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Abstract: Convolutional neural networks (CNNs) have greatly improved image classification
performance. However, the extensive time required for classification owing to the large amount of
computation involved, makes it unsuitable for application to low-performance devices. To speed up
image classification, we propose a cached CNN, which can classify input images based on similarity
with previously input images. Because the feature maps extracted from the CNN kernel represent
the intensity of features, images with a similar intensity can be classified into the same class. In this
study, we cache class labels and feature vectors extracted from feature maps for images classified
by the CNN. Then, when a new image is input, its class label is output based on its similarity with
the cached feature vectors. This process can be performed at each layer; hence, if the classification is
successful, there is no need to perform the remaining convolution layer operations. This reduces the
required classification time. We performed experiments to measure and evaluate the cache hit rate,
precision, and classification time.
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1. Introduction

Recently, artificial intelligence and machine learning research based on deep neural network
technology has attracted significant attention. Owing to its high performance, it has been used in many
fields such as image classification, detection, tracking, and natural language processing. In particular,
convolutional neural networks (CNNs) have greatly enhanced the performance of image classification
techniques. CNNs are composed of a very large number of layers. AlexNet [1], which was proposed
in 2012, has five convolution layers; however, ResNet [2], with more than 100 convolution layers,
was also developed recently.

As the number of layers increases, the amount of trained weights also increases. This requires
a large amount of computation and thereby a significant computation time in the training and
classification phase. The deployment of these networks in real-time applications is very difficult.
To overcome these drawbacks, graphics processing units (GPUs) are used to speed up training and
classification [3]; however, this requires a high-performance GPU or server. Therefore, it is difficult to
apply CNNs to object classification that requires real-time property on a low-performance device with
a low computing power. In other words, the acceleration of the classification speed is a key factor in
practical applications and affects the resource utilization, power consumption, and latency [4].

We focus on reducing the execution time when classifying images using a CNN on
low-performance devices. To speed up image classification using a CNN, Kang et al. [5] proposed
a technique to make some computationally expensive layers work on a cloud server. This method
can reduce the time required for classification; however, it has the disadvantage of always needing
to be connected to the cloud server. Teerapittayanon et al. [6] proposed BranchyNet. BranchyNet
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adds a branch at some point of the layer and ends the classification at this point, thus reducing the
time required for classification. However, to use this method, new weights must be trained for new
branches. Although sparse networks with network pruning and sparsity regularization have been
studied [7–10], the weights must also be newly trained. That is, studies that modify the network
structure cannot use a pretrained model, as the weight of each layer must be retrained.

To avoid retraining the pretrained CNN model, we propose a structure and method for caching
feature maps that originate at each convolution layer. This structure is proposed because the devices
used in the actual field receive only limited input. For example, an image classifier that can be
mounted on an autonomous car receives only limited classes of input such as pedestrians, cars,
bicycles, and traffic signs. Since the previously input image is likely to be input again, there is no need
to perform all convolution layer operations every time. Therefore, images that are similar to previously
entered images can be classified into the same image class.

With this structure, the class label can be obtained from the cache in the convolution layer
operation of the input image; thereby reducing the classification time because the remaining
convolution layers need not be operated. However, as there are so many convolution layers in a
CNN, the image classification time can be reduced significantly by applying the cache structure mainly
in the initial convolution layers.

Similar to our study, there are studies on CNNs that include caches. DeepCache [11] is used for
mobile vision. If a block of a video frame matches a block of a previous frame, instead of recalculating
the result, DeepCache gets the result of a similar block in the cache. However, we studied the
classification of still images and found the similarities between input images and those that were
classified in the same class, not the previous or next frame. In addition, after applying this cache to
the pretrained CNN, the images may not be classified by the cache. In this case, the images can be
classified through the CNN without using the cache; hence, a well-trained CNN can be used as is.
To achieve this, we extract feature vectors from the feature maps generated in the convolution layers.
In our proposed structure, the cache is activated after images classified by the CNN are written to the
cache. However, there is no need to modify the CNN’s structure or retrain the weights.

Feature maps are response images that are convolved by a trained kernel or filter and represent
features extracted from the image. The CNN’s kernel is similar to the Gabor filter [12]. In image
classification, studies using intensity from various directions and frequencies extracted from the Gabor
filter were used [13–15]. Likewise, the features extracted by the CNN kernel represent the intensity.
For example, two completely different cat images can be classified as cats because the intensities of
their eyes, nose, ears, and tail are similar.

Owing to the similarity of the CNN kernel and Gabor filters, many studies have been conducted
that combined them. Sarwar et al. [16] used the Gabor filter in different layers of a CNN to reduce the
computational complexity of the training phase. The Gabor filter was also used as a preprocessing
method for weight training [17–19]. Luan et al. [12] replaced the Gabor filter with a convolution kernel
in a CNN to perform the convolution and train the weights. In general, a CNN can be combined with
a Gabor filter to achieve good performance.

In this study, we do not use the Gabor filter directly because we extract feature vectors from
the pretrained CNN’s feature map. However, given that the CNN kernel is generated by training,
it does not extract certain features of the input image. This makes it difficult to describe or vectorize
the feature maps. However, like the Gabor filter, which shows the intensity of the extracted features,
we cache the input image using the intensity in the CNN’s feature map.

Our main contribution is to locate the cache in the convolution layer of a CNN to make sure it is
operable in order to improve the speed of image classification in low-performance devices. In particular,
well-trained CNN models can be used without retraining. This structure is not a complete substitute
for a CNN’s image classification capabilities.
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Therefore, this auxiliary structure assists the pretrained CNN model. When images corresponding
to the same class are continuously input, the classes to which these images are classified are memorized
and used when the next image is input.

2. Cached CNN Structure

In this section, we propose a cached CNN structure. Because a CNN consists of a large number
of convolution layers, a large amount of time is required to classify input images and learn weights.
However, assuming that the CNNs used in the actual field receive similar images consecutively,
the input image can be classified by comparison with the previously input image, thus reducing
classification time. Each convolution layer in a CNN generates feature maps from the input image,
which represents the intensity of each feature. Input images with similar intensities can be classified in
the same class. Therefore, we classify the input image by comparing its feature maps with the feature
maps of the previously input images. To achieve this, feature vectors are extracted from feature maps
generated from each convolution layer. Figure 1 shows this structure, which can be used to classify
input images using a pretrained CNN model. It caches the feature maps of the images classified by
the CNN, and classifies the newly input images by comparing them with the cached feature maps.
This can be done at the convolution layer stage. If the classification is completed based on the similarity
with the cached feature maps, the remaining CNN operations need not be performed. The steps of
caching feature maps and image classification using them are as follows:

1. The input image is classified into its class by the pretrained CNN.
2. Feature vectors are extracted from the feature maps generated at each convolution layer, and they

are written into the cache with a class label.
3. A new image is input for classification, and the CNN operation is begun. After the convolution

layer operation is completed, a feature vector is extracted from the feature maps and compared
to the feature vectors of the cached feature maps.

4. The class label of the most similar feature vector is output, and the remaining convolution layer
operation is terminated.
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Figure 1. Proposed cached CNN structure. The yellow line indicates the flow in which the input image
is classified by the CNN. The red line indicates the flow in which input image is classified by the cache.

3. Feature Map Caching Method

In this section, we present a method to extract a feature vector from feature maps and compare
the query image with the previously input image by measuring their similarity. This method consists
of two steps: (1) Feature vector extraction and (2) similarity measurement.

3.1. Feature Vector Extraction

Feature maps are a set of features obtained by convolving a trained kernel on each image.
In addition, images that are classified into the same class have similar features. This is because the
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intensity of each feature extracted from the images is similar. To generate a feature vector, this intensity
can be expressed as energy. Therefore, for a feature map Fi(x, y) of size P×Q, we define the energy E
as follows:

E(i) = ∑
x

∑
y
|Fi(x, y)| (1)

where i is the index of the feature map of each convolution layer.
From this, each feature map Fi(x, y) is described by a mean µi, which represents the intensity

of the individual pixels, and a standard deviation σi, which indicates the extent to which each pixel
differs from adjacent pixels.

µi =
E(i)
PQ

(2)

σi =

√
∑x ∑y(|Fi(x, y)| − µi)

2

PQ
(3)

A feature vector V using the mean and standard deviation of feature maps for each convolution
layer is generated as follows:

V = (µ0, σ0, µ1, σ1, µ2, σ2, . . . , µi−1, σi−1) (4)

The feature vector extracted above applies to both the step of writing the image classified from
the CNN to the cache and of classifying the image using the cache. However, when writing classified
images to a cache, it is undesirable to write feature vectors for all input images because the proposed
method is used as a cache. Therefore, to have only one feature vector in one class for each convolution
layer, images classified into the same class should have only one feature vector per convolution layer.
That is, a representative feature vector corresponding to each class must be generated. Therefore,
each time a new feature vector Vnew is cached in the same class, the mean feature vector Vcached is
updated as shown in Equation (5):

Vcached =
(Vcached × n) + Vnew

n + 1
(5)

where n denotes the number of feature vectors accumulated for one class.
For this calculation, the cache also records the number of cumulative feature vectors for each class.

Figure 2 shows this feature vector extraction process.
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3.2. Similarity Measurement

The similarity of the input feature vector Vquery (U) with the cached feature vector Vcached (T) can
be defined as a cosine similarity. We use the following cosine distance to express similarity as distance:

D(U, T) = 1− ∑i(Ui × Ti)√
∑i(Ui)

2 ×
√

∑i(Ti)
2

(6)
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This is a real value between 0 and 1. A distance value of zero means the two feature vectors are
equal. From this, the input feature vector can be classified into the corresponding class of the cached
feature vector with the highest similarity. However, in this case, the input feature vectors are classified
as the most similar feature vectors among the cached feature vectors, which can lead to incorrect
answers. Hence, if all input feature vectors are classified using only the cache, then all results will
be a Cache Hit, which contains true and false positives. If a false positive is obtained, it is better to
classify it using the CNN without the cache. Thus, even though the most similar cached feature vector
is obtained for the input feature vector, this value should be set to a Cache Miss using the threshold
value, if this result is a false positive.

Therefore, the threshold is defined as the cosine similarity between Vnew (U) and Vcached (T) when
Vcached is extracted.

This threshold is also updated every time the cache is accumulated. Therefore, the distance
threshold Dcached for Cache Hit is defined as follows:

Dcached =
(Dcached × n) + Dnew

n + 1
(7)

where

Dnew = 1− ∑i(Ui × Ti)√
∑i(Ui)

2 ×
√

∑i(Ti)
2

(8)

However, if the cumulative count of Vcached is one, the distance cannot be obtained. Therefore,
to specify a threshold, at least two images in one class must be cached. Each time the cumulative count
increases, a mean of the cached distance is refreshed. In addition, the cache of each convolution layer
contains class, cumulative count (≥2), mean distance, and mean feature vector.

Finally, when classifying the input image using the cache, the matching function f for determining
Cache Hit from the input feature vector Vquery and cached feature vector Vcached based on distance
threshold ε is defined as:

fε

(
Vquery, Vcached

){ Hit i f min
{

D
(
Vquery, Vcached

)}
≤ ε

Miss otherwise
(9)

4. Experimental Results and Analysis

In this section, we measure and evaluate the performance of the proposed cached CNN structure.
This experiment consists of three steps. First, we ensure that feature vectors extracted from feature
maps in the same class have similarities. Second, we measure the hit rate of the cached CNN. Third,
we measure the classification time of the cached CNN and compare it to the case where it is not applied.
We also analyze the correlation between the hit rate and classification time. The program that operates
all of the experiments uses Caffe [20].

4.1. Feature Vector Similarity

To verify that feature vectors of the same class have a similarity, we chose 10 classes from
the Caltech256 [21] dataset and selected 100 images per class. The 100 images for each class
were only images that were classified under the same class by AlexNet. The selected classes are
{“gorilla,” “backpack,” “binoculars,” “warplane,” “joystick,” “flower pot,” “mountain bike,” “toaster,”
“photocopier,” and “daisy”}. Figure 3 shows an example of images for the 10 selected classes. Some of
these images include those that were classified as the same class, although they were not, such as in
“joystick” and “flower pot.”
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Figure 3. Examples of Caltech256 dataset images classified under the same class by AlexNet.

We then extracted feature vectors at each convolution layer of AlexNet and then measured the
distance of each feature vector. The distance measurement involves two distances: (1) Distance between
images of the same class. (2) Distance between images of different classes.

Distances between images of the same class were obtained by dividing the 100 images of each
class into two groups of 50 each, and subsequently measuring the distance between the images of one
group to the other. A total of 50× 50 = 2500 distances were measured. Distances between images
of different classes were determined by selecting 50 images for each class and measuring a total of
50× 50 = 2500 distances. Figure 4 shows the results of this experiment. The horizontal axis of the
graph represents the five convolution layers of AlexNet. The vertical axis represents a distance with a
real value between 0 and 1. A red dashed-dotted line represents the distance between images of the
same class.

In most cases, the distance between the images of the same class is the smallest. This is because
the images classified into the same class have similar features generated by the convolution layer,
and the intensity of the features is similar. In addition, it shows that our feature vector extraction
method provides a discrimination that can distinguish each class. We have confirmed that the images
of the same class have the smallest distances to each other, and this point can be used in the cache.
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4.2. Cached CNN Hit Rate

To measure the hit rate of the proposed cached CNN, we selected 10 classes from the Microsoft
COCO [22] dataset and selected 100 images for each class. This was done for a test and training set.

We first wrote training images in the cache of each convolution layer. We then classified 100 test
images using a cache, and compared the results with the ground truth to measure the hit rate. We also
experimented by increasing the number of cached training images from 2 to 10, 20, 40, 60, 80, and 100.

This experiment was divided into two stages. First, all test images were classified by the cache.
In this case, we did not apply the distance threshold for Hit/Miss decision. That is, all results were
a Cache Hit, and the query feature vector was only classified as the closest cached feature vector.
In addition, the minimum number of cached images was one.

The second stage was the result of applying the distance threshold. Using these two experiments,
we could decide how far the distance threshold can reduce false positives. The entire process of dataset
selection, caching, and hit-rate measurement was performed on AlexNet, GoogLeNet [23], VGG-16,
VGG-19 [24], ResNet-50, and ResNet-101 CNN models.

For example, the 10 selected classes and 100 images for each class were images classified as the
same class by each CNN model from the Microsoft COCO dataset. In addition, GoogLeNet was
measured in inception units, and ResNet was measured in residual block units.

Figure 5 shows the hit rate of classifying the query feature vector into a class of feature vectors that
correspond to the closest distance without applying the distance threshold. In this case, the hit rate is
100 % because all input images are classified by the cache. Each item on the horizontal axis represents a
convolution layer, which consists of seven bars. Each bar represents the number of cumulative cached
training images of 1, 10, 20, 40, 60, 80, and 100. The blue and red areas of the bar represent the rate of
true and false positives, respectively.

As expected, the layers toward the end extract more detailed and common features, so the rate of
true positives is high. In addition, as the number of cached images increases, the rate of true positives
increases, but from 40 onwards, it does not increase significantly, and in some cases the rate of true
positive declines slightly. However, the rate of false positives is high except for the final layers of
GoogLeNet, ResNet-50, and ResNet-101. In addition, given that all results are Cache Hits, the input
query image may be classified as incorrect. Although CNNs, except AlexNet, show a true positive
rate of 80 % or higher for the last convolution layer, it is insignificant to use the cache on this layer.
Therefore, if the cache returns a false positive, it is advantageous to classify it using the CNN instead
of using the cache, because it is necessary to lower the false positive rate and treat it as a Cache Miss
even if there is a reduction in the hit rate of the cache.

Figure 6 shows the hit rate when applying the distance threshold to prevent a false positive from
being a Cache Miss and to avoid using the cache. The seven bars for each item on the horizontal axis
indicate that the number of training images accumulated in the cache is 2, 10, 20, 40, 60, 80, and 100.
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The green area of each bar is treated as a Cache Miss by applying the distance threshold. In this
case, the input image can be classified by the CNN rather than the cache, the classification as a false
positive can be avoided, and the hit rate is reduced by the Cache Miss.

By applying a distance threshold, the number of values retrieved from the cache, that is, the hit
rate, has been greatly reduced. However, this also reduces the number of false positives, which in turn
increases the usability of the cache. Table 1 lists the decreased amounts of true and false positives by
applying the distance threshold according to each convolution layer. This value is the average of the
results for all 10, 20, 40, 60, 80, and 100 cached training images.

Table 1. Decreased amounts of true and false positives when applying the distance threshold.

Models Decreased Amounts (percentage points)

AlexNet 9.4 21.9 33.7 33.2 36.0
17.3 19.4 21.7 21.2 19.2

GoogLeNet (v1) 10.8 12.8 29.4 38.7 53.3 50.0 47.7 62.5 64.3 64.9 70.8
18.1 19.6 20.9 19.3 12.6 13.2 13.4 5.9 4.7 3.5 0.8

VGG-16 6.9 9.5 10.4 17.7 19.5 22.4 26.7 28.7 29.1 33.9 42.4 43.7 48.2
17.0 15.3 17.1 20.4 20.9 22.3 20.5 20.6 20.2 17.1 15.5 15.1 10.5

VGG-19 6.2 11.0 10.8 17.1 19.6 25.1 29.1 26.5 29.0 32.2 29.2 32.1 40.6 41.6 46.6 49.5
16.6 15.3 16.1 20.8 20.6 19.6 19.5 19.9 19.3 18.1 19.3 18.4 15.7 15.6 12.2 9.4

ResNet-50 9.7 16.6 20.0 22.4 25.9 25.7 22.7 33.6 38.1 40.3 46.8 40.2 44.5 50.5 60.6 68.2 71.5
20.9 21.1 20.2 21.1 22.2 22.5 22.6 20.4 20.2 19.5 17.7 18.7 16.0 15.7 8.8 4.5 2.2

ResNet-101 (1–17) 11.3 19.3 22.0 25.1 29.7 31.6 33.8 36.8 38.0 35.2 35.0 33.5 36.6 38.5 37.8 37.4 40.1
24.2 27.0 26.0 25.6 25.8 25.6 25.0 23.9 23.9 25.9 24.0 25.8 24.6 24.4 24.5 25.2 24.6

ResNet-101 (18–34) 38.8 40.2 42.4 42.5 45.2 44.8 44.2 47.9 51.9 54.6 53.8 55.6 58.6 60.6 71.9 78.3 77.4
25.4 24.9 23.1 23.6 22.3 21.8 21.6 20.2 18.5 16.4 16.0 15.3 13.5 11.5 6.0 1.9 1.0

The first row of each model shows the decreased amounts of true positives, while the second row
in bold represents the decreased amounts of false positives. Depending on the CNN model, there is
usually a decreased number of false positives in the initial layers. This is because these layers are
filtered by the kernel to extract fewer common features that are filtered by the distance threshold.

In addition, the smaller amount of decrease in the final layers is a result of the fact that the
number of false positives was already low even though these layers did not apply the distance
threshold. However, the amount of true positive reduction is high because they were filtered by the
distance threshold.

In the case of VGG and ResNet, the amount of decline of true positives was very high in the last
layer. This is because the feature vectors corresponding to the true and false positives are scattered
from the centroid of each class, and it is difficult to determine the boundary between the true and false
positives of the feature vector only by the distance threshold.

Table 2 lists the hit rates after applying the distance threshold. This rate is the average of the
measured values when the number of training images accumulated in the cache is 10, 20, 40, 60, 80,
and 100. Before applying a distance threshold, all input images are classified by the cache, so the
hit rate is 100 %, but the hit rate is reduced by applying a distance threshold and treating a portion
of the false positive as a Cache Miss. The hit rate gradually decreases toward the final layer. This is
because the number of false positives returned by the cache is very high in the initial layers; however,
this decreases in the final layers.
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Table 2. Hit rate when applying distance threshold.

Models Hit Rate (%)

AlexNet 73.3 58.7 44.5 45.6 44.9
GoogLeNet (v1) 71.1 67.6 49.8 42.0 34.1 36.8 39.0 31.6 31.0 31.6 28.4

VGG-16 76.2 75.3 72.5 61.9 59.6 55.3 52.9 50.8 50.8 49.1 42.1 41.2 41.3
VGG-19 77.3 73.7 73.1 62.1 59.8 55.4 51.4 53.7 51.7 49.7 51.5 49.6 43.8 42.9 41.3 41.1

ResNet-50 69.4 62.3 59.8 56.5 51.9 51.8 54.7 45.9 41.7 40.2 35.5 41.2 39.5 33.8 30.6 27.2 26.3
ResNet-101 (1–17) 64.5 53.7 52.0 49.3 44.6 42.8 41.3 39.3 38.1 39.0 41.0 40.8 38.9 37.2 37.7 37.5 35.4
ResNet-101 (18–34) 35.9 34.9 34.5 33.9 32.5 33.4 34.2 32.0 29.6 29.0 30.2 29.1 28.0 28.0 22.2 19.8 21.6

In addition, we measured the precision with and without the distance threshold. Table 3 shows
this precision, which is measured as follows:

Precision = True Positive/(True Positive + False Positive) (10)

Table 3. Precision of cache with and without distance threshold.

Models Precision (0 to 1)

AlexNet 0.39 0.57 0.67 0.66 0.71
0.41 0.59 0.73 0.73 0.78

GoogLeNet (v1) 0.40 0.43 0.63 0.72 0.84 0.83 0.82 0.94 0.95 0.96 0.99
0.41 0.44 0.67 0.79 0.91 0.89 0.89 0.99 0.99 1.00 1.00

VGG-16 0.30 0.37 0.40 0.49 0.51 0.54 0.61 0.62 0.63 0.70 0.77 0.78 0.85
0.30 0.36 0.40 0.50 0.53 0.57 0.64 0.65 0.67 0.74 0.79 0.82 0.88

VGG-19 0.29 0.37 0.41 0.49 0.52 0.59 0.64 0.64 0.65 0.68 0.65 0.67 0.76 0.78 0.82 0.86
0.29 0.35 0.41 0.51 0.54 0.61 0.67 0.69 0.69 0.72 0.68 0.70 0.80 0.83 0.86 0.88

ResNet-50 0.34 0.47 0.51 0.53 0.58 0.57 0.56 0.66 0.69 0.71 0.75 0.71 0.77 0.80 0.89 0.95 0.98
0.36 0.49 0.51 0.54 0.61 0.60 0.61 0.69 0.73 0.77 0.81 0.76 0.84 0.87 0.91 0.99 1.00

ResNet-101 (1–17) 0.32 0.43 0.47 0.50 0.57 0.57 0.59 0.62 0.64 0.61 0.61 0.58 0.62 0.63 0.63 0.62 0.64
0.34 0.45 0.48 0.50 0.61 0.59 0.61 0.64 0.68 0.65 0.62 0.60 0.65 0.65 0.65 0.64 0.67

ResNet-101 (18–34) 0.63 0.64 0.67 0.67 0.68 0.69 0.69 0.72 0.75 0.78 0.79 0.80 0.83 0.86 0.93 0.98 0.99
0.67 0.68 0.71 0.71 0.71 0.71 0.73 0.75 0.76 0.79 0.81 0.82 0.87 0.91 0.94 1.00 1.00

This precision is the average of the results obtained when the number of training images
accumulated in the cache is as in the case of the hit rate.

The first row of each model indicates the hit rate when no distance threshold is applied, while the
second row shows the hit rate when a distance threshold is applied. Given that the number of true
positives has decreased, the precision does not change significantly. Although the number of true
positives retrieved is reduced owing to the application of the distance threshold, we focus on lowering
the number of false positives. This is because the input query image is not classified using only the
cache, and if it is classified as a false positive, it is more advantageous to classify it using the CNN
without using the cache.

The precision increases at the last layer. However, achieving a high precision at this rear layer is
insignificant. Thus, we measured the actual computation time and determined which layer is the most
effective at using the cache.

4.3. Classification Time

We measured the classification time with the cache on two low-performance devices: ODROID [25]
and LattePanda [26]. Table 4 shows their specifications.
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Table 4. Specifications for devices used in experiment.

Models Processor Memory Storage Power

ODROID-XU4 Samsung Exynos5 Octa ARM Cortex-A15
Quad 2 GHz and Cortex-A7 Quad 1.3 GHz 2-GB DDR3 32GB MicroSD 5V/4A

LattePanda 4G/64GB Intel Cherry Trail Z8350 Quad 1.8 GHz 4-GB DDR3 64GB eMMC 5V/2A

In these devices, the classification times required by a CNN without a cache, and with a cache at
each convolution layer, were measured. Figure 7 shows the classification time required by the CNN
and cache, and the hit rate of each device. The blue and green horizontal solid lines of each graph
represent the classification times taken when one image was classified through CNN on each device.
The blue and green dashed lines represent the classification times taken when classifying one image
using the cache.

The measured classification time required by the CNN is the computation time from the first
convolution layer to the last located layer that outputs the probability for each class, until the classified
class is returned. The classification time required by the cache is the computation time from the first
convolution layer to the return of the resultant class by the cache located in each layer. For example,
in AlexNet, the classification time when using cache in conv3 includes the computation time of conv1
and conv2 layers.

The hit rate and precision are indicated by red solid and brown dashed-dotted lines, respectively.
The hit rate includes true and false positives. All measured classification times were the average of the
values obtained by repeating 100 times.

In AlexNet, caching at any layer could end the classification faster than the CNN. This means that
the fully connected layer located behind the conv5 layer requires a large amount of computation.

However, with our proposed cache, the classification time can be reduced because the classification
result is obtained immediately after passing through the convolution layer without going through
another layer such as the fully connected layer. However, the hit rate lowers from the conv3 layer.
Nevertheless, as the precision increases inversely with the hit rate, it is advantageous to use the cache
from conv3 onwards.

In GoogLeNet, ODROID, and LattePanda, the classification time with the cache increased over
the CNN classification time in the inception4e and inception4d layer.

Therefore, the cache in GoogLeNet should be used in layers ahead of this layer. The hit rate
gradually lowers toward the final layer; however, the precision increases rapidly. Hence, the best layer
to place the cache can be selected based on a tradeoff with the classification time.

In VGG-16 and VGG-19, the classification time using the cache in all layers is less than that using
the CNN. This allows the cache to be used even on the higher-precision final layers. Both the ResNet-50
and ResNet-101 classification times using the cache exceeded the CNN’s classification time in the final
layer. Thus, like GoogLeNet, the cache should be used in layers ahead of that layer.

As a result, the effect of classification time reduction depends on the precision. On an average,
when the precision was approximately 0.7, 0.8, and 0.9, it took about 74.5, 85.0, and 93.9%, respectively,
of the time to classify a single image as compared to when the cache was not used. This represents
approximately 1.37, 1.18, and 1.06 times acceleration performance, respectively.



Appl. Sci. 2019, 9, 108 14 of 18

Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 17 

Figure 7. Comparison of classification times required by the CNN and cache according to layer. 319 

  320 

 

 
(a) AlexNet (b) GoogLeNet(v1) 

 
(c) VGG-16 

 
(d) VGG-19 

 
(e) ResNet-50 

 
(f) ResNet-101 (1 to 17 of 34 layers) 

 
(g) ResNet-101 (18 to 34 of 34 layers) 

Figure 7. Comparison of classification times required by the CNN and cache according to layer.



Appl. Sci. 2019, 9, 108 15 of 18

4.4. Result Based on Cache Location

Although the precision of the cache varies based on the network model, feature maps generated
from the kernel are generally more precise on the final layers that extract features that are more
common. However, when the cache is applied to the final layers, the classification time cannot be
significantly reduced because the cache is operated after many convolution operations have already
been performed. In addition, in GoogLeNet and ResNet, when the cache is located in the final
convolution layers, the classification time increases, unlike when using the CNN. In this case, the cache
is not available.

Experiments show that in most pretrained CNN models, the rate of false positives decreases
gradually from the middle layers. As a low number of false positives indicates a high degree of
precision, this cache can be used only if the number of false positives is low. The classification time
owing to the cache also increases steadily from the first layer; hence, a tradeoff between the classification
time and precision can be made. In addition, it may not be desirable to cache all layers or multiple
layers. This is because the cache’s computation time can exceed the CNN’s classification time, as is the
case with GoogLeNet and ResNet.

In our experiment, the classification time was measured by placing a cache in only one layer;
however, in some cases, the classification time required by the cache exceeded the CNN’s classification
time. Table 5 shows the time spent searching the cache for each layer location. This time was
measured when the number of classes written to the cache was 10. If the cache is located in only
one layer, the search time of this cache does not take up a large portion of the total classification
time. However, the more layers in which the cache is located, the more these values are added; hence,
the classification time will increase. In addition, the resource and power consumption can also increase
if the classification time is longer. Our proposed cached CNN can temporarily increase the resource
and power consumption because it requires operations that extract feature vectors from feature maps
and compare them to cached feature vectors. Moreover, if Cache Misses continue to occur, the resource
and power consumption will increase significantly.

Table 5. Cache search time according to layer location measured by ODROID and LattePanda.
Bold indicates LattePanda.

Models Search Time (ms)

AlexNet 22.8 49.9 63.9 63.9 43.2
35.5 81.8 115.0 115.0 79.8

GoogLeNet (v1) 25.3 46.0 50.2 93.7 84.9 85.1 85.4 87.5 137.0 135.0 167.0
27.8 65.3 82.4 153.0 152.0 152.0 152.0 157.0 245.0 245.0 304.0

VGG-16 62.6 62.3 48.3 48.3 60.1 59.5 59.9 97.9 97.4 97.9 83.4 83.4 83.1
52.1 51.5 53.0 52.9 87.3 86.9 87.0 164.0 165.0 164.0 153.0 153.0 153.0

VGG-19 62.4 62.5 48.7 48.8 60.9 60.8 60.8 60.8 99.9 99.7 99.9 99.5 85.9 85.4 85.7 85.5
52.0 53.6 52.8 53.0 86.4 88.3 86.3 86.4 163.0 166.0 162.0 166.0 153.0 153.0 153.0 153.0

ResNet-50 24.9 59.8 59.6 59.9 97.4 97.6 97.3 97.0 164.0 164.0 164.0 164.0 164.0 164.0 321.0 323.0 322.0
27.9 86.2 86.1 86.7 164.0 171.0 161.0 162.0 302.0 304.0 302.0 300.0 302.0 300.0 596.0 598.0 598.0

ResNet-101 (1–17) 25.0 60.2 60.1 60.0 98.3 98.8 98.4 97.9 166.0 166.0 166.0 166.0 166.0 166.0 166.0 166.0 165.0
27.7 85.9 85.8 86.0 160.0 160.0 160.0 160.0 300.0 299.0 299.0 299.0 299.0 298.0 299.0 301.0 299.0

ResNet-101 (18–34) 166.0 166.0 166.0 166.0 166.0 165.0 166.0 166.0 166.0 166.0 166.0 166.0 166.0 166.0 325.0 326.0 326.0
299.0 298.0 297.0 298.0 297.0 297.0 297.0 297.0 297.0 299.0 298.0 299.0 297.0 297.0 590.0 597.0 597.0

However, if Cache Hits reduce the image classification time, the time required for the device
to perform operations is also reduced; hence, the overall resource and power consumption may
be reduced. In other words, if caches are executed from many convolution layers and Cache Misses
continues to occur, not only does the classification time increase significantly, but also do the resources
and power consumption. In this case, a tradeoff between the classification time and precision should
be considered.
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5. Conclusion and Future Work

We proposed a cache structure that can reduce the image classification time of a pretrained CNN.
Previous studies modified CNN networks to reduce the classification time; however, the weights had
to be retrained. The proposed structure can be used without modification to the structure or weight
of the pretrained CNN. This cache is located in a specific layer of each CNN and stores the intensity
of the feature maps that have occurred after the convolution operation on the input image at that
layer. Subsequently, when a new image is input, the intensity of the feature maps from the convolution
operation is compared to the cached intensity. If more than a certain degree of similarity is detected,
it is possible to classify the cached feature maps into classes and terminate the remaining convolution
layer operation. In other words, since the input image can be classified after performing only some
convolution layer operations of the CNN, the classification time can be reduced.

This cache assists the CNN’s image classification function. If the cache returns Cache Miss instead
of Cache Hit, the remaining CNN operations can be continued to obtain the classification result of the
input image. In addition, this cache is similar to some image classification systems, and we need to
determine the precision of the returned value to be the ground truth.

Experiments have confirmed the effectiveness of the proposed method. This experiment was
performed on two low-performance devices and we measured the classification time, hit rate, precision,
and false positive rate when using the cache in six pretrained CNN models. The classification time
was measured by comparing with and without the cache. From the measured classification time,
the acceleration performance of the cache was confirmed. On an average, when the precision was
about 0.7, 0.8, and 0.9, the classification speed was improved to 1.34, 1.18, and 1.06 times, respectively.

According to measurements, the false positive rate is still not low enough. Therefore, to make
the proposed cache more useful, methods are needed to decrease the false positive rate. To achieve
this, the cache of each layer may have a different distance threshold. However, an empirical approach
is necessary because the feature maps are different for each network and for each layer. Otherwise,
the cache may exist on multiple layers, in which case the output of each cache is voted on and the
input image can be sorted into classes with the highest score.

Another method is to reduce the computation time of the cache. Our feature extraction and
distance calculation methods are affected by the length of the feature vector, i.e., the number of kernels.
The length of the feature vectors we use is twice the number of kernels; however, this length can
be reduced by other feature vector extraction methods. If this length is reduced, the time spent in
extracting and comparing feature vectors can be reduced. This can reduce the classification time of the
cache, which can be used on higher-precision rear layers.

Our proposed cached CNN adds a cache operation; hence, if a Cache Miss occurs, it not only
increases the classification time but also consumes resources and power temporarily. However, if a
Cache Hit occurs, the computation can be terminated immediately, reducing resource and power
consumption, and the classification time. Because resources and power are very important factors in
low-performance devices, research is needed to find the optimum cache position.
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