Review on In Situ Acoustic Emission Monitoring in the Context of Structural Health Monitoring in Mines
Abstract
:Featured Application
Abstract
1. Introduction
2. In Situ Acoustic Emission (AE) Monitoring—Fundamentals
2.1. Comprehensive Consideration of the Scale
2.2. Applications and Characteristics of In Situ AE Monitoring
2.3. Method of In Situ AE Monitoring
3. In Situ AE Monitoring in Salt Mines
3.1. Salt Mine Asse in Germany
3.2. Salt Mine Merkers in Germany
3.3. Salt Mine Morsleben in Germany
4. In Situ AE Monitoring in Gold Mines
4.1. Gold Mine Cook 4 in South Africa
4.2. Gold Mine Mponeng in South Africa
5. In Situ AE Monitoring During Hydraulic Fracturing in Mines
6. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Condition Monitoring and Diagnostics of Machines—General Guidelines; ISO 17359:2011; Beuth Verlag GmbH: Berlin, Germany, 2011.
- Cawley, P. Structural health monitoring: Closing the gap between research and industrial deployment. Int. J. Struct. Health Monit. 2018. [Google Scholar] [CrossRef]
- Chang, P.C.; Liu, S.C. Recent research in nondestructive evaluation of civil infrastructures. J. Mater. Civil. Eng. 2003, 15, 298–304. [Google Scholar] [CrossRef]
- McCrea, A.; Chamberlain, D.; Navon, R. Automated inspection and restoration of steel bridges—A critical review of methods and enabling technologies. Automat. Constr. 2002, 11, 351–373. [Google Scholar] [CrossRef]
- Rens, K.L.; Wipf, T.J.; Klaiber, F.W. Review of non-destructive evaluation techniques of civil infrastructure. J. Perform. Constr. Fac. 1997, 11, 152–160. [Google Scholar] [CrossRef]
- Chang, P.C.; Flatau, A.; Liu, S.C. Review paper: Health monitoring of civil infrastructure. Struct. Hlth. Monit. 2003, 2, 257–267. [Google Scholar] [CrossRef]
- Farrar, C.R.; Doebling, S.W.; Nix, D.A. Vibration-based structural damage identification. Philos. Trans. R. Soc. A 2001, 359, 131–149. [Google Scholar] [CrossRef]
- Shih, H.W.; Thambiratnam, D.P.; Chan, T.H.T. Vibration based structural damage detection in flexural members using multi-criteria approach. J. Sound Vib. 2009, 323, 645–661. [Google Scholar] [CrossRef]
- Ono, K. Structural Integrity Evaluation Using Acoustic Emission. J. Acoust. Emiss. 2007, 25, 1–20. [Google Scholar]
- Ono, K. Review on Structural Health Evaluation with Acoustic Emission. Appl. Sci. 2018, 8, 958. [Google Scholar] [CrossRef]
- Eisenblätter, J. The origin of acoustic emission—Mechanisms and models. In Acoustic Emission; Conference in Bad Nauheim, Deutsche Gesellschaft für Metallkunde e.V.: Berlin, Germany, 1980; pp. 189–204. [Google Scholar]
- Manthei, G.; Eisenblätter, J. Acoustic Emission in Study of Rock Stability. In Acoustic Emission Testing; Grosse, C.U., Ohtsu, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 239–310. [Google Scholar]
- Kwiateka, G.; Plenkers, K.; Martínez-Garzóna, P.; Leonhardt, M.; Zang, A.; Dresen, G. New Insights into Fracture Process through In-Situ Acoustic Emission Monitoring during Fatigue Hydraulic Fracture Experiment in Äspö Hard Rock Laboratory. Procedia Eng. 2017, 191, 618–622. [Google Scholar] [CrossRef]
- Stork, A.L.; Butcher, A.C.; Verdon, J.P.; Koe, V.A.; Kendall, J.-M. Geophysical investigations to assess the extent of disturbance in excavated rock faces at hinkley point C. In Proceedings of the 23rd European Meeting of Environmental and Engineering Geophysics, Malmö, Sweden, 3–7 September 2017. [Google Scholar]
- Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S. A custom acoustic emission monitoring system for harsh environments: Application to freezing-induced damage in alpine rock walls. Geosci. Instrum. Meth. 2012, 1, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Kwiatek, G.; Plenkers, K.; Dresen, G.; JAGUARS Research Group. Source Parameters of Picoseismicity Recorded at Mponeng Deep Gold Mine, South Africa: Implications for Scaling Relations. Bull. Seismol. Soc. Am. 2011, 101, 2592–2608. [Google Scholar] [CrossRef]
- Bohnhoff, M.; Kwiatek, G.; Dresen, G. Von der Gesteinsprobe bis zur Plattengrenze: Skalenübergreifende Analyse von Bruchprozessen. Syst. Erde 2016, 6, 50–55. (In German) [Google Scholar]
- Kwiatek, G.; Bulut, F.; Bohnhoff, M.; Dresen, G. High-resolution analysis of seismicity induced at Berlín geothermal field, El Salvador. Geothermics 2014, 52, 98–111. [Google Scholar] [CrossRef]
- Kwiatek, G.; Bohnhoff, M.; Dresen, G.; Schulze, A.; Schulte, T.; Zimmermann, G.; Huenges, E. Microseismicity induced during fluid-injection: A case study from the geothermal site at Groß Schönebeck, North German Basin. Acta Geophys. 2010, 58, 995–1020. [Google Scholar] [CrossRef] [Green Version]
- Harrington, R.M.; Kwiatek, G.; Moran, S.C. Self-similar rupture implied by scaling properties of volcanic earthquakes occurring during the 2004-2008 eruption of Mount St. Helens, Washington. J. Geophys. Res. 2015, 120, 4966–4982. [Google Scholar] [CrossRef] [Green Version]
- Kwiatek, G.; Martinez Garzon, P.; Dresen, G.; Bohnhoff, M.; Sone, H.; Hartline, C. Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field. J. Geophys. Res. 2015, 120, 7085–7101. [Google Scholar] [CrossRef] [Green Version]
- Kwiatek, G.; Ben-Zion, Y. Theoretical limits on detection and analysis of small earthquakes. J. Geophys. Res. 2016, 21, 5898–5916. [Google Scholar] [CrossRef]
- Madariaga, R. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 1976, 66, 639–666. [Google Scholar]
- Brune, J.N. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 1970, 75, 4997–5009. [Google Scholar] [CrossRef]
- Hanks, T.; Kanamori, H. A moment magnitude scale. J. Geophys. Res. 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Manthei, G.; Eisenblätter, J.; Dahm, T. Moment Tensor Evaluation of Acoustic Emission Sources in Salt Rock. Constr. Build. Mater. 2001, 15, 297–309. [Google Scholar] [CrossRef]
- Kwiatek, G.; Marinez-Garzon, P.; Plenkers, K.; Leonhardt, M.; Zang, A.; Specht, S.; Dresen, G.; Bohnhoff, M. Insights into complex sub-decimeter fracturing processes occurring during a water-injection experiment at depth in Äspö Hard Rock Laboratory, Sweden. J. Geophys. Res. Sol. Earth 2018. [Google Scholar] [CrossRef]
- Manthei, G.; Eisenblätter, J.; Spies, T. Source Mechanisms of Acoustic Emission Events between huge Underground Cavities in Rock Salt. In Proceedings of the Advances in Acoustic Emission 2007—Proceedings of 6th International Conference on Acoustic Emission, Lake Tahoe, NV, USA, 28 October–2 November 2007; pp. 288–293. [Google Scholar]
- Manthei, G. Moment tensor evaluation of acoustic emission sources in rock. In Rock Mechanics and Engineering; Feng, X.-T., Ed.; CRC Press/Balkema: Leiden, The Netherlands, 2017; Volume 4, pp. 478–527. ISBN 9781138027640. [Google Scholar]
- Kwiatek, G.; Ben-Zion, Y. Assessment of P and S wave energy radiated from very small shear-tensile seismic events in a deep South African mine. J. Geophys. Res. 2013, 118, 3630–3641. [Google Scholar] [CrossRef]
- Kwiatek, G.; Goebel, T.; Dresen, G. Seismic moment tensor and b value variations over successive seismic cycles in laboratory stick-slip experiments. Geophys. Res. Lett. 2014, 41, 5838–5846. [Google Scholar] [CrossRef]
- Lockner, D.A. The Role of Acoustic Emission in the Study of Rock. Int. J. Rock Mech. Min. Sci. 1993, 30, 883–899. [Google Scholar] [CrossRef]
- Yabe, Y.; Philipp, J.; Nakatani, M.; Morema, G.; Naoi, M.; Kawakata, H.; Igarashi, T.; Dresen, G.; Ogasawara, H.; JAGUARS Research Group. Observation of numerous aftershocks of an 1.9 earthquake with an AE network installed in a deep gold mine in South Africa. Earth Planets Space 2009, 61, e49–e52. [Google Scholar] [CrossRef]
- Moriya, H.; Naoi, M.; Nakatani, M.; van Aswegen, G.; Murakami, O.; Kgarume, T.; Ward, A.K.; Durrheim, R.J.; Philipp, J.; Yabe, Y.; et al. Delineation of large localized damage structures forming ahead of an active mining front by using advanced acoustic emission mapping techniques. Int. J. Rock Mech. Min. 2015, 79, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Manthei, G.; Eisenblätter, J.; Spies, T. Determination of Wave Attenuation in Rock Salt in the Frequency Range 1–100 kHz using Located Acoustic Emission Events. J. Acoust. Emiss. 2006, 24, 179–186. [Google Scholar]
- Plenkers, K.; Kwiatek, G.; Nakatani, M.; Dresen, G.; JAGUARS Research Group. Observation of Seismic Events with Frequencies f > 25 kHz at Mponeng Gold Mine, South Africa. Seism. Res. Lett. 2010, 81, 467–479. [Google Scholar] [CrossRef]
- Spies, T.; Eisenblätter, J. Acoustic emission investigation of microcrack generation at geological boundaries. Eng. Geol. 2001, 61, 181–188. [Google Scholar] [CrossRef]
- Philipp, J.; Plenkers, K.; Gärtner, G.; Teichmann, L. On the potential of In-Situ Acoustic Emission (AE) technology for the monitoring of dynamic processes in salt mines. In Proceedings of the Conference on Mechanical Behavior of Salt, South Dakota School of Mines and Technology, Mechanical Behavior of Salt VIII, Rapid City, SD, USA, 26–28 May 2015; Lance, R., Mellegard, K., Hansen, F., Eds.; CRC Press/Balkema: Leiden, The Netherlands, 2015; pp. 89–98. ISBN 9781138028401. [Google Scholar]
- Spies, T.; Hesser, J.; Eisenblätter, J.; Eilers, J. Measurements of acoustic emission during backfilling of large excavations. In Proceedings of the 6th International Symposium on Rockbursts and Seismicity Mines (RaSiM6), Perth, Australia, 9–11 March 2005; pp. 379–384. [Google Scholar]
- Becker, D.; Cailleau, B.; Dahm, T.; Shapiro, S.; Kaiser, D. Stress triggering and stress memory observed from acoustic emission records in a salt mine. Geophys. J. Int. 2010, 182, 933–948. [Google Scholar] [CrossRef] [Green Version]
- Eisenblätter, J.; Manthei, G.; Meister, D. Monitoring of Microcrack Formation around Galleries in Salt Rock. In Proceedings of the Sixth Conference on Acoustic Emission/Microseismic Activity in Geologic Structures and Materials, Pennsylvania State University, University Park, PA, USA, 9–11 June 1998; Hardy, H.R., Jr., Ed.; Trans Tech Publications: Clausthal-Zellerfeld, Germany, 1998; pp. 227–243. [Google Scholar]
- Manthei, G.; Philipp, J.; Dörner, D. Acoustic Emission monitoring around gas-pressure loaded boreholes in rock salt. In Mechanical Behavior of Salt VII; Berest, P.B., Ghoreychi, M., Hadj-Hassen, F., Tijani, M., Eds.; Taylor & Francis (Balkema): London, UK, 2012; pp. 185–192. ISBN 9780415621229. [Google Scholar]
- Zang, A.; Stephansson, O.; Stenberg, L.; Plenkers, K.; Specht, S.; Milkereit, K.; Schill, E.; Kwiatek, G.; Dresen, G.; Zimmermann, G.; et al. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophys. J. Int. 2017, 208, 790–813. [Google Scholar] [CrossRef]
- Hsu, N.N.; Breckenridge, F. Characterization of acoustic emission sensors. Mater. Eval. 1981, 39, 60–68. [Google Scholar]
- Theobald, P.D.; Esward, T.J.; Dowson, S.P.; Preston, R.C. Acoustic emission transducers development of a facility for traceable out-of-plane displacement calibration. Ultrasonics 2005, 43, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Castagnede, B.; Sachse, W. Miniaturized capacitive transducer for detection of broadband ultrasonic signals. Rev. Sci. Instrum. 1989, 60, 2785–2788. [Google Scholar] [CrossRef]
- Manthei, G. Characterization of Acoustic Emission Sources in a Rock Salt Specimen under Triaxial Compression. Bull. Seismol. Soc. Am. 2005, 95, 1674–1700. [Google Scholar] [CrossRef]
- McLaskey, G.; Glaser, S. Acoustic emission sensor calibration for absolute source measurements. J. Nondest. Eval. 2012, 31, 157–168. [Google Scholar] [CrossRef]
- Ono, K. Critical examination of ultrasonic transducer characteristics and calibration methods. Res. Nondestruct. Eval. 2017. [Google Scholar] [CrossRef]
- Ono, K. Calibration Methods of Acoustic Emission Sensors. Materials 2016, 9, 508. [Google Scholar] [CrossRef] [PubMed]
- Manthei, G. Characterization of AE Sensors for Moment Tensor Analysis. In Proceedings of the International Acoustic Emission Conference, Kumamoto University, Kumamoto, Japan, 12–15 September 2010; pp. 19–24. [Google Scholar]
- Plenkers, K.; Schorlemmer, D.; Kwiatek, G.; JAGUARS Research Group. On the Probability of Detecting Picoseismicity. Bull. Seismol. Soc. Am. 2011, 101, 2579–2591. [Google Scholar] [CrossRef]
- Naoi, M.; Nakatani, M.; Horiuchi, S.; Yabe, Y.; Philipp, J.; Kgarume, T.; Morema, G.; Khambule, S.; Masakale, T.; Ribeiro, L.; et al. Frequency-magnitude distribution of –3.7 ≤ Mw ≤ 1 mining-induced earthquakes around a mining front and b-value invariance with post-blast time. Pure Appl. Geophys. 2013, 171, 2665–2684. [Google Scholar] [CrossRef]
- Gischig, V.S.; Doetsch, J.; Maurer, H.; Krietsch, H.; Amann, F.; Evans, K.F.; Nejati, M.; Jalali, M.; Valley, B.; Obermann, A.C.; et al. On the link between stress field and small-scale hydraulic fracture growth in anisotropic rock derived from microseismicity. Solid Earth 2018, 9, 39–61. [Google Scholar] [CrossRef] [Green Version]
- Kwiatek, G.; Plenkers, K.; Nakatani, M.; Yabe, Y.; Dresen, G.; JAGUARS Research Group. Frequency-magnitude characteristics down to magnitude –4.4 for induced seismicity recorded at Mponeng gold mine, South Africa. Bull. Seismol. Soc. Am. 2010, 100, 1167–1173. [Google Scholar] [CrossRef]
- Eisenblätter, J.; Spies, T. Ein Magnitudenmaβ für Schallemissionsanalyse und Mikroakustik. In Deutsche Gesellschaft für zerstörungsfreie Prüfung; 12. Kolloquium Schallemission; DGZfP Berichtsband: Jena, Germany, 2000; pp. 29–41. (In German) [Google Scholar]
- Sasaki, S.; Ishida, T.; Kanagawa, T. Source location and focal mechanisms of AE events during the hydraulic fracturing. In CRIEPI Rep. U86032; Central Research Institute of Electric Power Industry: Abiko, Japan, 1987. [Google Scholar]
- Ohtsu, M. Simplified Moment Tensor Analysis and Unified Decomposition of Acoustic Emission Sources: Application to In Situ Hydrofracturing Test. J. Geophys. Res. 1991, 96, 6211–6221. [Google Scholar] [CrossRef]
- Young, R.P.; Collins, D.S. Monitoring an experimental tunnel seal in granite using acoustic emission and ultrasonic velocity. In Rock Mechanics for Industry; Amadei, B., Kranz, R.L., Scott, G.A., Smeallie, P.H., Eds.; Balkema: Leiden, The Netherlands, 1999; pp. 869–876. [Google Scholar]
- Young, R.P.; Hazzard, J.F.; Pettitt, W.S. Seismic and micromechanical studies of rock fracture. Geophys. Res. Lett. 2000, 1767–1770. [Google Scholar] [CrossRef]
- Young, R.P.; Collins, D.S. Seismic studies of rock fracture at the Underground Research Laboratory, Canada. Int. J. Rock Mech. 2001, 38, 787–799. [Google Scholar] [CrossRef]
- Collins, D.S.; Pettitt, W.S.; Young, R.P. High-resolution mechanics of a micro-earthquake sequence. Pure Appl. Geophys. 2002, 159, 197–219. [Google Scholar] [CrossRef]
- Young, R.P.; Collins, D.S.; Reyes-Montes, J.M.; Baker, C. Quantification and interpretation of seismicity. Int. J. Rock Mech. 2004, 41, 1317–1327. [Google Scholar] [CrossRef]
- Dahm, T.; Manthei, G.; Eisenblätter, J. Relative Moment Tensors of Thermally Induced Microcracks in Salt Rock. Tectonophysics 1998, 289, 61–74. [Google Scholar] [CrossRef]
- Manthei, G.; Eisenblätter, J.; Salzer, K. Acoustic Emission Studies on Thermally and Mechanically Induced Cracking in Salt Rock. In Proceedings of the Sixth Conference on Acoustic Emission/Microseismic Activity in Geologic Structures and Materials, Pennsylvania State University, University Park, PA, USA, 9–11 June 1998; Hardy, H.R., Jr., Ed.; Trans Tech Publications: Clausthal-Zellerfeld, Germany, 1998; pp. 245–265. [Google Scholar]
- Dahm, T.; Manthei, G.; Eisenblätter, J. Automated Moment Tensor Inversion to Estimate Source Mechanism of Hydraulically Induced Micro-Seismicity in Salt Rock. Tectonophysics 1999, 306, 1–17. [Google Scholar] [CrossRef]
- Manthei, G.; Eisenblätter, J.; Kamlot, P. Stress measurements in salt mines using a special hydraulic fracturing borehole tool. In Proceedings of the International Symposium on Geotechnical Measurements and Modelling, Karlsruhe, Germany, 23–26 September 2003; pp. 355–360. [Google Scholar]
- Pettitt, W.S.; Baker, C.; Young, R.P. Using acoustic emission and ultrasonic techniques for assessment of damage around critical engineering structures. In Proceedings of 5th North American Rock Mechanics Symposium; University of Toronto Press: Toronto, ON, Canada, 2002; pp. 1161–1170. [Google Scholar]
- Spies, T.; Hesser, J.; Eisenblätter, J.; Eilers, G. Monitoring of the rockmass in the final repository Morsleben: Experiences with acoustic emission measurements and conclusions. In Proceedings of the DisTec 2004, Berlin, Germany, 26–28 April 2004; pp. 303–311. [Google Scholar]
- Manthei, G.; Eisenblätter, J.; Spies, T.; Eilers, G. Source Parameters of Acoustic Emission Events in Salt Rock. J. Acoust. Emiss. 2001, 19, 100–108. [Google Scholar]
- Köhler, D.; Spies, T.; Dahm, T. Seismicity patterns and variation of the frequency-magnitude distribution of microcracks in salt. Geophys. J. Int. 2009, 179, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Becker, D.; Cailleau, B.; Kaiser, D.; Dahm, T. Macroscopic Failure Processes at Mines Revealed by Acoustic Emission (AE) Monitoring. Bull. Seismol. Soc. Am. 2014, 104, 1785–1801. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, M.; Yabe, Y.; Philipp, J.; Morema, G.; Stanchits, S.; Dresen, G. Acoustic emission measurements in a deep gold mine in South Africa: project overview and some typical waveforms. Seismol. Res. Lett. 2008, 79, 311. [Google Scholar]
- Naoi, M.; Nakatani, M.; Yabe, Y.; Kwiatek, G.; Igarashi, T.; Plenkers, K. Twenty thousand aftershocks of a very small (M 2) earthquake and their relation to the mainshock rupture and geological structures. Bull. Seismol. Soc. Am. 2011, 101, 2399–2407. [Google Scholar] [CrossRef]
- Davidsen, J.; Kwiatek, G. Earthquake Interevent Time Distribution for Induced Micro-, Nano-, and Picoseismicity. Phys. Rev. Lett. 2013, 110. [Google Scholar] [CrossRef] [PubMed]
- Davidsen, J.; Kwiatek, G.; Dresen, G. No Evidence of Magnitude Clustering in an Aftershock Sequence of Nano- and Picoseismicity. Phys. Rev. Lett. 2012, 108. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Reiter, K.; Heidbach, O.; Zang, A.; Kwiatek, G.; Stromeyer, D.; Dahm, T.; Dresen, G.; Hofmann, G. Mining-Induced Stress Transfer and Its Relation to a Mw 1.9 Seismic Event in an Ultra-deep South African Gold Mine. Pure Appl. Geophys. 2015, 172, 2557–2570. [Google Scholar] [CrossRef]
- Yabe, Y.; Nakatani, M.; Naoi, M.; Philipp, J.; Janssen, C.; Watanabe, T.; Katsura, T.; Kawakata, H.; Dresen, G.; Ogasawara, H. Nucleation process of an M2 earthquake in a deep gold mine in South Africa inferred from on-fault foreshock activity. J. Geophys. Res. Sol. Earth 2015, 120, 5574–5594. [Google Scholar] [CrossRef] [Green Version]
- Kozłowska, M.; Orlecka-Sikora, B.; Kwiatek, G.; Boettcher, M.S.; Dresen, G. Nanoseismicity and picoseismicity rate changes from static stress triggering caused by a Mw 2.2 earthquake in Mponeng gold mine, South Africa. J. Geophys. Res. Sol. Earth 2015, 120, 290–307. [Google Scholar] [CrossRef] [Green Version]
- Dörner, D.; Philipp, J.; Manthei, G.; Popp, T. Monitoring of AE activity around a large-diameter borehole in rock salt. In Proceedings of the International Acoustic Emission Conference, Progress in Acoustic Emission XVI, Okinawa, Japan, 21–24 October 1986; pp. 187–192. [Google Scholar]
- Popp, T.; Minkley, W.; Wiedemann, M.; Salzer, K.; Dörner, D. Gas pressure effects on salt—the large scale in-situ test Merkers. In Proceedings of the Conference on Mechanical Behavior of Salt, South Dakota School of Mines and Technology, Mechanical Behavior of Salt VIII, Rapid City, SD, USA, 26–28 May 2015; Lance, R., Mellegard, K., Hansen, F., Eds.; CRC Press/Balkema: Leiden, The Netherlands, 2015; pp. 127–136. [Google Scholar]
- Plenkers, K.; Philipp, P.; Dörner, D.; Minkley, W.; Popp, T.; Wiedemann, M. Observation of seismic and aseismic rock behavior during large-scale loading experiment. In Proceedings of the Mechanical Behavior of Salt IX, Hannover, Germany, 12–14 September 2018. [Google Scholar]
- Le Gonidec, Y.; Schubnel, A.; Wassermann, J.; Gibert, D.; Nussbaum, C.; Kergosien, B.; Sarout, J.; Maineult, A.; Guéguen, Y. Field-scale acoustic investigation of a damaged anisotropic shale during a gallery excavation. Int. J. Rock Mech. Min. 2012, 51, 136–148. [Google Scholar] [CrossRef]
- Naoi, M.; Nakatani, M.; Otsuki, K.; Yabe, Y.; Kgarume, T.; Murakami, O.; Masakale, T.; Ribeiro, L.; Ward, A.; Moriya, H.; et al. Steady activity of microfractures on geological faults loaded by mining stress. Tectonophysics 2015, 100–114. [Google Scholar] [CrossRef]
- Naoi, M.; Nakatani, M.; Kgarume, T.; Khambule, S.; Masakale, T.; Ribeiro, L.; Philipp, J.; Horiuchi, S.; Otsuki, K.; Miyakawa, K.; et al. Quasi-static slip patch growth to 20 m on a geological fault inferred from acoustic emissions in a South African gold mine. J. Geophys. Res. 2015, 120, 1692–1707. [Google Scholar] [CrossRef] [Green Version]
- Naoi, M.; Nakatani, M.; Igarashi, T.; Otsuki, K.; Yabe, Y.; Kgarume, T.; Murakami, O.; Masakale, T.; Ribeiro, L.; Ward, A.; et al. Unexpectedly frequent occurrence of very small repeating earthquakes (–5.1 ≤ Mw ≤ –3.6) in a South African gold mine: Implications for monitoring intraplate faults. J. Geophys. Res. Sol. Earth 2015, 120, 8478–8493. [Google Scholar] [CrossRef]
- López-Comino, J.A.; Heimann, S.; Cesca, S.; Milkereit, C.; Dahm, T.; Zang, A. Automated full waveform detection and location algorithm of acoustic emissions from hydraulic fracturing experiment. Proc. Eng. 2017, 191, 697–702. [Google Scholar] [CrossRef]
- Jalali, M.; Gischig, V.; Doetsch, J.; Näf, R.; Krietsch, H.; Klepikova, M.; Amann, F.; Giardini, D. Transmissivity changes and microseismicity induced by small-scale hydraulic fracturing tests in crystalline rock. Geophys. Res. Lett. 2018, 45, 1–9. [Google Scholar] [CrossRef]
- Allen, R. Automatic phase pickers: their present use and future prospects. Bull. Seismol. Soc. Am. 1982, 72, 225–242. [Google Scholar]
- Kamlot, P.; Günther, R.-M.; Stockmann, N.; Gärtner, G. Modeling of strain softening and dilatancy in the mining system of the southern flank of the Asse II mine. In Mechanical Behavior of Salt VII; Berest, P.B., Ghoreychi, M., Hadj-Hassen, F., Tijani, M., Eds.; Taylor & Francis (Balkema): London, UK, 2012; pp. 327–336. [Google Scholar]
- Kamlot, P.; Weise, D.; Gärtner, G.; Teichmann, L. Drift sealing in the Asse II mine as a component of the emergency concept—Assessment of the hydro-mechanical functionality. In Mechanical Behavior of Salt VII; Berest, P.B., Ghoreychi, M., Hadj-Hassen, F., Tijani, M., Eds.; Taylor & Francis (Balkema): London, UK, 2012; pp. 479–489. [Google Scholar]
- Kaiser, D.; Spies, T.; Schmitz, H. Mikroakustisches Monitoring in Bergwerken zur Bewertung aktueller Rissprozesse. In Proceedings of the GeoMonitoring 2013, Hannover, Germany, 14–15 March 2013; Sörgel, U., Schack, L., Eds.; 2013; pp. 39–55. (In German). [Google Scholar]
- Lavrov, A.; Vervoort, A.; Filimonov, Y.; Wevers, M.; Mertens, J. Acoustic emission in host-rock material for radioactive waste disposal: comparison between clay and rock salt. Bull. Eng. Geol. Environ. 2002, 61, 379–387. [Google Scholar] [CrossRef]
- Waldhauser, F.; Ellsworth, W.L. A double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, California. Bull. Seismol. Soc. Am. 2000, 90, 1353–1368. [Google Scholar] [CrossRef]
- Ortlepp, W.D. Observation of mining-induced faults in an intact rock mass at depth. Int. J. Rock Mech. Min. 2012, 37, 423–436. [Google Scholar] [CrossRef]
- van Aswegen, G. Forensic rock mechanics, Ortlepp shears and other mining induced structures. In Proceedings of the 8th International Symposium on Rockbursts and Seismicity in Mines (RaSiM8), St. Petersburg and Moscow, Russia, 1–8 September 2013; Balkema: Rotterdam, The Netherlands, 2013; pp. 1–19. [Google Scholar]
- Heesakkers, V.; Murphy, S.K.; Reches, Z. Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa. Pure Appl. Geophys. 2011, 168, 2395–2425. [Google Scholar] [CrossRef]
- McGarr, A. Violent deformation of rock near deep-level, tabular excavation-seismic events. Bull. Seismol. Soc. Am. 1971, 61, 1453–1466. [Google Scholar]
- Naoi, M.; Nakatani, M.; Yabe, Y.; Philipp, J.; JAGUARS Research Group. Very high frequency AE (<200 kHz) and micro seismicity observation in a deep South African gold mine—Evaluation of the acoustic properties of the site by in-situ transmission test. Seismol. Res. Lett. 2008, 79, 330. [Google Scholar]
- Stacey, T.R.; Wesseloo, J. In situ stresses in mining areas in South Africa. J. S. Afr. Inst. Min. Metall. 1998, 365–368. [Google Scholar]
- Haimson, B.C.; Cornet, F.H. ISRM Suggested Methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int. J. Rock Mech. Min. 2003, 40, 1011–1020. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Valley, B.; Dusseault, M.B.; Duff, D. Hydraulic fracturing mine back trials—Design rationale and project status. In Proceedings ISRM International Conference for Effective and Sustainable Hydraulic Fracturing; International Society for Rock Mechanics, IntechOpen Limited: London, UK, 2013. [Google Scholar] [CrossRef]
- Warpinski, N.R.; Mayerhofer, M.; Agarwal, K.; Du, J. Hydraulic-fracture geomechanics and microseismic-source mechanisms. SPE J. 1992, 18, 766–780. [Google Scholar] [CrossRef]
- Economides, M.J.; Nolte, K.G.; Ahmed, U.; Schlumberger, D. Reservoir Stimulation; Wiley: Chichester, UK, 2000. [Google Scholar]
- Häring, M.O.; Schanz, U.; Ladner, F.; Dyer, B.C. Characterisation of the Basel 1 enhanced geothermal system. Geothermics 2008, 37, 469–495. [Google Scholar] [CrossRef]
- Schindler, M.; Nami, P.; Schellschmidt, R.; Teza, D.; Tischner, T. Summary of hydraulic stimulation operations in the 5 km deep crystalline HDR/EGS reservoir at Soultz-sous-Forêts. In Proceedings of the 33rd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 28–30 January 2008; pp. 325–333. [Google Scholar]
- Jeffrey, R.G. Hydraulic Fracturing of Ore Bodies. U.S. Patent No. 6,123,394, 2000. [Google Scholar]
- Niitsuma, H.; Nagano, K.; Hisamatsu, K. Analysis of acoustic emission from hydraulically induced tensile fracture of rock. J. Acoust. Emiss. 1993, 11, S1–S18. [Google Scholar]
- Guglielmi, Y.; Cappa, F.; Avouac, J.P.; Henry, P.; Elsworth, D. Seismicity triggered by fluid injection-induced aseismic slip. Science 2015, 348, 1224–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amann, F.; Gischig, V.; Evans, K.; Doetsch, J.; Jalali, R.; Valley, B.; Krietsch, H.; Dutler, N.; Villiger, L.; Brixel, B.; et al. The seismo-hydro-mechanical behaviour during deep geothermal reservoir stimulations: Open questions tackled in a decameterscale in-situ stimulation experimen. Solid Earth 2018, 9, 115–137. [Google Scholar] [CrossRef]
- Keusen, H.; Ganguin, J.; Schuler, P.; Buletti, M. Grimsel Test Site: Geology, Report; Nationale Genossenschaft für die Lagerung Radioaktiver Abfälle (NAGRA): Wettingen, Switzerland, 1989. [Google Scholar]
- Morris, J.P.; Dobson, P.; Knox, H.; Ajo-Franklin, J.; White, M.D.; Fu, P.; Burghardt, J.; Kneafsey, T.J.; Blankenship, D.; EGS Collab Team. Experimental Design for Hydrofracturing and Fluid Flow at the DOE Collab Testbed. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 12–14 February 2018. [Google Scholar]
Type of Measurements | Aim of Measurements | Characteristics |
---|---|---|
SHM in machine condition monitoring | ||
Vibration measurements | Observation of machine vibration |
|
Lubricant measurements | Identification wear particles and chemical contaminants | |
Thermography | Identification of temperature anomalies | |
Acoustic emission (AE) measurements | Identification of cracks | |
SHM in monitoring of entire structures | ||
Vibration measurements | Observation of vibration of a whole structure |
|
Fiber optics measurement | Sensing mechanisms of optical fibers are based on intensity, wavelength, and interference of the light waves |
|
Load monitoring | Observation of strain, traffic or wind |
|
Ultrasonic measurements | Observation of inhomogeneities in the material induce changes to the propagating waves |
|
In situ AE monitoring | Observation of elastic waves arising from the rapid release of energy inside material, e.g., from crack initiation and crack propagation |
|
Test Site/Project | Keyword | Publications, Year | Network/Source-Receiver Distance R/Mode of Recording | Rock Type/No. of AE Events |
---|---|---|---|---|
Underground tunnel, Japan | Hydraulic fracturing | Sasaki et al. [57], 1987 Ohtsu [58], 1991 | 17 AE sensors (up to 100 kHz), 17 accelerometers, R ≈ 1 m, trigger mode with waveforms | Siliceous sandstone 200 AEs during four hydraulic fracturing tests (including microseismic events) |
Underground research laboratory (URL), Canada, TSX Project | Excavation/tunnel sealing | Young & Collins [59], 1999 Young et al. [60], 2000 Young & Collins [61], 2001 Collins & Pettitt [62], 2002 Young & Collins [63], 2004 | 16 AE sensors (40 to 400 kHz), 16 accelerometers, R ≈ 10 m trigger mode with waveforms | Granite 15,350 AEs in 5 months approximately 400 m depth |
Salt mine Asse, Germany | Cavity stability/heating | Eisenblätter et al. [41], 1998 Dahm & Manthei, [64], 1998 | 29 AE sensors (100 kHz), R ≈ 100 m, trigger mode with waveforms | Salt rock, 250,000 AEs in 11 months |
Salt mine Bernburg, Germany | Hydraulic fracturing | Manthei et al. [65], 1998 Dahm et al. [66], 1999 | 8 AE sensors (up to 250 kHz) R ≈ 10 m | Salt rock 1500 AEs during eleven hydraulic fracturing tests |
Manthei et al. [26], 2001 Manthei et al. [67], 2003 | trigger mode with waveforms 8 AE sensors (up to 250 kHz) and hydraulic fracturing tool, R ≈ 5 m trigger mode with waveforms | Salt rock 15,000 AEs during four hydraulic fracturing tests | ||
Äspö Hard Rock Laboratory (HRL), Sweden | Excavation | Pettitt et al. [68], 2002 | 24 AE sensors (35 to 350 kHz) R ≈ 10 m, trigger mode with waveforms | Dioritic granite 884 AEs in 24 hours |
Salt mine Morsleben, Germany (southern part) | - | Spies et al. [69], 2004 Manthei et al. [28], 2007 | 24 AE sensors (up to 100 kHz) R ≈ 100 m, trigger mode | Salt rock 50,000 AEs in one month approximately 400 m depth |
Salt mine Morsleben, Germany (central part) | Backfilling Cavity stability | Spies & Eisenblätter [37], 2001 Manthei et al. [70], 2001 Spies et al. [39], 2005 Manthei et al. [35], 2006 Köhler et al. [71], 2009 Becker et al. [40], 2010 Becker et al. [72], 2014 | 48 AE sensors (up to 100 kHz) R ≈ 200 m, trigger mode | Salt rock 100,000 AEs in one month approximately 400 m depth |
Mponeng gold mine, Carletonville, South Africa JAGUARS project | Pillar stress loading | Nakatani et al. [73], 2008 Yabe et al. [33], 2009 Plenkers et al. [36], 2010 Kwiatek et al. [55], 2010 Plenkers et al. [52], 2011 Kwiatek et al. [16], 2011 Naoi et al. [74], 2011 Davidsen et al. [75], 2013 Kwiatek & BenZion [30], 2013 Davidsen et al. [76], 2012 Ziegler et al. [77], 2015 Yabe et al. [78], 2015 Kozlowska et al. [79], 2015 | 8 AE sensors (1 to 200 kHz) and 1 triaxial accelerometer, R ≈ 10 m to 200 m, trigger mode with waveforms | Quarzite/Gabbro more than 500,000 AEs in 2 years approximately 3200 m depth |
Salt mine Merkers, Germany | Gas loading | Doerner et al. [80], 2012 Manthei et al. [42], 2012 Popp et al. [81], 2015 Plenkers et al. [82], 2018 | 8 AE sensors (1 to 150 kHz) and 4 AE sensors (1 to 80 kHz), R ≈ 10 m to 60 m, trigger mode with waveforms | Salt rock more than 5,000,000 AEs in 2 years approximately 300 m depth |
Mont Terri URL, St Ursanne, Switzerland | Excavation | Le Gonidec et al. [83], 2012 | 16 AE sensors (unknown) and 4 AE sensors (2 kHz to 60 kHz) R ≈ 0.3 m to 6.5 m, trigger mode with waveforms | Opalinus clay more than 20,000 AEs in 2 weeks (2127 located), 300 m depth |
Cooke 4 gold mine, South Africa, SATREPS project | Mining stress | Naoi et al. [53], 2013 Naoi et al. [84], 2015 Naoi et al. [85], 2015 Naoi et al. [86], 2015 Moriya et al. [34], 2015 | 24 AE sensors (1 to 50 kHz) and 6 triaxial accelerometers (50 Hz to 10 or 25 kHz), R ≈ 0 m to 180 m, trigger mode with waveforms | Quartzite 365,237 AEs in approximately 3 months 1000 m depth |
Salt mine Asse, Germany | Cavity stability | Philipp et al. [38], 2015 | 16 AE sensors (1 to 100 kHz) R ≈ 0 m to 180 m, trigger mode with waveforms | Salt rock more than 100,000 AEs in 10 month, 300 m depth |
Äspö Hard Rock Laboratory (HRL), Sweden | Hydraulic fracturing | Zang et al. [43], 2017 López et al. [87], 2017 Kwiatek et al. [27], 2018 | 11 AE sensors (1 to 100 kHz) and 4 accelerometers (50 Hz to 25 kHz), R ≈ 10 m to 30 m, trigger mode with waveforms and continuous recording | Granodiorite/Diorite-gabbro/Granite 196 located AE events during six hydraulic fracturing tests, (more than 4000 AEs during one hydraulic fracturing fracturing test in continuous data) 400 m depth |
Grimsel Test Site (GTS), Switzerland | Hydraulic fracturing | Gischig et al. [54], 2018 Jalali et al. [88], 2018 | 28 AE sensors (1 to 100 kHz) and 4 accelerometers (50 Hz to 25 kHz), R ≈ 9 m to 30 m, trigger mode with waveforms and continuous recording | Granodiorite, 2,000 AEs during three hydraulic fracturing tests 400 m to 500 m depth |
Salt mine Merkers, Germany | Brine loading | Plenkers et. al. [82], 2018 | 8 AE sensors (1 to 100 kHz) and 4 AE sensors (1 to 150 kHz) and 4 AE sensors (1 to 80 kHz), R ≈ 5 m to 30 m, trigger mode with waveforms and continuous recording | Salt rock approximately 300 m depth |
Institute | Main Contributors |
---|---|
Japan | - |
Earthquake Research Institute of the University of Tokyo | M. Nakatani, M. Naoi; |
Tohoku University Ritsumeikan University | Y. Yabe H. Ogasawara |
Germany | - |
GFZ: German Research Centre for Geosciences Potsdam | K. Plenkers, G. Kwiatek, G. Dresen, S. Stanchits |
GMuG mbH, Bad Nauheim | J. Philipp |
South Africa | - |
Seismogen CC, Carletonville AngloGoldAshanti Ltd. Institute of Mine Seismology (IMS), Stellenbosch Council for Scientific and Industrial Research (CSIR), Johannesburg | G. Morema, T. Ward C. Miller, T. Nortje, R. Carstens E. Pinder, G. van Aswegen S. Spottiswoode |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manthei, G.; Plenkers, K. Review on In Situ Acoustic Emission Monitoring in the Context of Structural Health Monitoring in Mines. Appl. Sci. 2018, 8, 1595. https://doi.org/10.3390/app8091595
Manthei G, Plenkers K. Review on In Situ Acoustic Emission Monitoring in the Context of Structural Health Monitoring in Mines. Applied Sciences. 2018; 8(9):1595. https://doi.org/10.3390/app8091595
Chicago/Turabian StyleManthei, Gerd, and Katrin Plenkers. 2018. "Review on In Situ Acoustic Emission Monitoring in the Context of Structural Health Monitoring in Mines" Applied Sciences 8, no. 9: 1595. https://doi.org/10.3390/app8091595
APA StyleManthei, G., & Plenkers, K. (2018). Review on In Situ Acoustic Emission Monitoring in the Context of Structural Health Monitoring in Mines. Applied Sciences, 8(9), 1595. https://doi.org/10.3390/app8091595