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Abstract: We present an analytical model of a flapping-wing actuator, including its electrical,
aerodynamic, and mechanical systems, for estimating the lift force from the input electrical
power. The actuator is modeled as a two-degree-of-freedom kinematic system with semi-empirical
quasi-steady aerodynamic forces and the electromechanical effect of piezoelectricity. We fabricated
actuators of two different scales with wing lengths of 17.0 and 32.4 mm and measured their
performances in terms of the stroke/pitching angle, average lift force, and average consumed power.
The experimental results were in good agreement with the analytical calculation for both types of
actuators; the errors in the evaluated characteristics were less than 30%. The results indicated that the
analytical model well simulates the actual prototypes.
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1. Introduction

Micro aerial vehicles (MAVs) have recently attracted significant attention owing to the increasing
demand for automated transport, precision agriculture, and unmanned exploration/rescue missions.
Among various types of MAVs, bioinspired flapping-wing robots have attracted particular interest
owing to their potential to mimic the high agility and robustness of natural insects or birds. In particular,
insect or hummingbird life-scale MAVs are considered useful because their extremely low weight and
small size can enable safe flight and widespread applications.

There are many candidate actuation principles for flapping-wing MAVs, including piezoelectric,
electromagnetic, shape memory alloy, and electrostatic. Piezoelectric actuation appears most suitable
for small-scale vehicles owing to its high power-to-weight ratio, and some studies have already
used piezoelectric actuators. For example, Harvard University [1–3] developed “RoboBee” and
demonstrated stable tethered flight of a piezoelectric-actuated vehicle with a 30-mm wing span. This
robot is equipped with piezoelectric Pb(Zr,Ti)O3 (PZT) bimorph actuators and lever mechanisms to
amplify and transmit the output displacement of the actuator to wings.

To realize fully untethered flight, an energy-efficient design is important. Because a flapping-wing
actuator includes an electrical system, aerodynamic effects, and mechanical parts, a model integrating
these three physics is required for detailed characterization. Several studies have reported
mechanical-aerodynamic coupling models with nonlinear aerodynamic force [4,5] using semi-empirical
quasi-steady aerodynamic theory [6–9]. The reported results showed that the models were in good
agreement with experiments. In contrast to aerodynamics, the integration of electrical models has
received less attention. For instance, a research group at UC Berkeley first presented an integrated
model of a flapping-wing actuator that integrated the electric, aerodynamic, and mechanical parts to
estimate the lift force and power consumption [10–12]. However, in their model, the aerodynamic
force was approximated as a linear damping although it is basically nonlinear. The Harvard University
research group considered the scaling of their robot on lift force, weight, and power consumption [13].
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Because they focused on refining the design based on a specific prototype, their approach was heuristic,
and they have not presented a deterministic model. Another group reported system modelling based
on the measured response of the actuator [14]. This approach was very effective for designing a
control system with an existing actuator; however, it was difficult to apply to the prediction of a newly
designed actuator. A research group at the University of Southern California developed an MAV
called “Robo Raven”, a larger, bird-scale vehicle, and reported the dynamic modelling of motor-driven
flapping-wing MAVs and validation with flight data [15,16]. Another group at the California Institute
of Technology developed “Robobat”, a bat-inspired MAV, and reported aerodynamics-based model
optimization of the lift force [17]. However, these studies did not confirm the scalability of their models
down to insect-scale vehicles. We believe that constructing an integrated model for an insect-scale
actuation system can significantly contribute to the development of flapping-wing MAVs. Whitney et
al. analyzed the conceptual design of insect-scale flapping-wing MAVs with a generalized (unspecified)
actuator and aerodynamic force models [18]. They theoretically reported on how flight endurance was
limited by power consumption without any experiments.

In light of the abovementioned previous studies, in the present study, we focused on the
experimental validation of a flapping-wing actuator based on a piezoelectric actuation system.
We present a model that integrates a flapping-wing actuator with a piezoelectric unimorph actuator
and a several-tens-of-millimeter-long wings, as reported previously [19,20]. This actuator uses a
direct-driven mechanism. In contrast to the mechanism used in RoboBee, this actuator does not
have any amplifying transmission system; instead, a wing is directly connected to the unimorph
actuator. This direct-driven mechanism was first proposed by a research group at the Army Research
Laboratory [21,22], and it is advantageous in terms of structural simplicity. Two different-sized
prototypes were fabricated and evaluated. We verified the theoretical model by comparing it to
experimental results.

2. Electro-Aero-Mechanical Model

2.1. Direct-Driven Flapping-Wing Actuator

Figure 1 shows the actuation principle of a piezoelectric unimorph actuator and the structure
and motion of the flapping-wing actuation system with the direct-driven mechanism. A unimorph
actuator consists of a combination of a piezoelectric plate and a shim plate (elastic material), as shown
in Figure 1a. Upon applying a voltage to the piezoelectric material, the actuator bends owing to the
induced transverse piezoelectric stress. Figure 1b shows the structure of the flapping-wing actuation
system. As described above, this system comprises only a unimorph piezoelectric actuator and a wing,
and the wing is directly attached to the tip of the unimorph actuator. By actuating the unimorph,
the wing is swung around the y-axis. This y-axis motion is simply called the “stroke motion”, and the
stroke angle is expressed by φ. When the voltage signal frequency matches the resonance frequency of
the system, large stroke amplitude is obtained. We define the x′y′z′-coordinate frame that rotates with
the stroke motion. The wing is passively rotated around the x′-axis by air pressure associated with the
stroke motion. This x′-axis rotation is called “pitching motion”, and its rotation angle is defined by
ψ. We define the x′y′′z′′-coordinate as a wing fixed frame. The pitching motion is crucial to generate
lift force; the pitched wing gets a certain angle of attack against the stroke motion and it generates lift
force along the negative y-axis. Therefore, the wing should be designed to smoothly rotate around the
x′-axis and to be rigid against the other directions. For this purpose, hinge structures have often been
equipped near the top edge of the wing.
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only rotate but also translate on the x-z plane, and therefore, this assumption is generally 
incorrect. However, under a cyclic resonant condition, the wing motion can be approximated 
as a simple rotation around a certain axis. This approximation is verified based on the 
experimental results reported in a later section. 

2. Aerodynamics forces/moments are modeled as the sum of the translational force, force due to 
the added-mass effect, and rotational damping, and we use the blade element theory proposed 
in [5–9]. 

3. We ignore the piezoelectric and other material losses and anchor-loss because their 
contribution is much smaller than that of aerial damping. 

We derive the model based on Lagrange’s motion equation [23]. The total kinematic energy ܶ 
of the system is expressed as ܶ = ܶ + ܶ + ௪ܶ, (1)
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Figure 1. Behavior and structure of flapping-wing actuator with direct-driven mechanism: (a) actuation
principle of piezoelectric unimorph actuator and (b) flapping motion of actuation system.

In the section below, we describe the analytical model of the actuation system. To derive this
model, we employ several approximations for simplicity:

1. The system has only two degrees of freedom (DOFs), φ and ψ. Specifically, the wing can not only
rotate but also translate on the x-z plane, and therefore, this assumption is generally incorrect.
However, under a cyclic resonant condition, the wing motion can be approximated as a simple
rotation around a certain axis. This approximation is verified based on the experimental results
reported in a later section.

2. Aerodynamics forces/moments are modeled as the sum of the translational force, force due to
the added-mass effect, and rotational damping, and we use the blade element theory proposed
in [5–9].

3. We ignore the piezoelectric and other material losses and anchor-loss because their contribution
is much smaller than that of aerial damping.

We derive the model based on Lagrange’s motion equation [23]. The total kinematic energy T of
the system is expressed as

T = TA + TB + Tw, (1)

where TA, TB, and Tw are the kinematic energy of the unimorph actuator, leading edge part (square bar
on the top edge of the wing in Figure 1b), and wing, respectively. The total potential energy U is also
expressed by the sum of the elastic stored energy of the unimorph, UA, and the pitching hinge, Uw, as

U = UA + Uw. (2)

By using T and U and the aerodynamic moment along the φ and ψ directions, τφ and τψ,
respectively, the motion equation of the system can be written as

d
dt

∂Λ
∂

.
φ
− ∂Λ

∂φ = τφ,

d
dt

∂Λ
∂

.
ψ
− ∂Λ

∂ψ = τψ,

Λ = T −U,

 (3)

where Λ is the Lagrangian of the system.
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2.2. Mechanical Model

Here, we describe the derivation of T and U from the material and dimensional parameters of the
system. Figure 2 shows the dimensions and coordinates of the system (details of the wing geometry
are explained in a later section). The unimorph is designed as a trapezoid. It can reduce the stress
concentration at the fixed end against inertial load and the aerodynamic force of the wing, and it can
also reduce the risk of brittle fracture [24]. The cross point of the extended line of the unimorph side
edges is designed to coincide with the center of the wing (x = LA + R/2, where R and LA are the
lengths of the wing and unimorph, respectively). We assumed that the rotational axis of the stroke
motion is placed at x = LA/2. This assumption can be valid when the inertial and aerial forces of
the wing are considered as concentrated forces at x = LA + R/2. Of course, this is a very rough
simplification, and it is not always suitable. Thus, we check the position of the rotational center of
the wing experimentally; the result is described in the Result section. By using this assumption, the
curvature of the unimorph κ is simply expressed by φ as

κ =
φ

LA
. (4)

The deflection of the unimorph δ can be given by

δ =
κ

2
x2. (5)

Thus, TA is calculated from the following integral with respect to x:

TA =
∫ LA

0

1
2

(
∑

i
ρiti

)
w(x)

.
δ

2
dx =

1
240

(
∑

i
ρiti

)
(wr + 5wt)L3

A
.
φ

2
, (6)

where ρi and ti are the density and thickness of the i-th layer of the unimorph, respectively, as shown
in Figure 2. The bending moment caused by the piezoelectric effect is given by

Mp = E0dpzw(x)V(z0 − zc), (7)

where E0 and dpz are Young’s modulus and the piezoelectric coefficient of the piezoelectric plate along
the x-axis, respectively [25]. V is the applied voltage to the piezoelectric material. zi are the z-positions
of the layers of the unimorph, and they are expressed as zi = ∑j tj − ti/2. zc is the neutral axis about
the bending of the unimorph, and it is expressed as

zc = ∑
i

Eitizi/ ∑
i

Eiti. (8)

Assuming the unimorph as an Euler-Bernoulli beam [26], the curvature generated by the
piezoelectric actuation is given by

κpz =
Mp

SAw(x)
=

E0dpzV
SA

(z0 − zc), (9)

where SA is the bending stiffness of the unimorph per unit width, and it is given by

SA = ∑
i

Ei

(
t3
i

12
+ ti(zi − zc)

2

)
. (10)

By using κ and κpz, UA is calculated as

UA =
∫ LA

0

1
2

SAw(x)
(
κ − κpz

)2dx =
1
2

SA
wr + wt

LA
φ2 −

E0dpzV
2

(z0 − zc)(wr + wt). (11)
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Next, we describe the kinematic and potential energy of the wing. Figure 3 shows the coordinates
and dimensional parameters. We newly define a coordinate r as the distance from the wing root along
the x-axis. TB is obtained as

TB =
1
2

JB
.
φ

2
, (12)

where JB is the inertia of the leading edge part around the stroke rotation axis. Tw is calculated as

Tw =
1
2

Mw|v|2 +
1
2

ωTJwω, (13)

where Mw and Jw are the mass and inertia tensor of the wing, respectively. The origin of Jw is at the
center of mass (COM) of the wing. v and ω are the velocity of the COM and angular velocity of the
wing, respectively. Upon defining these variables based on the wing-fixed x′y′′z′′ frame, v and ω can
be expressed by φ and ψ as

v =

 vx′

vy′′

vz′′

 =


0

yg
.
φ sin ψ(

rg + xr
) .
φ + yg

.
ψ cos ψ

, (14)

and

ω =

 ωx′

ωy′′

ωz′′

 =


.
ψ

.
φ cos ψ
.
φ sin ψ

, (15)

where yg and rg are the y- and r-position of the COM, respectively, and xr is the distance between the
wing root and the center axis of the stroke rotation. Upon assuming that the wing is a flat thin plate,
the inertia terms with respect to x′z′′ and y′′z′′ can be considered to be zero, and Jw is expressed as

Jw =

 Jwx −Jwxy 0
−Jwxy Jwy 0

0 0 Jwx + Jwy

 (16)
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By substituting Equations (14)–(16) into Equation (13), Tw is rewritten as

Tw = 1
2 Mw

[(
rg + xr

)2 .
φ

2
+ y2

g
.
ψ

2
+ 2
(
rg + xr

)
yg

.
φ

.
ψ cos ψ

]
+ 1

2 Jwx

[
.
ψ

2
+
( .

φ sin ψ
)2
]

+ 1
2 Jwy

.
φ

2
+ Jwxy

.
φ

.
ψ cos ψ.

(17)

kw is defined as the spring constant of the pitching hinge, and Uw is simply obtained as

Uw =
1
2

kwψ2. (18)
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2.3. Aerodynamics on Wing

As stated above, we model the aerodynamic force as the sum of the translational force, force due
to the added-mass effect, and rotational damping. The translational forces acting on a blade element of
the wing (as shown in Figure 3) are given by [9]

dFtr,Drag = − 1
2 ρAirCD(α)c(r)u2

e sign(ue) dr,

dFtr,Lift =
1
2 ρAirCL(α)c(r)u2

e sign(ue) dr,

}
(19)

where dFtr,Drag and dFtr,Lift are the drag force (along z′-axis) and lift force (along y-axis), respectively.
ρAir is the density of air. CD(α) and CL(α) are coefficients of the translational forces for dFtr,Drag and
dFtr,Lift, respectively. α is the angle of attack of the wing (α = 90◦ − ψ). c(r) is the chord length of
the wing. ue is the velocity at the center of a blade element in the z’-direction, and it is expressed
as ue = (r + xr)

.
φ− 1

2 c(r)
.
ψ cos ψ. The force component normal to the wing plane dFtr,N is also given

by [9]
dFtr,N = − 1

2 ρAirCN(α)c(r)u2
e sign(ue) dr,

CN(α) = CL(α) cos α + CD(α) sin α.

}
(20)

By integrating dFtr,Lift with respect to r, the total translational lift force Ftr,Lift can be calculated as

Ftr,Lift =
∫ R

0 dFtr,Lift

= 1
2 ρAirCL(α)Aw

[
Iw2,1R2

.
φ

2
− Iw1,2Rc

.
φ

.
ψ cos ψ + 1

4 Iw0,3c2
( .

ψ cos ψ
)2
]

sign(ue),
(21)

where c is the mean chord length (c = Aw/R, Aw is the area of the wing). Iwi,j is a nondimensional
geometrical parameter of the wing, and it is defined as

Iwi,j =
∫ 1

0
ĉ(r̂)j (r̂ + x̂r)

idr̂, (22)
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where r̂ = r/R, x̂r = xr/R, and ĉ = c/c. In the integration in Equation (21), we approximated sign(ue)

as being uniform for the entire wing; we replaced sign(ue) with sign(ue), where ue is the value of ue

at r = R/2. This approximation can become invalid when the wing spins around itself; however, we
concluded that it is acceptable because such motion is rare in the intended flapping behavior.

The translational moment about the pitching (x’-axis) Mtr,x′ is also derived by integration with
respect to r as

Mtr,x′ =
∫ R

0 c(r)dcp(α) dFtr,N

= − 1
2 ρAirCN(α)Awc dcp(α)

[
Iw2,2R2

.
φ

2
− Iw1,3Rc

.
φ

.
ψ cos ψ + 1

4 Iw0,4c2
( .

ψ cos ψ
)2
]

sign(ue),
(23)

where dcp is the normalized center position of the air pressure. Dickson et al. reported that it can be
estimated as [8]

dcp(α) =
0.82

π
|α|+ 0.05. (24)

The translational moment about the stroke (y-axis) Mtr,y is obtained in a similar way:

Mtr,y = −
∫ R

0 (r + xr) dFtr,Dragsign(ue)

= − 1
2 ρAirCD(α)AwR

[
Iw3,1R2

.
φ

2
− Iw2,2Rc

.
φ

.
ψ cos ψ + 1

4 Iw1,3c2
( .

ψ cos ψ
)2
]

sign(ue).
(25)

The translational coefficients are calculated using the equations below [4,27]:

CL(α) =
1
2 π R

c

(
1 +

√(
1
2

R
c

)2
+ 1

)−1

sin 2α,

CD(α) =
CD,max+CD,min

2 − CD,max−CD,min
2 cos 2α,

 (26)

where we used CD,max = 5.0 and CD,min = 0.4 based on [4].
The force dFam due to the added-mass effect on a blade element is expressed as [5–9]

dFam = −πρAir

(
c(r)

2

)2
.

un dr, (27)

where un is the normal component of the wing velocity: un = (r + xr)
.
φ cos ψ− 1

2 c(r)
.
ψ.

.
un is obtained

by a time-derivative of un as
.

un = (r + xr)
( ..

φ cos ψ−
.
φ

.
ψ sin ψ

)
− 1

2 c(r)
..
ψ. The total force Fam is

obtained by integration as

Fam =
∫ R

0 dFam

= −π
4 ρAirc2R2 Iw1,2

( ..
φ cos ψ−

.
φ

.
ψ sin ψ

)
+ π

8 ρAirc3R Iw0,3
..
ψ.

(28)

Fam acts along the z′′-axis (normal direction of the wing). The added-mass moment about the pitching
x′-axis Mam,x′ and y′′-axis Mam,y′′ are respectively given by

Mam,x′ = −
∫ R

0
1
2 c(r) dFam

= π
8 ρAirc3R2 Iw1,3

( ..
φ cos ψ−

.
φ

.
ψ sin ψ

)
− π

16 ρAirc4R Iw0,4
..
ψ

(29)

and
Mam,y′′ =

∫ R
0 (r + xr) dFam

= −π
4 ρAirc2R3 Iw2,2

( ..
φ cos ψ−

.
φ

.
ψ sin ψ

)
+ π

8 ρAirc3R2 Iw1,3
..
ψ.

(30)
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The moment due to the rotational damping on a blade element is calculated as [4]

dMrot = −
1
2

ρAirCrd
.
ψ

2
∫ 0

−c(r)

∣∣∣y3
∣∣∣dy sign

.
ψ, (31)

where Crd is a constant coefficient. Different Crd values of 2.0–5.0 were used, as reported in several
previous studies as well [4,28,29]. In this study, we used Crd = 3.5. Upon integrating dMrot, the total
moment Mrot can be expressed as

Mrot = −
1
2

ρAirCrdR Ird
.
ψ

2
sign

.
ψ, (32)

where Ird is a constant that depends on the wing geometry as follows:

Ird =
∫ 1

0

∫ 0

−c(r)

∣∣∣y3
∣∣∣dydr̂. (33)

τφ and τψ are respectively given by

τφ = Mtr,y + Mam,y′′ cos ψ,
τψ = Mtr,x′ + Mam,x′ + Mrot.

}
(34)

The total lift force FLift is given by

FLift = Ftr,Lift + Fam sin ψ. (35)

2.4. Electrical Model of Unimorph Actuator

The current flow into the actuator is given by a time-derivative of the sum of the charge due to
the static capacitance, qstat, and the charge due to the dynamic piezoelectric effect, qdyna, as

jA =
d
dt

(
qstat + qdyna

)
(36)

qstat and qdyna are respectively calculated by integrating charge densities along the unimorph
longitudinal direction as [30]

qstat =
∫ LA

0
εpz

w(x)
t0

Vdx = εpz
wr + wt

2t0
LAV (37)

and [30]

qdyna =
∫ LA

0
dpzE0(yc − y0)w(x)κdx = dpzE0(yc − y0)

wr + wt

2t0
φ, (38)

where εpz is the permittivity of the piezoelectric plate. By substituting Equations (37) and (38) into
Equation (36), jA can be rewritten as

jA = εpz
wr + wt

2t0
LA

.
V + dpzE0(yc − y0)

wr + wt

2t0

.
φ (39)

and the consumed power of the system is obtained as

PA = jAV. (40)

By using the above equations (Equations (6), (11)–(13), (18), and (34)), the motion equation
(Equation (3)) is expressed by known parameters and V. Therefore, by giving a certain initial condition
and a prescribed V, the motion of the system can be calculated by integrating Equation (3). In this
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study, we numerically performed the integration using the built-in function for ordinary differential
equations, NDSolve, in Mathematica (Wolfram). The total lift force FLift and consumed power PA are
obtained by substituting the calculated motion, φ and ψ, and V into Equations (33) and (38).

3. Experiment

3.1. Design and Fabrication

To verify the analytical model, we measured the performance of prototypes of the flapping-wing
actuation system and compared the result to the analytical calculation. Figure 4 shows the structure of
the system. The system comprises two parts: a piezoelectric unimorph actuator and a wing. The wing
comprises four parts (shown in Figure 4a): Leading-edge bar, flexible vein, reinforcing vein, and wing
membrane. The wing membrane is a thin polyester film, and it is supported by the veins. The veins
consist of a combination of titanium (Ti) reinforcing layer and polyimide (PI) flexible layer. The wing
can rotate around the x-axis at the hinge structure, which is also made of the PI layer. A magnified
drawing of the hinge structure is shown in Figure 4c. The hinge of the prototype comprises a torsional
beam structure. Thus, kw can be calculated simply as the spring constant of the torsional beams [31]:

kw = NβGh
wht3

h
Lh

, β ∼=
1
3
− 0.21

th
wh

(
1− 1

12

(
th
wh

)4
)

, (41)

where N and Gh are the number of torsional beams and the shear modulus of PI, respectively. th, wh,
and Lh are the thickness, width, and length of the torsional beams, respectively. The unimorph
actuator consists of a piezoelectric plate and a Ti shim plate bonded by epoxy adhesive (shown in
Figure 4b). We used a Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal as
the piezoelectric material; it is suitable for large-displacement actuators because of its extremely high
piezoelectric coefficient. PIN-PMN-PT plates were obtained from TRS Technologies (United States).
The Ti shim plate has slits along the longitudinal direction to let excess adhesive flow out.
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and (c) assembled system and a close-up image of hinge.
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In this experiment, two prototypes with different size were measured for confirming the generality
of the model. One has a 17.0-mm-long wing and a 10.5-mm-long unimorph and the other has a
32.4-mm-long wing and a 21.0-mm-long unimorph; they are respectively called “small type” and “large
type” below. The other design parameters and material properties are summarized in Appendix A.
Figure 5 shows photographs of the small and large types.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 18 
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Figure 5. Photograph of prototype actuators: (a) small type and (b) large type.

3.2. Measurement

Figure 6 shows the experimental setup for the wing motion, lift force, and power consumption.
We captured the wing motion using an experimental setup with a high-speed camera. The average
lift force and consumed power were measured using a precise electrical balance (HR-100A, A&D Co.,
Tokyo, Japan) and a power analyzer (PA1000, Tektronix, Beaverton, United States), respectively.
To block the wind produced by the wing, an acrylic plate was placed between the wing and the
electric balance.

Figure 7 shows a typical image of the actuated wing. We tracked the tip and root and the tip
position of the leading edge, ptip and proot, respectively, and a position on the lower edge of the
wing, pedge, based on the images to estimate φ and ψ. φ was simply calculated as the angle between
ptip − proot and the x-axis. ψ was estimated by

ψ = arcsin
d

cedge
, (42)

where d and cedge are the distance between the leading edge and pedge in the image and the chord length
at the measured point, respectively. We applied unipolar sinusoidal driving signals with amplitude of
V0: V(t) = V0 sin(ωrt) + V0. In this experiment, the maximum voltages for the small and large types
were 30 and 50 V, respectively, to prevent fracture of the piezoelectric material. The frequency of the
voltage signal ωr was matched to the resonance frequency of the system.
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Figure 7. Stroke and pitching measurement from captured image.

4. Results and Discussion

4.1. Center Position of Stroke Motion

We estimated the rotational center position, pcenter, of the wing to check whether approximation 1
is acceptable. The center positions were determined as the nearest position from lines through ptip and
proot. Specifically, we solved the following problem:

minimize
pcenter

∑
i

∣∣∣∣∣∣
(

pi
root − pi

tip

)
∣∣∣pi

root − pi
tip

∣∣∣ ×
(

pcenter − pi
tip

)∣∣∣∣∣∣
2

, (43)

where pi
root and pi

tip are the positions in the i-th image frame. Figure 8 shows the tracking and

estimation results; the blue solid lines indicate the line segments between pi
root and pi

tip, and the red
point indicates the estimated center position pcenter. Both types show rotational motion centering on an
almost fixed point. The positional errors relative to LA between pcenter and the assumed center position
(center at the unimorph) were 4.1% for the small type and 8.4% for the large type. We concluded that
these errors were small and acceptable to demonstrate the effectiveness of the model.
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Figure 8. Estimated center position of wing stroke rotation from captured images: (a) small type with
V0 = 30 V and (b) large type with V0 = 50 V. Blue solid lines indicate the location of the leading edge
and dotted lines, their extensions. The red point indicates the estimated center position.
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4.2. Resonance Frequency

The resonance frequencies were identified by the stroke amplitude response against the
frequency-swept input signal in the experiment; we defined the resonant frequency as the frequency
with the maximum stroke amplitude. In the calculation, we estimated the resonance frequencies
from impulse system responses. The motion equation was solved with an initial condition of
φ =

.
φ = ψ =

.
ψ = 0 at t = 0 and an impulse input of V. The resonant frequency ωr can be derived by

fitting φ(t) to a function of ωr: f (t) = A e−λt sin(ωrt + θ), where A, λ, and θ are parameters that are
also estimated in the fitting operation. This method has an advantage of shorter computational time
comparing to calculating the response to the frequency-swept input. Figure 9 shows the calculated
impulse responses and their fitted curves.

Figure 10 shows a comparison of the measured and calculated results. Blue and red bars show the
measured and calculated data, respectively. The measure resonant frequencies of the small and large
types were 210 and 105 Hz, respectively. The corresponding calculated resonant frequencies were 209
and 109 Hz. The small type showed roughly two times higher resonance frequency than the large type.
The calculations were in very good agreement with the experiments; the errors of the small and large
types were −0.7% and 3.8%, respectively. This result indicates that the kinematic part (inertias and
springs) of the system has been modelled accurately.
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Figure 9. Resonant frequency estimation by impulse response: (a) small type and (b) large type.
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Figure 10. Measured and calculated resonant frequencies.

4.3. Resonant Driving Characteristics

In this experiment, we measured the resonant driving performance of the small- and large-type
actuators with V0 of 15–30 and 20–50 V, respectively. Figures 11 and 12 show the motion of the
small and large types, respectively. Given the simplicity of the analytical model, we found that the
behaviors of the calculated φ and ψ showed good agreement with the measured data. Figures 13
and 14 show the amplitudes of φ and ψ. The average absolute errors of φ and ψ amplitude were 20%
and 8.1%, respectively. Figures 15 and 16 show these tendencies of φ with the lift force and power
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consumption, respectively. The average absolute errors of the lift force and consumed power between
the calculation and the experiment were 15% and 8.7%, respectively. These results suggest that the
derived model can well simulate the performances of the flapping-wing actuation system. Figure 17
shows the lift-to-power efficiency of the actuation system; it is defined as the ratio of the lift force to
the power consumption. Upon increasing the applied voltage, the efficiency of both types of actuators
decreased. The efficiencies of the small and large types at their maximum applied voltages were 10.8
and 7.31 gf/W, respectively.
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Figure 13. Relationship between applied voltage amplitude and (a) stroke amplitude and (b) pitching
amplitude of small-type actuator. The frequencies of the input signal in the experiment and calculation
were 210 and 209 Hz, respectively.
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Figure 14. Relationship between applied voltage amplitude and (a) stroke amplitude and (b) pitching
amplitude of large-type actuator. The frequencies of the input signal in the experiment and calculation
were 105 and 109 Hz, respectively.
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Figure 15. Relationship between applied voltage amplitude and (a) lift force and (b) consumed power
of small-type actuator. The frequencies of the input signal in the experiment and calculation were 210
and 209 Hz, respectively.
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Figure 16. Relationship between applied voltage amplitude and (a) lift force; (b) consumed power of
large-type actuator. The frequencies of the input signal in the experiment and calculation were 105 and
109 Hz, respectively.
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Figure 17. Relationship between applied voltage amplitude and lift-to-power efficiency: (a) small-type
and (b) large-type actuators.

There are two possible causes of lift force error: Wing motion (φ, ψ) and analytical model of lift
force. As shown in Figures 13 and 14, the predicted φ and ψ have nonnegligible error. In particular,
the trend of the error in φ showed a similarity to the lift force error. For example, for the small-type
actuator, lower V0 resulted in underestimated φ (calculated φ was smaller than the measured data)
and larger V0, in overestimated φ. On the other hand, for the large-type actuator, the calculated φ

was slightly smaller than the measured one for all tested V0 values. The lift forces showed the same
trends (Figures 15 and 16). Thus, the error of the lift force was considered to be dominantly caused by
the estimation error in the stroke motion. To verify this result, we performed additional calculations
in which the lift force was estimated from the measured trajectory of φ and ψ using Equation (35).
The results are shown in Figures 18 and 19; in these figures, we compare the lift forces obtained
using the experiment, calculation with the proposed aeromechanic model, and calculation with the
prescribed measured trajectories. For both small- and large-type actuators, the lift force obtained
from the measured trajectories resulted in smaller errors than that obtained from the fully analytical
calculation. This result confirms that the prediction error of the wing motion is the main error source
in the lift force estimation. We expect that the accuracy of the wing motion prediction is limited by
the imprecision of the aerodynamic drag force and that improving the drag force model is key in the
performance analysis of flapping-wing actuators.
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Figure 18. Comparison between fully analytical calculation and calculation based on measured
trajectory of small-type actuator: (a) lift force and (b) error of lift force in experimental result.
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Figure 19. Comparison between fully analytical calculation and calculation based on measured
trajectory of large-type actuator: (a) lift force and (b) error of lift force in experimental result.

5. Conclusions

We modeled a flapping-wing actuation system as a 2-DOF kinematic system with the
semi-empirical quasi-steady aerodynamic forces and the electromechanical effect of piezoelectricity.
We fabricated actuators of two different scales and measured their performances. The experimental
results were in good agreement with the analytical calculations for both types of actuators, and the
errors in the evaluated characteristics were less than 30%. We concluded that the analytical model
effectively simulates the actual prototypes.

Author Contributions: T.O. conceived and designed the analytical model and experiments; K.H. fabricated the
tested samples; T.O. performed the measurements and data analysis and wrote the paper; and K.H. supervised
the research.

Conflicts of Interest: The authors declare no conflict of interest.
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Appendix A

Table A1 lists the material properties, geometric parameters, and masses/inertias used in the
calculation. We derived the masses/inertias and Iwi,j by using 3D CAD. Young’s modulus and the
density of the Ti shim plate were determined as 50%, which is the ratio of the slit in the shim plate,
of the values of Ti.

Table A1. Material properties, geometric parameters, and masses/inertias of fabricated actuators.

Properties Small Type Large Type

R (mm) 17.0 32.4
c (mm) 6.51 8.34
rg (mm) 9.42 15.6
yg (mm) 2.48 2.57

Iw0,3 1.02 1.12
Iw0,4 1.04 1.23
Iw1,2 0.88 0.84
Iw1,3 0.89 0.88
Iw2,1 0.82 0.75
Iw2,2 0.84 0.73
Iw3.1 0.85 0.74

Ird (m−4) 4.68 × 10−10 1.49 × 10−9

Mw (mg) 2.31 4.09
Jwx (kg m2) 4.81 × 10−12 1.03 × 10−11

Jwy (kg m2) 5.07 × 10−11 2.70 × 10−10

Jwxy (kg m2) 3.62 × 10−13 7.12 × 10−12

JB (kg m2) 3.89 × 10−9 1.47 × 10−8

kw (Nm) 1.48 × 10−4 8.64 × 10−5

LA (mm) 10.5 21.0
wr, wt (mm) 6.0, 2.4 10.4, 4.4

t0, t1, t2 (µm) 100, 10, 100 100, 10, 130
E0, E1, E2 (GPa) 14.3 *1, 5.0, 50.3 *2

ρ0, ρ1, ρ2 (kg/m3) 8000, 1500, 2250 *3

dpz (pm/V) 950 *4

εpz 2920ε0 *5

ρAir (kg/m3) 1.29

*1 Value was calculated as the reciprocal of the elastic compliance sE
22; *2,3 Values were calculated as 50% of the

properties of Ti considering the slit in the Ti shim plate; *4 [011]-poled, d32 direction; *5 ε0 is the permittivity of
free space.
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