossRef]
- Umicore raises $1.1 bn to invest in cathode business. Focus Catal. 2018, 2018, 4.
- European Commission. Report on Raw Materials for Battery Applications; SWD (2018) 245 Final; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Witkamp, B.; van Gijlswijk, R.; Bolech, M.; Coosemans, T.; Hooftman, N. The Transition to a Zero Emission Vehicles Fleet for Cars in the EU by 2050; Brussels, Belgium, 2017. Available online: https://cris.vub.be/files/35220288/The_Transition_to_a_ZEV_car_fleet_EU_2050_an_EAFO_study.pdf (accessed on 21 June 2018).
- Pearre, N.S.; Kempton, W.; Guensler, R.L.; Elango, V.V. Electric vehicles: How much range is required for a day’s driving? Transp. Res. Part C Emerg. Technol. 2011, 19, 1171–1184. [Google Scholar] [CrossRef]
- Needell, Z.A.; McNerney, J.; Chang, M.T.; Trancik, J.E. Potential for widespread electrification of personal vehicle travel in the United States. Nat. Energy 2016, 1, 16112. [Google Scholar] [CrossRef]
- Pasaoglu, G.; Fiorello, D.; Martino, A.; Scarcella, G.; Alemanno, A.; Zubaryeva, A.; Thiel, C. Driving and Parking Patterns of European Car Drivers: A Mobility Survey; European Commission: Sevilla, Spain, 2012. [Google Scholar]
- Corchero, C.; Gonzalez-Villafranca, S.; Sanmarti, M. European electric vehicle fleet: Driving and charging data analysis. In Proceedings of the 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, 17–19 December 2014; pp. 1–6. [Google Scholar]
- Khan, M.; Kockelman, K.M. Predicting the market potential of plug-in electric vehicles using multiday GPS data. Energy Policy 2012, 46, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Gonder, J.; Markel, T.; Thornton, M.; Simpson, A. Using Global Positioning System Travel Data to Assess Real-World Energy Use of Plug-In Hybrid Electric Vehicles. Transp. Res. Rec. J. Transp. Res. Board 2007, 2017, 26–32. [Google Scholar] [CrossRef]
- Redelbach, M.; Özdemir, E.D.; Friedrich, H.E. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types. Energy Policy 2014, 73, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Ligterink, N.; Smokers, R. Monitoring Van Plug-In Hybride Voertuigen (PHEVs) April 2012 t/m Maart 2016; TNO: Den Haag, The Netherlands, 2016. [Google Scholar]
- Tietge, U.; Díaz, S.; Yang, Z.; Mock, P. From Laboratory to Road International: A Comparison of Official and Real-World Fuel Consumption and CO2 Values for Passenger Cars in Europe, the United States, China, and Japan; International Council on Clean Transportation: Berlin, Germany, 2017. [Google Scholar]
- Björnsson, L.H.; Karlsson, S. Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability. Appl. Energy 2015, 143, 336–347. [Google Scholar] [CrossRef]
- Neubauer, J.; Brooker, A.; Wood, E. Sensitivity of plug-in hybrid electric vehicle economics to drive patterns, electric range, energy management, and charge strategies. J. Power Sources 2013, 236, 357–364. [Google Scholar] [CrossRef]
- Norman Shiau, C.-S.; Samaras, C.; Hauffe, R.; Michalek, J.J. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles. Energy Policy 2009, 37, 2653–2663. [Google Scholar] [CrossRef]
- Michalek, J.J.; Chester, M.; Jaramillo, P.; Samaras, C.; Shiau, C.-S.N.; Lave, L.B. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits. Proc. Natl. Acad. Sci. USA 2011, 108, 16554–16558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordelöf, A.; Messagie, M.; Tillman, A.-M.; Söderman, M.L.; van Mierlo, J. Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 1866–1890. [Google Scholar] [CrossRef]
- Rusich, A.; Danielis, R. Total cost of ownership, social lifecycle cost and energy consumption of various automotive technologies in Italy. Res. Transp. Econ. 2015, 50, 3–16. [Google Scholar] [CrossRef]
- Al-Alawi, B.; Bradley, T. Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles. Appl. Energy 2013, 103, 488–506. [Google Scholar] [CrossRef]
- Propfe, B.; Redelbach, M.; Santini, D.J.; Friedrich, H. Cost analysis of Plug-in Hybrid Electric Vehicles including Maintenance & Repair Costs and Resale Values. In Proceedings of the EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Los Angeles, CA, USA, 6–9 May 2012. [Google Scholar]
- Wu, G.; Inderbitzin, A.; Bening, C. Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy 2015, 80, 196–214. [Google Scholar] [CrossRef]
- ERTRAC. Future Light and Heavy Duty ICE Powertrain Technologies; ERTRAC: Brussels, Belgium, 2016. [Google Scholar]
- Hooftman, N.; Oliveira, L.; Messagie, M.; Coosemans, T.; Van Mierlo, J. Environmental analysis of petrol, diesel and electric passenger cars in a Belgian urban setting. Energies 2016, 9, 84. [Google Scholar] [CrossRef]
- Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Impact of Electric Vehicle Charging Station Load on Distribution Network. Energies 2018, 11, 178. [Google Scholar] [CrossRef]
- Meyer, D.; Wang, J. Integrating Ultra-Fast Charging Stations within the Power Grids of Smart Cities: A Review. IET Smart Grid 2018, 1, 3–10. [Google Scholar] [CrossRef]
- European Comission for Standardization. ISO 14040:2009—Environmental Management—Life Cycle Assessment—Principles and Framework; European Comission for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- International Organization for Standardization. ISO 14044:2006 Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Gevena, Switzerland, 2006. [Google Scholar]
- Messagie, M. Environmental Performance of Electric Vehicles, a Life Cycle System Approach; Vrije Universiteit Brussel: Brussels, Belgium, 2013. [Google Scholar]
- US Department of Energy. Fuel Economy of New All-Electric Vehicles. Available online: http://www.fueleconomy.gov/feg/PowerSearch.do?action=alts&path=3&year1=2016&year2=2017&vtype=Electric&srchtyp=newAfv (accessed on 14 June 2017).
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; de Schryver, A.; Struijs, J.; van Zelm, R. A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Amersfoort, The Netherlands, 2013. Available online: https://www.researchgate.net/publication/302559709_ReCiPE_2008_A_life_cycle_impact_assessment_method_which_comprises_harmonised_category_indicators_at_the_midpoint_and_the_endpoint_level (accessed on 21 June 2018).
- Moro, A.; Lonza, L. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transport. Res. Part D Transp. Environ. 2017. [Google Scholar] [CrossRef]
- Oliveira, L.; Messagie, M.; Rangaraju, S.; Sanfelix, J.; Rivas, M.H.; van Mierlo, J. Key issues of lithium-ion batteries—From resource depletion to environmental performance indicators. J. Clean. Prod. 2015, 108, 354–362. [Google Scholar] [CrossRef]
- Messagie, M.; Boureima, F.-S.; Coosemans, T.; Macharis, C.; Mierlo, J. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels. Energies 2014, 7, 1467–1482. [Google Scholar] [CrossRef] [Green Version]
- Rangaraju, S.; de Vroey, L.; Messagie, M.; Mertens, J.; van Mierlo, J. Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study. Appl. Energy 2015, 148, 496–505. [Google Scholar] [CrossRef]
- CERAM. Test Report N°16/10681; CERAM: Montlhéry, France, 2017. [Google Scholar]
Parameter [Unit] | 30 kWh EV (Nissan Leaf) | 40 kWh EV (Renault Zoe) | 60 kWh EV (Chevrolet Bolt) | 90 kWh EV (Tesla Model S90) |
---|---|---|---|---|
Capacity [kWh] | 30 | 40 | 60 | 90 |
Mass in Running Order [kg] | 1591 | 1450 | 1624 | 2200 |
Weight battery [kg] | 272 | 305 | 435 | 540 |
Average consumption [kWh/km] | 0.15 | 0.15 | 0.15 | 0.25 |
Highway consumption [kWh/km] | 0.20 | 0.20 | 0.20 | 0.26 |
Highway consumption with ReX trailer [kWh/km] | 0.21 | |||
EU electricity mix in g/kWh | 276 |
Unit | Petrol | Petrol Hybrid | Diesel | Petrol Plug-in Electric Vehicle |
---|---|---|---|---|
[l/100 km] | 6.8 | 5.6 | 5.3 | 3.4 |
gCO2/km | 162.7 | 134.0 | 140.0 | 81.3 |
Parameter | Petrol Generator | Battery Pack |
---|---|---|
Rated power [kW] Mass [kg] | 25 265 | 50 480 |
Fuel tank [L] | 35 | / |
Fuel type | Petrol | Electric |
Range [km] | 300 | 300 |
Average consumption [L/kWh] | 0.44 | / |
Average consumption [L/100 km] | 7.5 | / |
Unit | Average Generator Emissions | ||||
---|---|---|---|---|---|
HC | CO | NOx | CO2 | HC + NOx | |
[g/kWh] | 2.5 | 40.5 | 1.1 | 999.4 | 3.6 |
Impact Category | Unit | Total | Trailer Assembly Excl. Generator | Generator Manufacturing | Generator Operation | EV Electricity (EU Mix) |
---|---|---|---|---|---|---|
Climate change | gCO2-eq./km | 109.31 | 2.12 | 3.67 | 12.66 | 90.85 |
Human toxicity | g1,4-DB-eq./km | 63.44 | 2.33 | 9.94 | 0.45 | 50.72 |
Photochemical oxidant formation | gNMVOC/km | 0.26 | 0.01 | 0.01 | 0.04 | 0.19 |
Particulate matter formation | gPM10-eq./km | 0.16 | 0.01 | 0.01 | 0.01 | 0.13 |
Impact Category | Unit | Total | Trailer Assembly Excl. Battery | Battery Manufacturing | Battery Operation | EV (EU Mix) |
---|---|---|---|---|---|---|
Climate change | gCO2-eq./km | 102.5 | 3.2 | 18.0 | 0 | 81.3 |
Human toxicity | g1,4-DB-eq./km | 36.3 | 3.5 | 31.5 | 0 | 1.27 |
Photochemical oxidant formation | gNMVOC/km | 0.62 | 0.02 | 0.05 | 0 | 0.10 |
Particulate matter formation | gPM10-eq./km | 1.16 | 0.02 | 0.07 | 0 | 0.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooftman, N.; Messagie, M.; Joint, F.; Segard, J.-B.; Coosemans, T. In-Life Range Modularity for Electric Vehicles: The Environmental Impact of a Range-Extender Trailer System. Appl. Sci. 2018, 8, 1016. https://doi.org/10.3390/app8071016
Hooftman N, Messagie M, Joint F, Segard J-B, Coosemans T. In-Life Range Modularity for Electric Vehicles: The Environmental Impact of a Range-Extender Trailer System. Applied Sciences. 2018; 8(7):1016. https://doi.org/10.3390/app8071016
Chicago/Turabian StyleHooftman, Nils, Maarten Messagie, Frédéric Joint, Jean-Baptiste Segard, and Thierry Coosemans. 2018. "In-Life Range Modularity for Electric Vehicles: The Environmental Impact of a Range-Extender Trailer System" Applied Sciences 8, no. 7: 1016. https://doi.org/10.3390/app8071016
APA StyleHooftman, N., Messagie, M., Joint, F., Segard, J. -B., & Coosemans, T. (2018). In-Life Range Modularity for Electric Vehicles: The Environmental Impact of a Range-Extender Trailer System. Applied Sciences, 8(7), 1016. https://doi.org/10.3390/app8071016