Special Issue on Ultrafast Ultrasound Imaging and Its Applications
1. Introduction
2. Ultrafast Ultrasound Imaging
3. Applications and Ongoing Developments
Acknowledgments
Conflicts of Interest
References
- Bruneel, C.; Torguet, R.; Rouvaen, K.M.; Bridoux, E.; Nongaillard, B. Ultrafast echotomographic system using optical processing of ultrasonic signals. Appl. Phys. Lett. 1977, 30, 371–373. [Google Scholar] [CrossRef]
- Delannoy, B.; Torguet, R.; Bruneel, C.; Bridoux, E.; Rouaven, J.M.; Lasota, H. Acoustical image reconstruction in parallel-processing analog electronic systems. J. Appl. Phys. 1979, 50, 3153–3159. [Google Scholar] [CrossRef]
- Shattuck, D.P.; Weinshenker, M.D.; Smith, S.W.; von Ramm, O.T. Explososcan: A parallel processing technique for high speed ultrasound imaging with linear phased arrays. J. Acoust. Soc. Am. 1984, 75, 1273–1282. [Google Scholar] [CrossRef]
- Montaldo, G.; Tanter, M.; Bercoff, J.; Benech, N.; Fink, M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Couade, M.; Pernot, M.; Tanter, M.; Messas, E.; Bel, A.; Ba, M.; Hagege, A.-A.; Fink, M. Ultrafast imaging of the heart using circular wave synthetic imaging with phased arrays. In Proceedings of the IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 Septembar 2009; pp. 515–518. [Google Scholar]
- Hasegawa, H.; Kanai, H. High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming. J. Med. Ultrason. 2011, 38, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Li, P.-C.; Li, M.-L. Adaptive imaging using the generalized coherence factor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 128–141. [Google Scholar] [PubMed]
- Camacho, J.; Parrilla, M.; Fritsch, C. Phase coherence imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 958–974. [Google Scholar] [CrossRef] [PubMed]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Synnevåg, J.F.; Austeng, A.; Holm, S. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1606–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holfort, I.K.; Gran, F.; Jensen, J.A. Broadband minimum variance beamforming for ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 314–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Synnevåg, J.F.; Austeng, A.; Holm, S. A low-complexity data dependent beamformer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Asl, B.M.; Mahloojifar, A. A low-complexity adaptive beamformer for ultrasound imaging using structured covariance matrix. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Asl, B.M.; Mahloojifar, A. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging. IEEE Trans. Ultrasonics. Ferroelectr. Freq. Control 2009, 56, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Park, S.; Kim, J.; Park, S.-B.; Bae, M. A fast minimum variance beamforming method using principal component analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 930–945. [Google Scholar] [CrossRef] [PubMed]
- Udesen, J.; Gran, F.; Lindskov Hansen, K.; Jensen, J.A.; Thomsen, C.; Nielsen, M.B. High frame-rate blood vector velocity imaging using plane waves: Simulations and preliminary experiments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1729–1743. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Kanai, H. Simultaneous imaging of artery-wall strain and blood flow by high frame rate acquisition of RF signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2626–2639. [Google Scholar] [CrossRef] [PubMed]
- Bercoff, J.; Montaldo, G.; Loupas, T.; Savery, D.; Mézière, F.; Fink, M.; Tanter, M. Ultrafast compound Doppler imaging: Providing full blood flow characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Yiu, B.Y.; Yu, A.C. High-frame-rate ultrasound color-encoded speckle imaging of complex flow dynamics. Ultrasound Med. Biol. 2013, 39, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Hasegawa, H.; Kanai, H. Echo speckle imaging of blood particles with high-frame-rate echocardiography. Jpn. J. Appl. Phys. 2014, 53, 07KF08. [Google Scholar] [CrossRef]
- Honjo, Y.; Hasegawa, H.; Kanai, H. Two-dimensional tracking of heart wall for detailed analysis of heart function at high temporal and spatial resolutions. Jpn. J. Appl. Phys. 2010, 49, 07HF14. [Google Scholar] [CrossRef]
- Provost, J.; Nguyen, V.T.-H.; Legrand, D.; Okrasinski, S.; Costet, A.; Gambhir, A.; Garan, H.; Konofagou, E.E. Electromechanical wave imaging for arrhythmias. Phys. Med. Biol. 2011, 56, L1. [Google Scholar] [CrossRef] [PubMed]
- Cikes, M.; Tong, L.; Sutherland, G.R.; D’hooge, J. Ultrafast cardiac ultrasound imaging: Technical principles, applications, and clinical benefits. JACC Cardiovasc. Imaging 2014, 7, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Shahmirzadi, D.; Li, R.X.; Konofagou, E.E. Pulse-wave propagation in straight-geometry vessels for stiffness estimation: Theory, simulations, phantoms and in vitro findings. J. Biomech. Eng. 2012, 134, 114502. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Hongo, K.; Kanai, H. Measurement of regional pulse wave velocity using very high frame rate ultrasound. J. Med. Ultrason. 2013, 40, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Saris, A.E.C.M.; Hansen, H.H.G.; Fekkes, S.; Nillesen, M.M.; Rutten, M.C.M.; de Korte, C.L. A comparison between compounding techniques using large beam-steered plane wave imaging for blood vector velocity imaging in a carotid artery model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1758–1771. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasegawa, H.; De Korte, C.L. Special Issue on Ultrafast Ultrasound Imaging and Its Applications. Appl. Sci. 2018, 8, 1110. https://doi.org/10.3390/app8071110
Hasegawa H, De Korte CL. Special Issue on Ultrafast Ultrasound Imaging and Its Applications. Applied Sciences. 2018; 8(7):1110. https://doi.org/10.3390/app8071110
Chicago/Turabian StyleHasegawa, Hideyuki, and Chris L. De Korte. 2018. "Special Issue on Ultrafast Ultrasound Imaging and Its Applications" Applied Sciences 8, no. 7: 1110. https://doi.org/10.3390/app8071110
APA StyleHasegawa, H., & De Korte, C. L. (2018). Special Issue on Ultrafast Ultrasound Imaging and Its Applications. Applied Sciences, 8(7), 1110. https://doi.org/10.3390/app8071110