Structure and Photoelectrical Properties of Natural Photoactive Dyes for Solar Cells
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. UV-Vis Absorption Spectra in Experiment and Theory
3.2. Electrochemical Properties
3.3. Photoelectric Properties of DSSCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- O’Regan, B.C.; Durrant, J.R. Kinetic and energetic paradigms for dye-sensitized solar cells: Moving from the ideal to the real. Acc. Chem. Res. 2009, 42, 1799–1808. [Google Scholar] [CrossRef]
- Haid, S.; Marszalek, M.; Mishra, A.; Wielopolski, M.; Teuscher, J.; Moser, J.E.; Humphry-Baker, R.; Zakeeruddin, S.M.; Gratzel, M.; Bäuerle, P. Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor-acceptor dyes. Adv. Funct. Mater. 2012, 22, 1291–1302. [Google Scholar] [CrossRef]
- Hua, Y.; Chang, S.; Huang, D.D.; Zhou, X.; Zhu, X.J.; Zhao, J.Z.; Chen, T.; Wong, W.Y.; Wong, W.K. Significant improvement of dye-sensitized solar cell performance using simple phenothiazine-based dyes. Chem. Mater. 2013, 25, 2146–2153. [Google Scholar] [CrossRef]
- Yun, S.N.; Hagfeldt, A.; Ma, T.L. Pt-free counter electrode for dye-sensitized solar cells with high Efficiency. Adv. Mater. 2014, 26, 6210–6237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.J.; Prabakaran, K.; Lee, B.; Chang, S.H.; Harutyunyan, B.; Guo, P.J.; Butler, M.R.; Timalsina, A.; Bedzyk, M.J.; Ratner, M.A.; et al. Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. J. Am. Chem. Soc. 2015, 137, 4414–4423. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Roslan, N.; Ya’acob, M.E.; Radzi, M.A.M.; Hashimoto, Y.; Jamaludin, D.; Chen, G. Dye sensitized solar cell (DSSC) greenhouse shading: New insights for solar radiation manipulation. Renew. Sustain. Energy Rev. 2018, 92, 171–186. [Google Scholar] [CrossRef]
- Carlo, G.D.; Biroli, A.O.; Tessore, F.; Caramori, S.; Pizzotti, M. β-Substituted ZnII porphyrins as dyes for DSSC: A possible approach to photovoltaic windows. Coord. Chem. Rev. 2018, 358, 153–177. [Google Scholar] [CrossRef]
- Bahers, T.L.; Bremond, E.; Ciofini, I.; Adamo, C. The nature of vertical excited states of dyes containing metals for DSSC applications: Insights from TD-DFT and density based indexes. Phys. Chem. Chem. Phys. 2014, 16, 14435–14444. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.G.; Na, Y.; Yang, Y.L.; Fan, R.Q.; Wang, P.; Li, L. Efficiency of ruthenium dye sensitized solar cells enhanced by 2,6-bis[1-(phenylimino)ethyl]pyridine as a co-sensitizer containing methyl substituents on its phenyl rings. Phys. Chem. Chem. Phys. 2015, 17, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Nosheen, E.; Shah, S.M.; Hussain, H.; Murtaza, G. Photo-sensitization of ZnS nanoparticles with renowned ruthenium dyes N3, N719 and Z907 for application in solid state dye sensitized solar cells: A comparative study. J. Photochem. Photobiol. B Biol. 2016, 162, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.D.; Cao, Y.M.; Bai, Y.; Wang, Y.H.; Shi, Y.S.; Zhang, M.; Wang, F.F.; Pan, C.Y.; Wang, P. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem. Mater. 2010, 22, 1915–1925. [Google Scholar] [CrossRef]
- Chen, C.J.; Liao, J.Y.; Chi, Z.G.; Xu, B.J.; Zhang, X.Q.; Kuang, D.B.; Zhang, Y.; Liu, S.W.; Xu, J.R. Metal-free organic dyes derived from triphenylethylene for dye-sensitized solar cells: Tuning of the performance by phenothiazine and carbazole. J. Mater. Chem. 2012, 22, 8994–9005. [Google Scholar] [CrossRef]
- Venkateswararao, A.; Thomas, K.R.J.; Lee, C.P.; Li, C.T.; Ho, K.C. Organic dyes containing carbazole as donor and π-linker: Optical, electrochemical, and photovoltaic properties. ACS Appl. Mater. Interfaces 2014, 6, 2528–2539. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, K.; Swetha, T.; Kapil, G.; Pandey, S.S.; Hayase, S.; Singh, S.P. Simple metal-free dyes derived from triphenylamine for dssc: A comparative study of two different anchoring group. Electrochim. Acta 2015, 169, 256–263. [Google Scholar] [CrossRef]
- Sun, C.; Li, Y.; Song, P.; Ma, F. An experimental and theoretical investigation of the electronic structures and photoelectrical properties of ethyl red and carminic acid for dssc application. Materials 2016, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Kushwaha, S.; Mukkamala, R.; Siripina, V.K.; Aidhen, I.S.; Rajakumar, B.; Kothandaraman, R. Metal-free bipolar/octupolar organic dyes for DSSC application: A combined experimental and theoretical approach. Org. Electron. 2016, 36, 177–184. [Google Scholar] [CrossRef]
- Mohankumar, V.; Pandian, M.S.; Ramasamy, P. Computational modelling on donor configuration for wide solar energy capture. Mater. Lett. 2018, 219, 216–219. [Google Scholar] [CrossRef]
- Panicker, J.S.; Balan, B.; Soman, S.; Ghosh, T.; Nair, V.C. Thiophene-bithiazole based metal-free dye as DSSC sensitizer: Effect of co-adsorbents on photovoltaic efficiency. J. Chem. Sci. 2016, 128, 101–110. [Google Scholar] [CrossRef]
- Richhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B. Natural dyes for dye sensitized solar cell: A review. Renew. Sustain. Energy Rev. 2017, 69, 705–718. [Google Scholar] [CrossRef]
- Hosseinnezhad, M.; Rouhani, S.; Gharanjig, K. Extraction and application of natural pigments for fabrication of green dye-sensitized solar cells. Opto-Electron. Rev. 2018, 26, 165–171. [Google Scholar] [CrossRef]
- Gu, P.; Yang, D.Y.; Zhu, X.G.; Sun, H.; Li, J.T. Fabrication and characterization of dye-sensitized solar cells based on natural plants. Chem. Phys. Lett. 2018, 693, 16–22. [Google Scholar] [CrossRef]
- Hamadanian, M.; Safaei, -G.J.; Hosseinpour, M.; Masoomi, R. Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Mater. Sci. Semicond. Process. 2014, 27, 733–739. [Google Scholar] [CrossRef]
- Maiaugree, W.; Lowpa, S.; Towannang, M.; Rutphonsan, P.; Tangtrakarn, A.; Pimanpang, S.; Maiaugree, P.; Ratchapolthavisin, N.; Sang-aroon, W.; Jarernboon, W.; et al. A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste. Sci. Rep. 2015, 5, 15230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Ortíz, N.M.; Vazquez-Maldonado, I.A.; Perez-Espadas, A.R.; Mena-Rejon, G.J.; Azamar-Barrios, J.A.; Oskam, G. Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol. Energy Mater. Sol. Cells 2010, 94, 40–44. [Google Scholar] [CrossRef]
- Kumara, N.; Ekanayake, P.; Lim, A.; Liew, L.Y.C.; Iskandar, M.; Ming, L.C.; Senadeera, G.K.R. Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. J. Alloys Compd. 2013, 581, 186–191. [Google Scholar] [CrossRef]
- Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, S.A.; Saeidi, M.; Rahmanian, R. Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 142, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Sinha, K.; Saha, P.D.; Datta, S. Extraction of natural dye from petals of Flame of forest (Butea monosperma) flower: Process optimization using response surface methodology (RSM). Dyes Pigm. 2012, 94, 212–216. [Google Scholar] [CrossRef]
- Chang, H.; Lo, Y.J. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Sol. Energy 2010, 84, 1833–1837. [Google Scholar] [CrossRef]
- Hao, S.C.; Wu, J.H.; Huang, Y.F.; Lin, J.M. Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 2006, 80, 209–214. [Google Scholar] [CrossRef]
- Kay, A.; Graetzel, M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 1993, 97, 6272–6277. [Google Scholar] [CrossRef]
- Calogero, G.; Citro, I.; Crupi, C.; Marco, G.D. Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 132, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Chava, R.K.; Lee, W.-M.; Oh, S.-Y.; Jeong, K.-U.; Yu, Y.-T. Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer. Sol. Energy Mater. Sol. Cells. 2017, 161, 255–262. [Google Scholar] [CrossRef]
- Chava, R.K.; Kang, M. Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 2017, 692, 67–76. [Google Scholar] [CrossRef]
- Song, P.; Li, Y.Z.; Ma, F.C.; Sun, M.T. Insight into external electric field dependent photoinduced intermolecular charge transport in BHJ solar cell materials. J. Mater. Chem. C 2015, 3, 4810–4819. [Google Scholar] [CrossRef]
- Terranova, U.; Bowler, D.R. Self-consistent field method for natural anthocyanidin dyes. J. Chem. Theory Comput. 2013, 9, 3181–3188. [Google Scholar] [CrossRef]
- Namuangruk, S.; Sirithip, K.; Rattanatwan, R.; Keawin, T.; Kungwan, N.; Sudyodsuk, T.; Promarak, V.; Surakhot, Y.; Jungsuttiwong, S. Theoretical investigation of the charge-transfer properties in different meso-linked zinc porphyrins for highly efficient dye-sensitized solar cells. Dalton Trans. 2014, 43, 9166–9176. [Google Scholar] [CrossRef] [PubMed]
- Ranjitha, S.; Rajarajan, G.; Gnanendra, T.S.; Anbarasan, P.M.; Aroulmoji, V. Structural and optical properties of Purpurin for dye-sensitized solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 149, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.F.; Zhang, Y.H.; Luo, Z.W.; Song, P.; Li, Y.Z. Theoretical and experimental study on spectra, electronic structure and photoelectric properties of three nature dyes used for solar cells. J. Mol. Liq. 2017, 247, 193–206. [Google Scholar] [CrossRef]
- Qin, C.Y.; Clark, A.E. DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells. Chem. Phys. Lett. 2007, 438, 26–30. [Google Scholar] [CrossRef]
- Khadtare, S.S.; Ware, A.P.; Salunke-Gawali, S.; Jadkar, S.R.; Pingale, S.S.; Pathan, H.M. Dye sensitized solar cell with lawsone dye using a ZnO photoanode: Experimental and TD-DFT study. RSC Adv. 2015, 5, 17647–17652. [Google Scholar] [CrossRef]
- Kang, G.-J.; Song, C.; Ren, X.-F. Charge transfer enhancement in the D-π-A type porphyrin dyes: A density functional theory (DFT) and time-dependent density functional theory (TD-DFT) study. Molecules 2016, 21, 1618. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, E.; Lee, J. Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells. Carbon 2010, 48, 3715–3720. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160. [Google Scholar] [CrossRef]
- Stratmann, R.E.; Scuseria, G.E.; Frisch, M.J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218–8224. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Ordon, P.; Tachibana, A. Investigation of the role of the C-PCM solvent effect in reactivity indices. J. Chem. Sci. 2005, 117, 583–589. [Google Scholar] [CrossRef]
- Alberto, M.E.; Comuzzi, C.; Thandu, M.; Adamo, C.; Russo, N. 22π-Electrons [1.1.1.1.1] pentaphyrin as a new photosensitizing agent for water disinfection: Experimental and theoretical characterization. Theor. Chem. Acc. 2016, 135, 29. [Google Scholar] [CrossRef]
- Mazzone, G.; Alberto, M.E.; De Simone, B.C.; Marino, T.; Russo, N. Can Expanded Bacteriochlorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations. Molecules 2016, 21, 288. [Google Scholar] [CrossRef]
- Zong, H.; Wang, J.C.; Mu, X.J.; Xu, X.F.; Li, J.; Wang, X.Y.; Long, F.X.; Wang, J.X.; Sun, M.T. Physical mechanism of photoinduced intermolecular charge transfer enhanced by fluorescence resonance energy transfer. Phys. Chem. Chem. Phys. 2018, 20, 13558–13565. [Google Scholar] [CrossRef]
- Li, Q.J.; Wang, J.G.; Ding, Q.Q.; Chen, M.D.; Ma, F.C. Coupling effect on charge-transfer mechanism of surface-enhanced resonance Raman scattering. J. Raman Spectrosc. 2017, 48, 560–569. [Google Scholar] [CrossRef]
- Li, Y.Z.; Xu, B.B.; Song, P.; Ma, F.C.; Sun, M.T. J D–A−π–A system: Light harvesting, charge transfer, and molecular designing. Phys. Chem. C 2017, 121, 12546–12561. [Google Scholar] [CrossRef]
- Li, Y.Z.; Sun, C.F.; Song, P.; Ma, F.C.; Yang, Y.H. Tuning the electron-transport and electron-accepting abilities of dyes through introduction of different π-conjugated bridges and acceptors for dye-sensitized solar cells. ChemPhysChem 2017, 18, 366–383. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. G09. Available online: http://gaussian.com/glossary/g09/ (accessed on 5 June 2015).
- Al-Alwani, M.A.M.; Mohamad, A.B.; Kadhum, A.A.H.; Ludin, N.A. Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 138, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Suyitno, S.; Saputra, T.J.; Supriyanto, A.; Arifin, Z. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 148, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, D.; Mondal, B.; Mukherjee, K. Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 148, 85–92. [Google Scholar] [CrossRef]
- Manoharan, S.; Wu, J.J.; Anandan, S. Synthesis of cyanovinyl thiophene with different acceptor containing organic dyes towards high efficient dye sensitized solar cells. Dyes Pigments 2016, 133, 222–231. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. onversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115, 6382–6390. [Google Scholar] [CrossRef]
- Tian, H.; Yang, X.; Cong, J.; Chen, R.; Teng, C.; Liu, J.; Hao, Y.; Wang, L.; Sun, L. Effect of different electron donating groups on the performance of dye-sensitized solar cells. Dyes Pigments 2010, 84, 62–68. [Google Scholar] [CrossRef]
- Liu, X.R.; He, R.X.; Shen, W.; Li, M. Molecular design of donor–acceptor conjugated copolymers based on C-, Si- and N-bridged dithiophene and thienopyrroledione derivatives units for organic solar cells. J. Power Sources 2014, 245, 217–223. [Google Scholar] [CrossRef]
- Grätzel, M. Recent Advances in Sensitized Mesoscopic Solar Cells. Acc. Chem. Res. 2009, 42, 1788–1798. [Google Scholar] [CrossRef] [PubMed]
Dye | Absorption Peaks (nm) | Dye/TiO2 | Absorption Peaks (nm) |
---|---|---|---|
D1 | 416.0, 664.0 | D1/TiO2 | 416.5, 671.5 |
D2 | 419.5, 658.5 | D2/TiO2 | 421.5, 668.5 |
D3 | 412.5, 663.5 | D3/TiO2 | 416.5, 670.0 |
D4 | 411.5, 665.5 | D4/TiO2 | 695.0 |
D5 | 413.5, 664.0 | D5/TiO2 | 413.5, 671.5 |
D6 | 412.0, 665.0 | D6/TiO2 | 416.5, 671.5 |
Peak | Cam-B3LYP | MPW1PW91 | PBEPBE |
---|---|---|---|
λmax1 a | 376.57 (0.9972) | 375.28 (0.8763) | 439.66 (0.3846) |
λmax2 b | 602.89 (0.3746) | 586.59 (0.3816) | 621.44 (0.3042) |
State | E (eV) | λabs (nm) | Contribution MO | Strength f |
---|---|---|---|---|
S1 | 1.9951 | 621.44 | (0.65673)H→L | 0.3042 |
S2 | 2.0275 | 611.51 | (0.63801)H-1→L | 0.0561 |
S3 | 2.3641 | 524.44 | (0.68996)H-2→L | 0.0027 |
S4 | 2.4662 | 502.73 | (0.65897)H-4→L | 0.0010 |
S5 | 2.4969 | 496.56 | (0.65411)H-3→L | 0.0086 |
S6 | 2.6161 | 473.93 | (0.70631)H-5→L | 0.0008 |
S7 | 2.7179 | 456.17 | (0.46269)H→L + 1 | 0.2823 |
S8 | 2.8200 | 439.66 | (0.40417)H-1→L + 1 | 0.3846 |
S9 | 2.9989 | 413.43 | (0.61479)H-7→L | 0.0555 |
S10 | 3.0548 | 405.87 | (0.56616)H-6→L | 0.0847 |
Dye | EOX (V) a | HOMO (eV) | LUMO b (eV) | Dye | EOX (V) a | HOMO (eV) | LUMO (eV) |
---|---|---|---|---|---|---|---|
D1 | 0.34 | −4.74 | −2.873 | D4 | 0.07 | −4.47 | −2.607 |
D2 | 0.19 | −4.59 | −2.707 | D5 | 0.11 | −4.51 | −2.643 |
D3 | −0.07 | −4.33 | −2.461 | D6 | 0.10 | −4.50 | −2.636 |
DSSCs | (V) | mA cm−2 | FF | η (%) |
---|---|---|---|---|
D1 | 0.58 | 2.64 | 0.70 | 1.08 |
D2 | 0.60 | 0.75 | 0.72 | 0.32 |
D3 | 0.56 | 0.68 | 0.69 | 0.26 |
D4 | 0.54 | 0.87 | 0.74 | 0.34 |
D5 | 0.56 | 0.74 | 0.73 | 0.30 |
D6 | 0.57 | 1.25 | 0.37 | 0.27 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Gao, N.; Liu, D.; Liu, J.; Li, Y. Structure and Photoelectrical Properties of Natural Photoactive Dyes for Solar Cells. Appl. Sci. 2018, 8, 1697. https://doi.org/10.3390/app8091697
Liu Q, Gao N, Liu D, Liu J, Li Y. Structure and Photoelectrical Properties of Natural Photoactive Dyes for Solar Cells. Applied Sciences. 2018; 8(9):1697. https://doi.org/10.3390/app8091697
Chicago/Turabian StyleLiu, Qian, Nan Gao, Dejiang Liu, Jinglin Liu, and Yuanzuo Li. 2018. "Structure and Photoelectrical Properties of Natural Photoactive Dyes for Solar Cells" Applied Sciences 8, no. 9: 1697. https://doi.org/10.3390/app8091697
APA StyleLiu, Q., Gao, N., Liu, D., Liu, J., & Li, Y. (2018). Structure and Photoelectrical Properties of Natural Photoactive Dyes for Solar Cells. Applied Sciences, 8(9), 1697. https://doi.org/10.3390/app8091697